Особенности спектров Фурье осцилляций магнитосопротивления сильно легированной гетероструктуры

© В.И. Кадушкин[¶]

Государственное образовательное учреждение высшего профессионального образования "Рязанский государственный университет им. С.А. Есенина", 390000 Рязань, Россия

(Получена 15 февраля 2006 г. Принята к печати 16 февраля 2006 г.)

Исследованы спектры Фурье осцилляций магнитосопротивления сильно легированной гетероструктуры $Al_x Ga_{1-x}As(Si)/GaAs$ с заселением двух подзон (E_m — основной и E_p — возбужденной) размерного квантования. В представлении вероятностей внутри и межподзонных переходов на уровнях Ландау дано объяснение природы гармоник с частотами $F_m \pm F_p$ в осцилляциях магнитосопротивления. Отношение амплитуд пиков A_m и A_p на частотах гармоник F_m и F_p близко к единице, но с равновероятным распределением $A_m/A_p > 1$ и $A_m/A_p < 1$. В ситуации $A_m/A_p > 1$ затухание квантования Ландау контролируется кулоновским потенциалом, а в ситуации, когда $A_m/A_p < 1$, — релаксацией 2D электронов на шероховатостях гетерограницы.

PACS: 72.20.My, 73.40.Kp, 73.63.Hs

1. Введение

Исследования осцилляций Шубникова-де-Гааза (ШдГ) сопротивления ρ_{xx} позволяют изучать энергетический спектр и кинетические параметры вырожденного электронного газа в металлах, полупроводниках и соединениях на их основе — как объемных (3D), так и двумерных (2D). Одним из важных и информационно-емких аспектов является направление фурье-спектроскопии [1]. Этот метод оказался весьма результативным для понимания природы и механизмов релаксации электронов в полупроводниках со сложной структурой энергетического спектра и пространственного распределения электронной плотности. В частности, вскрыта роль межподзонного взаимодействия в объемном соединении BiSb [2,3], изучен спектр подвижности и распределения электронов по подзонам размерного квантования в двумерных полупроводниковых системах [4,5]. Особенно плодотворным этот метод оказался при исследовании амплитудно-частотной модуляции (интермодуляции) осцилляций ШдГ. Эффект интермодуляции наблюдался в низкотемпературном магнитосопротивлении наноструктур, в потенциальной яме которых заполнено основное энергетическое состояние Е_m с волновой функцией $\psi_m(z)$ и верхнее возбужденное состояние $E_p, \psi_p(z)$. Здесь z — координата, направленная вдоль оси наноструктуры.

Суть явления интермодуляции состоит в том, что осцилляции основной частоты $F_m = (2\pi\hbar/e)n_m$ модулированы по амплитуде частотой $F_p = (2\pi\hbar/e)n_p$ ($n_{m,p}$ — концентрации в $E_{m,p}$ -подзонах размерного квантования). Спектральный состав осцилляций магнитосопротивления содержит комбинационные гармоники $F_m \pm F_p$.

Исследования явления интермодуляции были направлены прежде всего на выяснение природы и механизмы, ее (интермодуляцию) обусловливающие [6–9].

Эксперименты, представленные в данной работе, были поставлены с целью изучения особенностей зависимостей магнитосопротивления от температуры и магнитного поля, а также построения моделей, адекватно описывающих эксперименты, проведенные на структурах с двумерным электронным газом. Основная часть исследований посвящена определению одночастичного времени межподзонной релаксации τ_q^{mp} и выяснению соотношений между этим временем и временами внутриподзонной релаксации τ_q^p .

Однозначно выяснено, что ответственным за явление интермодуляции является электрон-электронное (e-e) взаимодействие $E_{m,p}$ -подзон размерного квантования [6], имеющее резонансный характер [7]. Авторами [8] непосредственным экспериментом показано подключение к е–е взаимодействию электрон-фононного (e-ph) механизма.

В работах [10–12] изучена конкуренция внутри- и межподзонных е–е взаимодействий, вызывающая аномалии зависимостей амплитуд A_m и A_p гармоник с частотами F_m и F_p от магнитного поля и температуры.

