Резонансная модуляция магнитным полем межподзонного электрон-электронного взаимодействия в квантовой яме AISb(δ-Te)/InAs/AISb(δ-Te)

© В.И. Кадушкин[¶], Ю.Г. Садофьев*, J.P. Bird*, S.R. Johnson*, Y.-H. Zhang*

Рязанский государственный педагогический университет им. С.А. Есенина, 390000 Рязань, Россия * Department of Electrical Engineering and Center of Solid State Electronic Research, Arizona State University, Tempe, AZ85287, USA

(Получена 22 ноября 2005 г. Принята к печати 12 сентября 2006 г.)

Изучена амплитудно-частотная модуляция осцилляций магнитосопротивления 2D электронов в квантовой яме AlSb(δ -Te)/InAs/AlSb(δ -Te). На магнитополевой зависимости амплитуды осцилляций $\delta(1/B)_{T=const}$ обнаружены участки отрицательной температуры Дингла. Аномалии на $\delta(1/B)_{T=const}$ вызваны резонансным включением квантующим магнитным полем межподзонного электрон-электронного взаимодействия 2D электронов основной и возбужденной подзон размерного квантования. Выполнены оценки величин резонансных полей *B* и времени столкновительного уширения уровней Ландау. Установлен концентрационный порог заполнения возбужденной подзоны размерного квантования $n_s \approx 8 \cdot 10^{11} \,\mathrm{cm}^{-2}$.

PACS: 72.20.My, 73.40.Kp, 73.63.Hs

1. Введение

Гетероструктуры InAs/AlSb с квантовыми ямами (КЯ) в последнее время привлекают пристальное внимание исследователей. Это вызвано возможностью реализации на их основе приборов среднего инфракрасного диапазона, спинтроники и быстродействующих приборов наноэлектроники [1].

Синтез гетероструктур с совершенными гетерограницами позволил наблюдать ряд интересных явлений и измерить параметры двумерных (2D) электронов [2-7]. В частности, измерена величина g-фактора, концентрационная зависимость эффективной массы электронов *m*^{*}, обнаружены аномалии в остаточной (долгоживущей) фотопроводимости и отмечены необычайно высокие величины температуры Дингла T_D. В гетеросистеме InAs/AlSb даже без намеренного легирования в квантовой яме обеспечивается концентрация 2D электронов в основной подзоне размерного квантования (E_m) на уровне $(6-8) \cdot 10^{11} \text{ см}^{-2}$. Поэтому при относительно невысоком уровне легирования барьерных слоев в квантовой яме InAs обеспечивается заполнение 2D электронами как основной E_m , так и возбужденной (E_n) подзон размерного квантования.

На гетеросистеме $Al_x Ga_{1-x} As/GaAs c 2D$ электронами эффект межподзонного электрон-электронного (e-e) взаимодействия изучен достаточно подробно [8–16]. Методической основой служили квантовые осцилляции Шубникова–де-Гааза (ШГ). Наиболее сильное проявление межподзонной е-е релаксации — это эффект амплитудно-частотной модуляции.

Нам не известны работы, в которых исследовано явление амплитудно-частотной модуляции в гетеросистеме InAs/AlSb и его температурные и концентрационные особенности. В данной работе выполнены исследования особенностей осцилляций магнитосопротивления на образцах гетеросистемы InAs/AlSb с различным уровнем легирования и соответственно различной концентрацией 2D электронов на уровнях размерного квантования. Выполнен анализ осцилляций магнитосопротивления по спектрам Фурье и графическим методом. Измерены температурные и концентрационные зависимости параметров 2D электронов в подзонах размерного квантования. Исследованы особенности амплитудно-частотной модуляции, измерены характерные времена релаксации при резонансном модулировании квантующим магнитным полем.

2. Методика эксперимента

Гетероструктуры были выращены по технологии эпитаксии из молекулярных пучков аналогично [3]. На подложке из полуизолирующего GaAs (100) выращивался композитный буфер, состоящий из слоя метаморфного AlSb или GaAs (2.4 мкм) и 10-периодной сверхрешетки GaSb(2.5 нм)/AlSb(2.5 нм).

Квантовая яма (КЯ) сформирована в виде слоя InAs толщиной 15 нм, заключенного между барьерными слоями AlSb по 40 нм каждый. Структура заканчивалась закрывающим слоем GaSb(6 нм). Электроны в КЯ InAs поставлялись из двух δ -слоев теллура, расположенных в AlSb на расстоянии 15 нм от гетерограницы InAs/AlSb. Образцы гетероструктур для гальваномагнитных измерений имели геометрию Ван-дер-Пау размером 15 × 4 мм с точечными контактами. Низкотемпературные измерения в магнитном поле были выполнены с использованием сверхпроводящего соленоида ($B \leq 10$ Tл) по стандартной методике. Компоненты ρ_{xx} и ρ_{xy} тензора сопротивления в магнитном поле $\hat{\rho}(\mathbf{B})$ измерялись в диапазоне температур 4.2–30 К.