Особенностями амплитудно-частотной модуляции зависимостей $\rho_{yy}(B)$ являются:

а — малая величина амплитуд гармоник $F_m \pm F_p$ по отношению к амплитудам осцилляций с частотами F_m и F_p . В отдельных случаях частоты $F_m \pm F_p$ проявляются очень слабо;

б — гармоники F_m , F_p и $F_m \pm F_p$ реагируют на изменение температуры и магнитного поля различным образом; в — контрастность (глубина) интермодуляции изменяется от незначительной до почти 100%-й в виде отчетливых биений.

В данной работе предпринят анализ спектров Фурье осцилляций $\rho_{xx}(B)$ для ряда образцов гетеросистемы Al_{0.28}Ga_{0.72}As(Si)/GaAs с заполнением двух подзон размерного квантования E_m и E_p . Наши данные дополнены обработкой результатов измерений осцилляций $\rho_{xx}(B)$ из работ [5,6,8,13–17]. В развитие работ [18–21] предложена качественная интерпретация отмеченных

[¶] E-mail: kadush@rspu.ryazan.ru

Fax: (4912) 281435

№ образца	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Источник данных	[13]		[8]	[1	4]	[15]		[8]	[5]	[16]		[5]	[17]		Наши данные				
Т,К	1.8		0.55	3.9	2.1	4.2		0.55	0.3	4.2		0.3	1.2	4.2	4.2	1.65	1.79	1.71	
$n_m, 10^{11} \mathrm{cm}^{-2}$	11.6	10.3	9.5	9.3	9.0	8.9	8.6	7.6	7.5	6.8	5.8	5.0	4.8	4.4	9.3	9.4	10.7	9.7	10.4
$n_p, \ 10^{11} \mathrm{cm}^{-2}$	1.1	0.76	0.76	0.59	0.69	0.79	0.34	—	0.33	0.44	0.53	—	0.17	0.31	1.4	0.37	1.02	0.66	0.90
$k_{ m F}^{m}\Lambda^{*}$	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.0	0.9	0.9	0.9	0.8	1.2	1.2	1.3	1.2	1.2
$k_{ m F}^p\Lambda$	0.4	0.3	0.3	0.3	0.3	0.4	0.2	—	0.2	0.2	0.1	—	0.2	0.2	0.1	0.2	0.4	0.3	0.4
A_m/A_p	0.5	0.3	1.6	$\gg 1$	1.0	$\gg 1$	$\gg 1$	3.9	2.1	0.3	0.9	5.5	1.5	0.8	1.4	1.4	2.5	0.3	0.5
$T_{\mathrm{D}}^m/T_{\mathrm{D}}^p$	2.6	3.8	4.3	_	2.5	1.8	-	—	2.2	3.9	2.0	—	6.5	_	—	6.7	—	8.4	2.6

* Примечание. Для оценок $k_{\rm F}^{m,p}\Lambda$ величина латерального размера островка роста (шероховатости) гетерограницы принята $\Lambda = 50$ Å.

выше особенностей явления интермодуляции на основе рассмотрения как внутриподзонных m-m, p-p, так и межподзонных m-p, p-m электрон-электронных взаимодействий. Обсуждены причины различной глубины (контрастности) интермодуляции и аномалии температурной и магнитополевой зависимостей амплитуд комбинированных гармоник $F_m \pm F_p$.

2. Экспериментальные результаты

Измерены осцилляции сопротивления $\rho_{xx}(B)$ на серии образцов гетеросистемы $AI_{0.28}Ga_{0.72}As(Si)/GaAs$, выращенных по технологии эпитаксии из молекулярных пучков с уровнем легирования $N_{Si} \approx (2-3) \cdot 10^{18} \text{ см}^{-3}$ и концентрацией фоновой акцепторной примеси $N_A \approx (0.5-5) \cdot 10^{15} \text{ см}^{-3}$. Образцы изготовлены методом фотолитографии. Контакты из эвтектики NiAuGe вжигались в атмосфере инертного газа. Измерения компонентов сопротивления ρ_{xx} и ρ_{xy} выполнены в магнитном поле $B \lesssim 7.4$ Тл при температуре $T \approx 1.65-20.2$ К. В целом техника и методика эксперимента аналогичны описанным ранее в работах [11,12].

Осцилляции магнитосопротивления с указанными выше целями подвергнуты графическому анализу (методу Сладека) и методу фурье-спектроскопии. В этой работе мы сопоставляем результаты лишь при одной температуре для каждого образца. Анализируются измерения для образцов гетеросистемы $Al_x Ga_{1-x} As(Si)/GaAs$, данные для которых разнились в пределах 3% (по величине n_m), полученные этими методами. Усредненные параметры образцов и условия опыта приведены в таблице.

Характерные осцилляции ШдГ с амплитудночастотной модуляцией показаны на рис. 1, *а* и *b*. Номерами у кривых осцилляций соответственно обозначены: 1 — исходная осцилляция, 2 — F_m -гармоника по основной E_m -подзоне и 3 — гармоника частоты F_p по возбужденной E_p -подзоне размерного квантования. Для образца 17 (рис. 1, *a*) виден отщепленный максимум $N_p = 0^+$; для образца 10 (рис. 1, *b*) видно спиновое расщепление уровней Ландау $N_p = 1$ и $N_p = 2$. Особенности спинового расщепления пиков уровня с $N_p = 0$ для 2D электронов подробно обсуждены в работе [22].

На рис. 2, a и b показаны спектры Фурье осцилляций образцов, представленных на рис. 1, a и b соответственно. В спектрах помимо гармоник F_m (1) и F_p (2) по

Рис. 1. Зависимости магнитосопротивления от магнитного поля: a — образец 17, T = 1.71 K; b — образец 10, T = 0.3 K [5]. I — исходные осцилляции, 2 и 3 — осцилляции компонентов по подзонам E_m и E_p соответственно. Зависимости 2 и 3 смещены по оси ρ .

Рис. 2. Фурье-спектры осцилляций магнитосопротивления: a — образец 17, b — образец 10. Показаны гармоники F_m (1) и F_p (2) по основной E_m - и возбужденной E_p -подзонам размерного квантования. 3 — гармоника $F_m - F_p$, 4 — гармоника $F_m + F_p$, 5-8 — более высокие гармоники.

основной E_m - и возбужденной E_p -подзонам размерного квантования присутствуют гармоники комбинационных частот $F_m - F_p$ (3) и $F_m + F_p$ (4). В спектрах Фурье осцилляций магнитосопротивления (рис. 2, *b*), подобно данным [1–3], наблюдаются кратные гармоники комбинаций $F_m - 2F_p$ (5), $F_m + 2F_p$ (6), $2F_m$ (7) и $2F_p$ (8). Наибольший интерес представляют гармоники

Наибольший интерес представляют гармоники $F_m \pm F_p$. В отдельных случаях они хорошо разрешены (рис. 2, *a*), но в большинстве случаев эти пики приводят лишь к асимметрии пика основной частоты F_m . Отметим аномалию спектров, состоящую в различном соотношении амплитуд гармоник F_m и F_p . Так, для образца 17 $A_m/A_p > 1$, а для образца 10 $A_m/A_p < 1$.

3. Спектральные особенности осцилляций магнитосопротивления

Предварим обсуждение особенностей спектрального состава интермодулированных осцилляций магнитосопротивления ШдГ кратким обзором генезиса представлений о их механизме и природе. Согласно [7], магниторазмерные осцилляции (МРО) возникают в квазидвумерных системах при заполнении нескольких подзон размерного квантования. Физическая природа МРО связана с межподзонными переходами электронов между состояниями E_m и E_p . Показано, что амплитуда МРО слабо зависит от температуры. Последнее проистекает от особенностей монотонного компонента плотности состояний $D_{m,p}(E)$ и резонансного характера е–е взаимодействий при совпадении зазора между системами уровней Ландау N_m и N_p , принадлежащих различным подзонам, и энергетическим зазором между энергиями E_m и E_p размерного квантования. При этом, согласно [7], осцилляции $D_m(E)$ и $D_p(E)$ гасят друг друга, и скорость температурного затухания амплитуды резко падает.

Соleridge [6] выполнил анализ соотносительности вероятностей внутри- и межподзонных электронных переходов на основе модели [23]. Было показано, что в интервале температур 1–4.2 К интермодуляция не зависит от температуры и обусловлена электрон-электронными межподзонными переходами. При 50-процентном вкладе межподзонного рассеяния в интегральное время затухания квантования Ландау τ_q величина интермодуляции может достигать 100%.