[¶] E-mail: kadush@rspu.ryazan.ru

№ образца	$n_m, 10^{12} \mathrm{cm}^{-2}$	$n_p,$ $10^{12} \mathrm{cm}^{-2}$	$T_{\rm D}^m$, K	$T_{\rm D}^p$, K	μ , cm ² /(B · c)	$N_{\rm Te}$ $10^{18} {\rm cm}^{-3}$
1	0.61	-	14.6	-	18.4	_
23	2.7	1.1	19.4 17.0	24 21	25.8	2.0
4	3.6	0.62	9.7	22	5.3	2.4

Исходные параметры образов представлены в табл. 1. Величины концентраций электронов в подзонах E_m и E_p — соответственно n_m и n_p — находились по спектрам Фурье и из наклонов зависимостей положений экстремумов осцилляций $(1/B_{\text{extr}})$ от номера квантового уровня N, т.е. по периоду осцилляций. Здесь же приведены значения холловской подвижности μ и показан уровень легирования δ -слоя (образец 1 не легирован). Концентрация N_{Te} приведена в пересчете на один δ -слой.

3. Результаты исследований и их интерпретация

3.1. Идентификация осцилляций

На рис. 1 представлены осцилляции зависимости $\rho_{xx}(B)$ для образца 3 (см. табл. 1) при трех температурах. Заполнение двух подзон размерного квантования проявляется в модулировании осцилляций магнитосопротивления основной подзоны E_m частотой F_p , определяемой заполнением возбужденной подзоны. В слабом магнитном поле (B < 0.1 Tr) наблюдается участок отрицательного магнитосопротивления (OMC). Величина ОМС составляет $\leq 4\%$. При B > 0.1 Tr монотонный компонент зависимости $\rho_{xx}(B)$ для исследуемых образцов 2–4 обнаруживает положительное магнитосопротивление. Это обстоятельство может указывать на вклад в магнитопроводимость двух групп носителей [17].

Попытка идентифицировать экстремумы осцилляций по использованной ранее методике [18] для соседних экстремумов при значениях магнитного поля *B_N* и *B_{N+1}*.

$$N = \frac{B_N - B_{N+1}}{1.5B_{N+1} - 0.5B_N} \tag{1a}$$

привела к существенному разбросу величин номеров уровней Ландау N_m . Характерно, что наблюдается "сбой" численных значений номеров уровней Ландау для всех образцов 1–4. Указанные сбои в величинах N_m имеют псевдопериодический характер для образцов 2–4. Причина подобного в настоящее время не ясна и требует отдельного исследования.

В связи с этим идентификация каждого экстремума магнитосопротивления при магнитном поле $B_{\text{extr}} = B_N$ была выполнена по всей совокупности экстремумов B_{M_i} :

$$N_{m_i} = \frac{m_i B_N}{B_{M_i} - B_N},\tag{16}$$

где m_i — число экстремумов в интервале значений магнитного поля (B_N, B_{M_i}) . Созданный таким образом

Рис. 1. Зависимости $\rho_{xx}(B)$ для образца 3 (см. табл. 1), измеренные при температуре *T*, К: *I* — 4.2, *2* — 10.3, *3* — 19.2. Кривые *2* и *3* смещены вверх на 40 и $80\Omega/\Box$ соответственно.

Рис. 2. Зависимости положений экстремумов осцилляций Шубникова-де-Гааза $1/B_{\text{extr}}$ от номера квантового уровня Ландау N_m основной E_m (1-4) и N_p — возбужденной $E_p(2^*-4^*)$ подзон размерного квантования. Номера прямых соответствуют номерам образцов в табл. 1: 1 - 1; $2, 2^* - 2$; $3, 3^* - 3$; $4, 4^* - 4$. Температура опыта T = 4.2 К.

Рис. 3. Фурье-спектры осцилляций Шубникова-де-Гааза для образца 3. Показаны положения пиков для частот: $a - F_m$, $b - F_p$, $c - (F_m - F_p)$, $d - (F_m + F_p)$. Температура опыта *T*, K: I - 4.2, 2 - 10.3, 3 - 19.2.

массив величин N_{mi} обрабатывался методом наименьших квадратов. Полученные результаты представлены на рис. 2 в виде зависимостей положений экстремумов $1/B_{\text{extr}}$ от номера квантового уровня Ландау. Эти данные относятся к температуре 4.2 К.