Авторы [8] исследовали амплитудные характеристики интермодуляции и показали, что в спектре осцилляций магнитосопротивления должна присутствовать гармоника $F_m + F_p$ наряду с частотами F_m и F_p и $F_m - F_p$. Но амплитуда этой гармоники $(F_m + F_p)$ по отношению к упомянутым выше мала, так как содержит температурнозависимый фактор Дингла, выражаемый суммой температур Дингла T_{Dm} и T_{Dn}. Авторы [8] использовали выражение для вероятностей переходов из работы [23]. Было экспериментально установлено, что помимо электронэлектронного взаимодействия в эффект интермодуляции существенный вклад дает и электрон-фононный механизм релаксации (см. также [8,10]). Экспериментально показана зависимость амплитуды интермодуляции от температуры, что не подтверждает выводы теоретической работы [7].

В работе [9] построена теория гальваномагнитных осцилляций с учетом электрон-электронного взаимодействия. Показана роль соотношения транспортного времени релаксации τ_t и времени затухания квантования Ландау τ_a в появлении особенностей осцилляций.

Следует отметить, что рассмотрение межподзонного взаимодействия электронов на уровнях Ландау N_m и N_p в подзонах E_m и E_p авторами [6–9] выполнено в квазиклассическом приближении Косевича–Лифшица. Анализ большого объема экспериментального материала свидетельствует о том, что осцилляции ШдГ по E_p -подзоне наблюдаются (за редким исключением) для уровней Ландау $N_p = 0, 1, 2$.

Как известно [24], вклад в осцилляции магнитосопротивления дают как электронные переходы внутри одной подзоны Ландау, так и переходы электронов, принадлежащих различным подзонам Ландау. Магнитосопротивление определяется числом электронов под уровнем Ферми и числом свободных мест над уровнем Ферми. Для функции Ферми полная вероятность распределения равна f(1-f), здесь f функция распределения Ферми–Дирака. С этих позиций рассмотрим спектр осцилляций магнитосопротивления для случая заполнения двух подзон размерного квантования E_m и E_p . Для каждой подзоны в магнитном поле энергетический спектр распадается на системы N_m и N_p эквидистантно расположенных подзон Ландау.

Внутриподзонные переходы в зонах E_m и E_p определяют основные гармоники, полностью зависимые от концентрации 2D электронов в подзонах. Вероятности переходов определяются числом занятых мест под уровнем Ферми $f_{m,p}$ и соответственно числом свободных мест $1 - f_{m,p}$. Так что полная вероятность для независимых переходов в подзонах E_m и E_p определяется произведением

$$f_{m,p}(1 - f_{m,p}), (1)$$

а основные частоты выражаются через концентрации известными соотношениями

$$F_{m,p} = (2\pi\hbar/e)n_{m,p}.$$
(2)

Рассмотрим внутриподзонные переходы с учетом межподзонных переходов. С учетом переходов E_m -электронов в E_p -подзону с вероятностью $1 - f_p$, определяемую числом свободных мест в E_p -подзоне, для внутриподзонных переходов в E_m -подзоне имеется $f_m(1 - f_p)$ электронов. Для внутриподзонных переходов имеется $1 - f_m$ свободных мест над уровнем Ферми. Следовательно, полная вероятность внутриподзонных переходов m-mопределяется соотношением

$$[f_m(1-f_p)](1-f_m)$$
(3)

и аналогично для вероятности внутриподзонных переходов p-p имеем соотношение

$$[f_p(1-f_m)](1-f_p).$$
 (4)

Вероятность в подзонах E_m и E_p с учетом перекрестных межподзонных переходов (m-p, p-m) описывается выражением

$$[(f_m - f_p)](1 - f_m)(1 - f_p).$$
⁽⁵⁾

Этой вероятности соответствует гармоника разностной частоты

$$F_m - F_p = (2\pi\hbar/e)(n_m - n_p).$$
 (6)

Рассмотрим межподзонные переходы типа m-p или p-m с учетом внутриподзонных переходов m-m и p-p. В E_m -подзоне после внутриподзонных m-m переходов осталось для переходов в E_p -подзону $f_m(1-f_m)$ состояний, занятых электронами, а в E_p — число свободных мест $1-f_p$. Полная вероятность переходов m-p определяется соотношением

$$[f_m(1-f_m)](1-f_p).$$
 (7)

Одновременно в E_p -подзоне имеется $f_p(1 - f_p)$ состояний, занятых электронами для переходов в $1 - f_m$ свободных состояний E_m -подзоны. Так что полная вероятность переходов p-m с учетом внутриподзонных переходов имеет вид

$$[f_p(1-f_p)](1-f_m).$$
 (8)