3.2. Спектры Фурье

Спектры Фурье магнитосопротивления представлены на рис. 3. В целом эти спектры идентичны известным для наноструктур с двумя заполненными подзонами размерного квантования [11]. В спектре присутствуют частоты F_m и F_p гармоник осцилляций по основной (E_m) и возбужденной (E_p) подзонам размерного квантования. Частоты $F_{m,p}$ дают возможность оценить концентрацию носителей:

$$F_{m,p} = n_{m,p} \, \frac{2\pi\hbar}{e}.\tag{2}$$

Оценки $n_{m,p}$, как уже отмечалось, хорошо соответствуют найденным из периода осцилляций (рис. 2).

В спектрах Фурье присутствуют комбинационные частоты

$$F_m \pm F_p = \frac{2\pi\hbar}{e(n_m \pm n_p)},\tag{3}$$

характерные для осцилляций магнитосопротивления с амплитудно-частотной модуляцией.

На зависимостях $1/B_{\text{extr}}$ от N_i , где i = m или p (рис. 2), нами не обнаружены переходы с траектории $1/B_{\text{extr}} = f(N_i)$ от осцилляций с частотой $F_m - F_p$ к осцилляциям основной гармоники с частотой F_m , что наблюдалось при анализе экспериментов с гетеросистемой GaAs/AlGaAs [14].

3.3. Столкновительное уширение и амплитуда осцилляций

Теория осцилляций ШдГ вследствие расходимости функции плотности состояний в условиях резонанса предсказывает осцилляции неограниченной амплитуды. Конечная амплитуда осцилляций, измеряемая в опытах, объясняется уширением уровней Ландау [19].

Магнитополевая зависимость амплитуды осцилляций δ с учетом конечной температуры опыта и столкновительного уширения описывается известным выражением

$$\delta(1/B) \propto (x/ \operatorname{sh} x) \exp(-2\pi^2 k T_{\mathrm{D}}/\hbar\omega_c)$$
 (4)

 $(x = 2\pi^2 k T / \hbar \omega_c)$, которое в условиях T = const позволяет определить температуру Дингла T_D [19,20].

Магнитополевые зависимости амплитуды осцилляций, соответствующих основной (E_m) и возбужденной (E_p) подзонам размерного квантования, выделялись нами из исходных экспериментальных кривых осцилляций двумя способами:

1 — восстановлением гармоник осцилляций по спектрам Фурье (на участке частот полуширины пиков F_m и F_p);

2 — графическим анализом осцилляций.

Результаты, полученные этими методами, не отличались в пределах погрешности измерений.

На рис. 4 и 5 представлены зависимости $\delta(1/B)$ при T = 4.2 К для образцов 2 и 3. Для выяснения тенденции изменения зависимости $T_{\rm D}$ от концентрации электронов для образцов 2–4 кривые $\delta(1/B)_{T={\rm const}}$ для осцилляций с частотой F_m аппроксимировались по методу наименьших

Таблица 2. Изменение параметров электронов подзон E_m и E_p в зависимости от температуры опыта (на примере образца 2, см. табл. 1)

<i>Т</i> ,К	$n_m, 10^{12} \mathrm{cm}^{-2}$	$T_{\rm D}^m, {\rm K}$	$n_p, 10^{11} \mathrm{cm}^{-2}$	$T_{\rm D}^{p}, {\rm K}$
4.2	18.4	19.9	6.22	_
	18.0	19.4	6.08	24.3
9.2	17.8	18.9	6.02	-
	18.3	18.7	6.03	20.8
18.9	17.6	22.0	6.47	—
	17.4	17.8	6.14	24.4
29.6	18.0	_	6.47	
	17.2		5.20	

Примечание. Для каждой температуры приведены данные, полученные: из спектров Фурье — в верхней строке; из графического анализа по методу Сладека — в нижней строке.

Физика и техника полупроводников, 2007, том 41, вып. 3

Рис. 4. Зависимости амплитуды осцилляций $\ln[\delta/(x/\sin x)]$, нормированной на температуру опыта, от обратного магнитного поля 1/B для образца 2 при T = 4.2 К. Подзоны размерного квантования: I — основная E_m и 2 — возбужденная E_p . Темные точки — максимумы, светлые — минимумы осцилляций. Штрихпунктирные линии I^* и 2^* — аппроксимации экспериментальных точек по методу наименьших квадратов. Штриховые линии — аппроксимации участков зависимости Ia, c, e, g (серия I) на предел 1/B = 0 с фокусами (полюсами) Φ_i (i = a, c, e, g). Сплошными отрезками прямых b, d, f обозначены участки серии II.

Рис. 5. Зависимости амплитуды осцилляций, нормированной на температуру опыта, от обратного магнитного поля 1/B для образца 3 при T = 4.2 К. Подзоны размерного квантования: I — основная E_m , 2 — возбужденная E_p . Темные точки — максимумы, светлые — минимумы осцилляций. Штрихпунктирные прямые I^* и 2^* — аппроксимации экспериментальных точек по методу наименьших квадратов. Штриховые прямые — аппроксимации участков зависимости I *а*, *с*, *е*, *g* (серия I). Сплошными отрезками прямых (*b*, *d*, *f*) обозначены участки серии II.

квадратов (штрихпунктирные прямые). По аппроксимации определялась температура Дингла T_D^m . Результаты анализа магнитополевых зависимостей амплитуды осцилляций E_m - и E_p -подзон при T = 4.2 К для образцов 2–4 приведены в табл. 1. Видна отчетливая зависимость T_D^m от концентрации 2D электронов основной подзоны: с увеличением концентрации n_m величина T_D^m заметно уменьшается.

Изменение температуры опыта относительно слабо влияет на величину $T_{\rm D}$. В табл. 2 представлены результаты оценок $T_{\rm D}^{m,p}$ для образца 2 гетероструктуры InAs/AlSb.

Из табл. 1 и 2 ясно, что величины $T_D^{m,p}$, а следовательно, и τ_q (см. табл. 3) значительно отличаются от соответствующих параметров 2D электронов в потенциальной яме гетероперехода Al_xGa_{1-x}As/GaAs. Отметим аномалию в соотношениях между T_{D}^{m} и T_{D}^{p} для гетероструктур InAs/AlSb в сравнении с системой GaAs/AlGaAs. Для первой $T_{\rm D}^m > T_{\rm D}^p$, а для второй $T_{\rm D}^m \gtrsim T_{\rm D}^p$ [9,13–15,21]. Это отличие связано, видимо, с особенностями вертикальной (осевой) архитектуры гетероструктур и доминирующими механизмами релаксации электронов. Характерным масштабом, на котором 2D электроны чувствуют кулоновский потенциал, является длина экранирования l_D. Для вырожденных электронов [22] $l_{\rm D} = a_{\rm B}^*/2$, $a_{\rm B}^* = 4\pi\epsilon\hbar^2/m^*e^2$, где $a_{\rm B}^*$ эффективный радиус Бора, ε — диэлектрическая проницаемость. Ионизованные примеси отделены от 2D электронов в GaAs [13–15] спейсером толщиной L > 7 нм, а в образцах 2-4 ионизованные доноры теллура находятся на расстоянии $L_1 = 15$ нм. Вследствие различия ε/m^* длина экранирования для GaAs $l_{\rm D}=5\,{\rm mm}$, а для InAs $l_{\rm D} = 18 - 12$ нм. Таким образом, ионы Te⁺ являются эффективными рассеивателями 2D электронов в квантовой яме InAs из-за $l_{\rm D} \lesssim L_1$.

3.4. Резонансная амплитуда

Отличительной особенностью квантового магнитосопротивления 2D системы с заполнением электронами нескольких подзон размерного квантования является амплитудно-частотная модуляция. Это явление связано с межподзонным электрон-электронным (e-e) взаимодействием [9,10]. В магнитном поле $B_{m,p}$, когда уровень Ферми пересекают одновременно (по магнитному полю) уровни Ландау N_m и N_p подзон E_m и E_p , максимумы функции плотности состояний $D_m(E)$ и $D_p(E)$ локализуются на уровне энергии Ферми ξ , т.е. $E_m(N_m) = E_p(N_p) = \xi$. Магнитные поля, соответствующие резонансному выходу уровней Ландау N_m и N_p на уровень Ферми, определяются формулой

$$B_{m,p} = \frac{\pi \hbar \Delta n_{m,p}}{e \Delta N_{m,p}},\tag{5}$$

№ образца	2			3			4		
Участки $\delta(1/B)_{T= ext{const}}$	$ au_q, 10^{-14} \mathrm{c}$	$\langle B \rangle$, Тл	ΔB , Тл	$ au_q, 10^{-14} { m c}$	$\langle B \rangle$, Тл	ΔB , Тл	$ au_q, 10^{-14} { m c}$	$\langle B \rangle$, Тл	$\Delta B,$ Тл
а	0.66	2.53	0.29	0.25	2.89	0.31	0.47	3.01	0.33
С	0.46	2.93	0.33	0.3	3.39	0.54	0.36	3.61	0.34
е	0.34	3.96	0.59	—	—	-	0.25	4.34	0.54
g	0.25	5.8	1.01	—	—	-	0.19	5.78	0.43