Полная вероятность переходов m-p и p-m может быть приведена к виду

$$[(f_m + f_p)](1 - f_p)(1 - f_m),$$
(9)

что соответствует осцилляциям с гармоникой суммарной частоты:

$$F_m + F_p = (\pi \hbar/e)(n_m + n_p).$$
 (10)

Таким образом, вероятностный подход к природе осцилляций ШдГ с учетом внутри- и межподзонных переходов позволяет естественно и последовательно объяснить качественно спектральные особенности для гармоник $F_m \pm F_p$.

Выражения (1), (5), (9) для вероятностей внутри- и межподзонных переходов с частотами $F_{m,p}$ и $F_m \pm F_p$ не содержат информации об амплитудах. Это связано с независимостью плотности состояний от энергии в двумерном случае для E_m - и E_p -подзон.

Сопоставление эксперимента и теории выполним, анализируя исходные соотношения для амплитуд пиков A_m и A_p . Теория спектрального анализа [25] экспоненциально затухающих осцилляций вида $e^{-\alpha/t} \cos \omega t$ дает величину амплитуды пика $A \propto 1/\alpha$. Амплитуда пиков частот $F_{m,p}$, следовательно, определяется температурой Дингла $A_{m,p} \propto (T_D^{m,p})^{-1} \propto \tau_q^{m,p}$.

Исходными для анлиза являются соотношения

$$A_m/A_p = \tau_q^m/\tau_q^p < 1, \tag{11a}$$

$$A_m/A_p = \tau_q^m/\tau_q^p > 1 \tag{116}$$

как следствия эксперимента (см. табл. 1).

Рассмотрение механизмов релаксации в вырожденной системе двумерных электронов выполнено в теоретической работе [26], в которой получены соотношения

$$\tau_t/\tau_q > 1, \tag{12a}$$

$$\tau_t / \tau_q = 1, \tag{126}$$

и
$$\tau_t/\tau_q < 1$$
 (12в)

для кулоновского (12а), фононного (12б) рассеяния и рассеяния на шероховатостях гетерограницы (12в). Выражение (12в) справедливо при условии $k_{\rm F}\Lambda \ll 1$, где $k_{\rm F}$ — фермиевский волновой вектор, а Λ — латеральный размер островка роста (шероховатости) границы гетероперехода.

Сравнение следствий эксперимента (11а) и (11б) с теорией (12а)–(12в) выполним с привлечением известных соотношений для времени релаксации (классического и квантового)

$$\tau_t^m / \tau_t^p \gtrsim 1, \tag{13a}$$

$$\tau_t^m / \tau_t^p < 1, \tag{136}$$

полученных экспериментально, в работах [15] — (13а) и [6,8,16,17] — (13б). Эти выражения справедливы для кулоновской (примесной) релаксации. Поделив (11а) на (13а), получим с учетом (13б)

$$\left(\tau_t^{p}/\tau_q^{p}\right)/\left(\tau_t^{m}/\tau_q^{m}\right) < 1.$$
(14)

Это неравенство однозначно указывает на доминирующий вклад как в τ_t , так и в τ_q кулоновского механизма релаксации. Факт доминанты кулоновского рассеяния был установлен в [27,28] при анализе экспериментов в представлениях теории [26]. Рассмотрим соотношение (116) в предположении, что транспортное время τ_t контролируется кулоновским взаимодействием, а τ_q — релаксацией на шероховатостях гетерограницы. Поделив (116) на (12в), получим

$$(\tau_t^p/\tau_a^p)/(\tau_t^m/\tau_a^m) \ll 1, \tag{15}$$

что указывает на определяющий вклад рассеяния на шероховатостях. Заметим, что неравенство (12в) выполняется при условии $k_{\rm F}\Lambda \ll 1$.

Авторами [29–31] исследована роль релаксации 2D электронов на шероховатостях гетерограницы. Показано, что такое рассеяние становится ощутимым при ширине потенциальной ямы 50–70 Å, т.е. при локализации электронов с максимумом $|\psi(z)|^2$ на расстоянии 25–35 Å от гетерограницы. Последнее хорошо согласуется с распределением электронов в наших условиях.