Таблица 3. Динамика трансформации времени релаксации столкновительного уширения уровней Ландау при включении межподзонного рассеяния магнитным полем

где $\Delta n_{m,p} = n_m - n_p$, $\Delta N_{m,p} = N_m - N_p$. Выражение (5) следует из соотношений

$$\xi_{m,p} = \frac{e\hbar}{m^*} B_{m,p} \left(N_{m,p} + \frac{1}{2} \right), \tag{6}$$

$$\xi_{m,p} = \frac{\pi \hbar^2 n_{m,p}}{m^*} \tag{7}$$

при условии, что $B_m = B_p$, ξ_m , ξ_p — уровни Ферми для основной (E_m) и возбужденной (E_p) подзон, отсчитываемые от энергий $E_m = 0$ и $E_p = 0$ соответственно.

Выполним оценки резонансных полей согласно (5) и данным на рис. 4 для образца 2. Из рис. 4 видно, что резонансы следует ожидать для величин $\Delta N_{m,p}$, близких к (N_m, N_p) (15, 5), (12, 4), (9, 3), (6, 2). Результат оценок величин $1/B_{m,p}$ согласно (5) $\Delta n_{m,p} = 1.2 \cdot 10^{12} \text{ см}^{-2}$ и для указанных значений $\Delta N_{m,p}$ следующий: 0.40, 0.32, 0.24 и 0.16 Tл⁻¹. Для образца гетероструктуры 3 по значениям $\Delta n_{m,p} = 1.6 \cdot 10^{12} \text{ см}^{-2}$ и $N_m = 20$ и $N_p = 8$ согласно формуле (5) получим $1/B_{m,p} = 0.36 \text{ Тл}^{-1}$, что совпадает с экспериментом (рис. 5). Такое же согласие расчета и эксперимента следует для резонансов $N_p = 7$ и 6.

С увеличением магнитного поля В уровни Ландау N_m и N_p подтягиваются к уровню Ферми. Функции плотности состояний $D_m(E)$ и $D_p(E)$, хотя имеют δ -образный профиль, но с определенной асимметрией (вытянутость в область больших энергий). Их перекрытие на уровне Ферми приводит к инициированию магнитным полем межподзонного е-е взаимодействия. Таким образом, на участках $\delta(1/B)$ серии I(a, c, e, g) (рис. 4,5), кроме внутриподзонного е-е взаимодействия в столкновительное уширение включается межподзонное взаимодействие. Время, характеризующее уширение уровней Ланаду $\tau_q^{a,c,e,g}$, контролируется временами е-е взаимодействия τ_{ee}^m , τ_{ee}^p и τ_{ee}^{mp} . По выходе N_m и N_p уровней Ландау над уровнем Ферми (границы $D_m(E)$ и $D_p(E)$ резкие) магнитное поле "выключает" межподзонное е-е взаимодействие. Следовательно, на участках серии II(b, d, f) (рис. 4,5) столкновительное уширение контролируется лишь внутриподзонным е-е взаимодействием $\tau_q^{b,d,f}(\tau_{ee}^m, \tau_{ee}^p).$

3.5. Квантовые времена релаксации

Экспериментальные зависимости $\delta(1/B)_{T=\text{const}}$ на рис. 4 и 5 (кривые *1* и *2*) указывают на сложный характер уширения уровней Ландау N_m и N_p . Аппроксимацией экспериментальных зависимостей *1* и *2* зависимостями I^* и 2^* сложному процессу релаксации в системе 2D электронов подзон E_m и E_p в исследуемом интервале магнитных полей сопоставляется некий гипотетический процесс с усредненным механизмом и уширениями kT_D^m и kT_D^p для каждой из подзон размерного квантования, что не совсем корректно.

Проанализируем структуру $\delta(1/B)_{T=\text{const}}$ следующим образом. Ломаную зависимость $\delta(1/B)_{T=\text{const}}$ на рис. 4 и 5 мы, подобно [18], аппроксимируем системой линейных участков серии I(a, c, e, g). Аппроксимация участков серии I(a, c, e, g) на предельную величину 1/B = 0 определяет фокусы (полюсы) $\Phi_{a,c,e,g}$. Смещение фокусов по шкале амплитуд, мы полагаем, свидетельствует о трансформации механизма, контролирующего столкновительное уширение [13,18].

Согласно концепции, развитой в [18], на участках a-g к уровню Ферми с ростом магнитного поля подтягиваются уровни Ландау N_m и N_p . При резонансном пересечении уровнями N_m и N_p уровня Ферми резко возрастает межподзонное е-е взаимодействие, что приводит к участкам b, d, f на зависимости $\delta(1/B)_{T=\text{const.}}$ На участках, аппроксимированных прямыми b, d, f, уширение уровней Ландау определяет время релаксации внутриподзонного е-е взаимодействия τ_a :

$$\frac{1}{\tau_q} = \frac{1}{\tau_{\rm ee}^m} + \frac{1}{\tau_{\rm ee}^p}.$$
(8)

В условиях, близких к резонансам, на участках a, c, e, gмагнитное поле к внутриподзонному е-е взаимодействию (8) примешивается межподзонное е-е взаимодействие со временем τ_{ee}^{mp} . Время столкновительного уширения определяется соотношением

$$\frac{1}{\tau_q} = \frac{1}{\tau_{ee}^m} + \frac{1}{\tau_{ee}^p} + \frac{1}{\tau_{ee}^{mp}}.$$
(9)

Это приводит к аномальной зависимости $\delta(1/B)_{T=\text{const.}}$

По наклону участков серии I(a, c, e, g) нами найдены времена столкновительного уширения для образцов 2-4. При расчетах учитывалась зависимость эффективной массы 2D электронов от концентрации: $m^*/m_0 = 0.042$ (образец 2), 0.048 (образец 3), 0.053 (образец 4) [4]. В табл. З приведены интервалы магнитных полей ΔB для участков серии I(a, c, e, g) и средние значения $\langle B \rangle$, используемые для определения зависимостей $au_q^{a,c,e,g}(B)$. Так же, как и для гетероструктур GaAs/AlGaAs [18], наблюдается уменьшение времени столкновительного уширения с возрастанием магнитного поля: $\tau_a \propto B^{-0.6}$. Это уменьшение τ_q с возрастанием В связано с примешиванием к внутриподзонному е-е взаимодействию другого механизма (на участках серии I τ_a определяется величинами τ_{ee}^m и τ_{ee}^p). Об этом свидетельствует смещение полюсов $\Phi_{a,c,e,g}$ в пределе 1/B = 0 (рис. 4). Таким механизмом может быть электрон-фононное взаимодействие [13,16].

Принципиальным отличием результатов, представленных на рис. 4 и 5, по отношению к данным [16] для гетероструктуры Al_xGa_{1-x}As/GaAs является наличие падающих участков на зависимости $\delta(1/B)_{T=\text{const}}$ в резонансных магнитных полях. Отличие вида зависимостей $\delta(1/B)$ на рис. 4 и 5 от данных [16,18] следует объяснить топологией потенциального рельефа структуры зоны проводимости $E_c(z)$, где z — нормаль к плоскости квантовой ямы, и симметрией функции распределения электронной плотности $|\psi_{m,p}(z)|^2$ на уровнях размерного квантования Е_{т, р}. Для симметричной квантовой ямы воспринятое возмущение от дефектов гетерограницы и ионизированных примесей δ -слоя, содержащего ионы Te⁺, симметрично. Именно с этим и связан резко контрастный резонанс в эффектах е-е взаимодействия в структурах. В случае одиночной гетероструктуры Al_xGa_{1-x}As/GaAs в потенциальной яме треугольного профиля распределение $|\psi_{m,p}(z)|^2$ несимметрично. Поэтому переход в условиях $E_m(N_m) = E_p(N_p) = \xi$ от участков серии I(a, c, e, g)к серии участков II(b, d, f) происходит плавно. Тенденцию к инверсии знака отношения $\Delta \ln \delta / \Delta (1/B)$ вблизи резонансных условий наблюдали и в экспериментах с гетероструктурами Al_xGa_{1-x}As/GaAs авторы [9,23].

3.6. Заполнение подзон размерного квантования

Из табл. 1 следует очевидная связь между концентрациями n_m и n_p в подзонах размерного квантования E_m и E_p . С увеличением уровня легирования δ -слоя теллуром концентрации n_m и n_p , естественно, возрастают. Отличительной особенностью исследуемой гетероструктуры является наличие в квантовой яме газа 2D электронов в E_m подзоне из-за непреднамеренного, фонового подлегирования барьерных слоев AlSb и закрывающего слоя GaSb с концентрацией (6-8) · 10^{11} см⁻² [5].

Рис. 6. Заполнение подзон E_m и E_p при изменении суммарной концентрации $n_T = n_m + n_p$ с ростом концентрации легирующей примеси в δ -слое. Штрихпунктирные линии — зависимости: $1 - n_m$ (n_T), $2 - n_p$ (n_T); штриховая линия — единичная биссектриса. Аппроксимация прямой 2 на $n_p = 0$ указывает на порог заполнения подзоны E_p .