Итак, нами установлено, что ситуация $A_m < A_p$ соответствует доминирующему вкладу примесного (кулоновского) рассеяния как в малоугловое, так и в рассеяние на большие углы. Соотношение $A_m > A_p$, следующее из эксперимента, удовлетворительно объясняется предположением о контроле примесным (кулоновским) рассеяние определяется шероховатостями гетерограницы гетероструктуры.

Тот факт, что наблюдаемые величины A_m/A_p не сильно отличаются от 1, указывает на примешивание к рассеянию на кулоновском потенциале и шероховатостях гетерограницы изотропного е-ph механизма. Для последнего $\tau_t/\tau_q = 1$ (126). Роль е-ph взаимодействия в релаксационных процессах изучалась в работах [32,33] теоретически и экспериментально — в [8,10]. О факте примешивания электрон-фононного взаимодействия свидетельствует зависимость τ_q от магнитного поля [19–21].

Данные таблицы показывают относительно равное число ситуаций $A_m > A_p$ и $A_m < A_p$. Как наши гетероструктуры, так и взятые для анализа из литературы выращены в сходных физико-технических условиях и имеют близкую по параметрам слоевую архитектуру. Так что связать соотносительность амплитуд $A_m/A_p \leq 1$ с отмеченными выше параметрами (условиями синтеза или толщинами и химическим составом слоев) не удается. Возникает вопрос — почему в одних структурах доминирует кулоновское рассеяние в формировании τ_t и τ_q , а в других одновременно проявляются наряду с кулоновским и рассеяние на шероховатостях. Ответ, по-видимому, состоит в том, что гетероструктуры получались именно такими, с почти равновероятной реализацией того или другого механизма.

Явное противоречие обнаруживает соотношение величин A_m/A_p с T_D^m/T_D^p для образцов 1, 2, 10, 11, 14, 18 и 19. В соответствии с развитыми выше соображениями на основе теории [25–27] следовало бы ожидать $T_{\rm D}^m/T_{\rm D}^p < 1$ для указанных образцов. Сопоставление величин $T_{\rm D}^{m}/T_{\rm D}^{p}$ с отношением амплитуд не совсем корректно, поскольку величина T_D^p не является истинной температурой Дингла [31]. Предлагается следующее объяснение отмеченному противоречию. Отношения амплитуд А_т и A_p находятся по пикам гармоник спектра Фурье F_m и F_p, измеренным во всем диапазоне магнитных полей, включая осцилляции совершенно малой амплитуды. Температуры Дингла T_D^m и T_D^p находятся из зависимостей нормированной на конечную температуру опыта амплитуды осцилляций. При этом области исследованных магнитных полей соответствуют номерам подзон Ландау $N_m \approx 5{-}20$, а $N_p \approx 0{-}4$. Для E_p -подзоны размерного квантования физические условия опыта близки к квантовому пределу: $B_c \approx (\pi \hbar/e) n_p$. По достижению квантово-предельных магнитных полей наблюдается перетекание электронов из E_p -подзоны в E_m -подзону. Это наблюдалось в виде изменения наклона зависимости $(I/B)^{\text{extr}} = f(N)$ [18]. Для объемных полупроводников с увеличением магнитного поля даже при наличии спинового расщепления N^{+,-} амплитуда осцилляций увеличивается. В двумерном случае амплитуда пиков N^{-} меньше амплитуды пиков N^{+} . Объяснение этому явлению дано в [22] на основе учета энергетической зависимости функции плотности состояний и нарушения условия вырождения. В этих условиях амплитуда осцилляций будет определяться не только фактором Дингла, но и невырожденной функцией распределения Ферми:

$$\delta(1/B) \propto \exp\left(-\frac{2\pi^2 k T_{\rm D}}{\hbar\omega}\right) \times \exp\left(-\frac{p_z^2/2m^* + \hbar\omega(N+1/2) - \xi_{\rm F}}{kT}\right). \quad (16)$$

Выражение (16) может быть приведено к виду

$$\delta(1/B) \sim e^{-\alpha/B} e^{-\beta B} \tag{17}$$

с $\alpha = 2\pi^2 k T_{\rm D} / (e\hbar/m^*)$. Оценки для $T_{\rm D}^p \approx (1-3)$ К и $T \approx 4$ К дают $\alpha \approx 3$, $\beta \approx 10$. Очевидно, что второй сомножитель в (16) и (17) для $N_p \approx 0$, 1, 2 вызовет изменение наклона зависимости $\delta(1/B)$, эквивалентное понижению температуры Дингла. Такое заниженное значение "эффективной" температуры Дингла и сопровождается величиной $T_{\rm D}^m/T_{\rm D}^p > 1$.