Для оценок порогового значения концентрации, с которой начинается заполнение возбужденной подзоны размерного квантования, воспользуемся выражением для энергии потенциальной ямы с бесконечно высокими барьерами

$$E_n = (\pi \hbar^2 / 2m^* d^2) n^2,$$
 (9)

где *d* — ширина квантовой ямы, *n* — квантовое число (для E_m n = 1, для E_p n = 2). Такое приближение допустимо, поскольку энергии $E_{m,p}$, отсчитанные от дна зоны проводимости InAs, составляют ~ 60 и 200 мэВ [6], что существенно меньше величины разрыва зон проводимости на гетерогранице InAs/AlSb, равной 1.35 эВ. Добавка электронов к фоновой концентрации в подзону Е_т квантовой ямы из б-слоя сопровождается увеличением продольного импульса в плоскости (x, y) с компонентами $\hbar k_x$ и $\hbar k_y$ (поперечный квазиимпульс ограничен величиной $p_z = \pi \hbar/d$). Как только уровень легирования достигает такой величины, что продольный квазиимпульс $p_{xy} = \hbar \sqrt{k_x^2 + k_y^2}$ обеспечит кинетическую энергию $p_{xy}^2/2m^*$, равную разности энергий E_p и E_m , начинается заполнение возбужденной подзоны размерного квантования.

Используя соотношение

$$p_{xy}^2 = 2m^*(E_p - E_m) \tag{11}$$

и приравнивая p_{xy} фермиевскому квазиимпульсу $p_{\rm F} = \hbar \sqrt{2\pi n_s}$, получим выражение для порогового значения концентрации, с которой начинается заполнение второй подзоны E_p : $n_s = n_c = (3/2)d^2$. Численное значение для квантовой ямы с d = 15 нм равно $6.6 \cdot 10^{11}$ см⁻². Эта величина близка к приводимой в работе [6].

На рис. 6 приведены зависимости $n_m(n_T)$ и $n_p(n_T)$, где $n_T = n_m + n_p$, для образцов 1–4. (Наши данные дополнены результатами, заимствованными из работы [6]). Излом на зависимости $n_m(n_T)$ и аппроксимация прямой $n_p(n_T)$ на предельное значение $n_p = 0$ дают величину пороговой концентрации $n_c = 8.3 \cdot 10^{11}$ см⁻². Можно считать, что при используемом приближении (квантовая яма с бесконечными барьерами и постоянной массой электронов) согласие между численной оценкой $n_c \approx 6.6 \cdot 10^{11}$ см⁻² и экспериментом достаточно хорошее.

4. Заключение

низкотемпературного Измерения магнитосопротивления выполнены на образцах гетероструктуры AlSb/InAs/AlSb с 2D электронами в квантовой яме при заполении двух подзон размерного квантования. Усиление затухания квантования Ландау обусловлено архитектурой слоев гетероструктуры: δ-слой, легированный Те, находится на расстоянии в пределах длины экранирования от гетерогранцы InAs/AlSb, что обеспечивает эффективность кулоновского потенциала в рассеянии 2D электронов. Симметричность распределения электронной плотности по оси гетероструктуры создает одинаковые условия для рассеивания на кулоновском потенциале как в E_m -, так и в E_p -подзоне. С увеличением уровня легирования растет концентрация 2D электронов в подзоне Е_p. Поскольку пространственно они локализованы ближе к гетерогранице, чем электроны в Е_m-подзоне, возрастает их роль в экранировании кулоновского потенциала легирующей примеси Те.

Наиболее впечатляющим результатом анализа экспериментов является обнаружение сильной контрастности резонансного модулирования амплитуды осцилляций основной гармоники с частотой F_m осцилляциями F_p, соответствующими возбужденной подзоне Е_p. Магнитное поле в резонансной ситуации создает условия для столь сильного межподзонного взаимодействия, что на зависимости амплитуды осцилляций от магнитного поля $\delta(1/B)_{T=\text{const}}$ наблюдаются падающие участки. Параметр, характеризуемый температурой Дингла, имеет не общий (для всей зависимости $\delta(1/B)_{T=\text{const}}$), а локальный по магнитному полю характер. В целом анализ экспериментов низкотемпературного магнитотранспорта в квантовой яме AlSb/InAs/AlSb выявил идентичность релаксационных процессов в квантующих магнитных полях с теми, которые происходят в гетероструктуре Al_xGa_{1-x}As/GaAs с сильным межэлектронным взаимодействием.

Авторы благодарят Ю.Н. Горбунову и М.М. Афанасову за помощь в работе.

Работа выполнена при финансовой поддержке Министерства образования РФ (грант № Е02-3.4-319 и Госконтракт № 40.012.1.1.1153).

Список литературы

- C. Nguyen, B. Brar, C.R. Bolognesi, J.J. Pekaric, H. Kroemer, J.H. English. Electron. Mater., 22, 255 (1993).
- [2] J Sigmund, M. Saglam, H.L. Hartnagel, V.N. Zverev, O.E. Raichev, P. Debray, C. Miehe, H. Fuess. J. Vac. Sci. Technol., B20, 1174 (2002).
- [3] Yu.G. Sadofyev, A. Ramamoorthy, B. Naser. Appl. Phys. Lett., 81, 1833 (2002).
- [4] A.V. Ikonnikov, V.I. Gavrilenko, Yu.G. Sadofyev et al. 12th Int. Symp. "Nanostructures: Physics and Technology"(St. Petersburg, Russia, June 22–25, 2004).
- [5] В.Я. Алешкин, В.И. Гавриленко, Д.М. Гапонова и др. ФТП, 39, 30 (2005).
- [6] В.Я. Алешкин, В.И. Гавриленко, А.В. Иконников и др. ФТП, 39, 71 (2005).
- [7] Ю.Г. Садофьев, А. Ramamoorthy, S.R. Johnson, Y.-H. Zhang. ΦΤΠ, 39, 106 (2005).
- [8] D.R. Leadley, R.J. Nicolas, J.J. Harris, C.T. Foxon. Semicond. Sci. Technol., 5, 1061 (1990).
- [9] P.T. Coleridge. Semicond. Sci. Technol., 5, 961 (1990).
- [10] P.T. Coleridge. Phys. Rev. B, 44 (8), 3793 (1991).
- [11] D.R. Leadley, R. Fletcher, R.J. Nicolas et al. Phys. Rev. B, 46, 12439 (1992).
- [12] R.M. Kusters, F.A. Wittenkamp, J. Singleton et al. Phys. Rev. B, 46, 10 207 (1992).
- [13] V.I. Kadushkin. F.M. Tsahhaev. Phys. Low-Dim. Structur., 1/2, 93 (2000).
- [14] V.I. Kadushkin, A.B. Dubois, Yu.N. Gorbunova, F.M. Tsahhaev, A.M. Ustinov. Phys. Low-Dim. Structur., 9/10, 11 (2003).
- [15] В.И. Кадушкин. ФТП, 38, 412 (2004).
- [16] В.И. Кадушкин. ФТП, **39**, 242 (2005).
- [17] H. van Houten, J.G. Williamson, M.E.I. Broekaart, C.T. Foxon, J.J. Harris. Phys. Rev. B, 37 (5), 2756 (1988).
- [18] В.И. Кадушкин. ФТП, **39**, 859 (2005).
- [19] Д. Шенберг. Магнитные осцилляции в металлах (М., Мир, 1986).
- [20] R.V. Dingle. Prog. Royal Soc. (London), A211, 517 (1952).
- [21] F. Fang, T.F. Smith III, S.L. Wright. Surf. Sci., 196, 310 (1988).
- [22] Т.А. Полянская, Ю.В. Шмарцев. ФТП, 23, 3 (1989).
- [23] М.Г. Гаврилов, С.И. Дорожкин, Б.Е. Житомирский, И.В. Кукушкин. Письма ЖЭТФ, 49, 402 (1989).

Редактор Т.А. Полянская

Resonance modulation of intersubband electron-electorn interaction in AISb(δ -Te)/InAs/AISb(δ -Te) quantum well by a quantizing magnetic field

V.I. Kadushkin, Yu.G. Sadof'ev*, J.P. Bird*, S.R. Johnson*, Y.-H. Zhang*

Ryazan State Pedagogical University, 390006 Ryazan, Russia * Department of Electrical Engineering and Center of Solid State Elecetronic Research, Arizona State University, Tempe, AZ85287, USA

Abstract The amplitude-frequency modulation oscillations of 2D electrons magnetoresistance in AlSb(δ -Te)/InAs/AlSb(δ -Te) quantum well have been studied. The dependence of oscillation amplitude $\delta(1/B)_{T=\text{const}}$ demonstrates portions with a negative Dingle temperature. Anomalies of this type are caused by starting up of quantizing magnetic field of the intersubband electron-electron interactions via main and excited subbands. The values of the resonance fields *B* and collisional broadening time of Landau levels have been evaluated. The threshold concentration $n_s \approx 8 \cdot 10^{11} \text{ cm}^{-2}$ for filling of excited subbands of dimensional quantization was found.