Авторами [3] изучено влияние междолинного рассеяния электронов на спектральный состав осцилляций Шубникова–де-Гааза. Показано, что для электронов в долинах с характерными частотами F_1 и F_2 осцилляции магнитосопротивления содержат комбинационные гармоники $mF_1 + nF_2$ (*m* и *n* — целые числа). Предложен метод измерения времени релаксации междолинного взаимодействия τ_{12} из отношения амплитуды комбинационной A_{12} и амплитуды основной гармоники A_1 :

$$A_{12}/A_1 = \tau_1/\tau_{12},\tag{18}$$

где τ_1 — время релаксации электронов гармоники основной частоты. К сожалению предложенная формула в виде, приведенном в [3], для оценок τ_{12} в нашем случае непригодна. Анализ вывода в осцилляции магнитосопротивления междолинных столкновений выполнен в предположении, что затухание квантования Ландау в обеих долинах характеризуется одинаковой температурой Дингла. Это приближение не соответствует условиям нашего эксперимента.

4. Заключение

В спектрах Фурье осцилляций магнитосопротивления наблюдаются частоты гармоник F_m , F_p по основной (E_m) и возбужденной (E_p) подзонам размерного квантования. В спектрах присутствуют и гармоники комбинационных частот $F_m \pm F_p$. Последним дано объяснение на основе рассмотрения вероятностей переходов как внутри-, так и межподзонных.

Анализ спектров Фурье показал равновероятное (по образцам) распределение амплитуд пиков гармоник основной A_m - и возбужденной A_p -подзон размерного квантования: $A_m/A_p \leq 1$. Показано, что соотношения $A_m/A_p < 1$ и $\tau_q^m/\tau_q^p < 1$ объясняются в предположении преобладания кулоновского рассеяния в малоугловом ($\tau_q^{m,p}$) и большеугловом ($\tau_t^{m,p}$) рассеянии. Неравенства $A_m/A_p > 1$ и $\tau_q^m/\tau_q^p > 1$ объяснены контролем примесного кулоновского рассеяния транспортного ($\tau_t^{m,p}$) времени релаксации, а малоугловое время контролируется рассеянием на шероховатостях. Прямой связи соотносительности амплитуд $A_m/A_p \geq 1$ с физикотехнологическими режимами синтеза и слоевой архитектурой гетероструктур не установлено.

Различное соотношение амплитуд гармоник спектров Фурье наблюдалось в опытах сильно легированного GaAs (δ -Sn) [35] и GaAs (δ -Si) [36] при заполнении нескольких подзон размерного квантования 2D электронами.

Автор выражает благодарность М.М. Афанасовой, Ю.Н. Горбуновой и Н.В. Коненкову за помощь в работе.

Список литературы

- [1] Н.Б. Брандт, С.М. Чудинов. УФН, 137, 479 (1982).
- [2] Н.Я. Минина, Л.А. Киракозова. ЖЭТФ, 101, 1663 (1992).
- [3] В.А. Козлов, Е.Е. Нариманова, К.А. Сахаров. ФТП, 36, 309 (1994).

- [4] Н.Б. Брандт, В.А. Кульбачинский, В.Г. Кытин, Р.А. Лунин, В.И. Кадушкин, Е.Л. Шангина, А. де Виссер. ФТП, 30, 676 (1996).
- [5] H. van Houten, J.G. Williamson, M.E.I. Broekart, C.T. Foxon, J.J. Harris. Phys. Rev. B 37, 2756 (1988).
- [6] P.T. Coleridge. Semicond. Sci. Technol., 5, 961 (1990).
- [7] В.М. Поляновский. ФТП, 22, 2230 (1988).
- [8] D.R. Leadley, R. Fletcher, R.J. Nicholas, F. Tao, C.T. Foxon, J.J. Harris. Phys. Rev. B, 46 (19), 12 439 (1992).
- [9] N.S. Averkiev, L.E. Golub, S.A. Tarasenko, M. Willander. J. Phys.: Condens. Matter, 13, 2517 (2001).
- [10] В.И. Кадушкин. ФТП, **38**, 412 (2004).
- [11] V.I. Kadushkin, F.M. Tsakhaev. Phys. Low-Dim. Structur., 1/2, 93 (2000).
- [12] V.I. Kadushkin, A.B. Dubois. Phys. Low-Dim. Structur., 7/8, 1 (2003).
- [13] Ж.И. Алфёров, С.В. Иванов, П.С. Копьев, Б.Я. Мельцер, Т.А. Полянская, И.Г. Савельев, В.М. Устинов, Ю.В. Шмарцев. ФТП, 19, 1199 (1985).
- [14] P.T. Coleridge. Phys. Rev. B, 44, 3793 (1991).
- [15] H.L. Störmer, A.C. Gossard, W. Wiegmann. Sol. St. Commun., 41, 707 (1982).
- [16] F.F. Fang, T.P. Smith III, S.L. Wright. Surf. Sci., 196, 310 (1988).
- [17] R.M. Kusters, F.A. Wittenkamp, J. Singleton et al. Phys. Rev. B, 46, 10 207 (1982).
- [18] V.I. Kadushkin, A.B. Dubois, Yu.N. Gorbunova, F.M. Tsahhaev, A.M. Ustinov. Phys. Low-Dim. Structur., 9/10, 11 (2003).
- [19] В.И. Кадушкин. ФТП, **39**, 242 (2005).
- [20] В.И. Кадушкин. ФТП, **39**, 859 (2005).
- [21] В.И. Кадушкин. Изв. вузов. Физика, 43, 52 (2000).
- [22] В.И. Кадушкин. ФТП, **40** (4), 439 (2006).
- [23] A. Isichara, L. Smrčka. J. Phys. C: Col. St. Phys., 19, 6777 (1986).
- [24] С.С. Шалыт, А.С. Эфрос. ФТП, 4, 1233 (1962).
- [25] И.С. Гоноровский. Радиотехнические цепи и сигналы (М., Радио и связь, 1986).
- [26] A. Gold. Phys. Rev. B, **38**, 10798 (1988).
- [27] J.P. Harrang, R.J. Higgins, R.K. Goodall. Phys. Rev. B, 32, 8126 (1984).
- [28] С.Д. Быстров, А.М. Крещук, С.В. Новиков, Т.А. Полянская, И.Г. Савельев. ФТП, 27, 645 (1993).
- [29] B. Laikhtman, M. Heiblum, U. Meirav. Appl. Phys. Lett., 57, 1557 (1990).
- [30] K. Hirakawa, T. Noda, H. Sakaki. Surf. Sci., 196, 365 (1988).
- [31] T. Noda, M. Tanaka, H. Sakaki. Appl. Phys. Lett., 57, 1651 (1990).
- [32] В. Карпус. ФТП, **20**, 12 (1986).
- [33] В. Карпус. ФТП, **22**, 439 (1988).
- [34] R.B. Dingle. Proc. Roy. Soc. A, 211, 500 (1952).
- [35] A. Zrenner, F. Koch, R.L. Williams, R.A. Stradling, K. Ploog, G. Weinmann. Semicond. Sci. Technol., 3, 1203 (1988).
- [36] В.А. Кульбачинский. В.Г. Кытин, Р.А. Лунин, В.Г. Мокеров, А.П. Сеничкин, А.С. Бугаев, А.П. Карузский, А.В. Пересторин, RTF. Schaijk, А. de Visser. ФТП, 33, 839 (1999).

Редактор Т.А. Полянская

Features of magnetoresistance oscillations Furrier spectra for the high doped heterostructure

V.I. Kadushkin

Ryazan State University, 390000 Ryazan, Russia

Abstract Magneto-resistance oscillations Furrier stecters of the strong doped heterostructure $Al_xGa_{1-x}As(Si)/GaAs$ with population of two subbands (E_m is the main and E_p is the excited) have been studied. The nature of the presence harmonics with frequencies $F_m \pm F_p$ in magneto-resistance oscillations is explained on base of representation of transition probability of Landau levels in inter- and intrasubbands. Amplitude peaks ratio A_m/A_p on the frequencies F_m and F_p close to the unity but with uniform distribution for $A_m/A_p > 1$ and $A_m/A_p < 1$. In case of $A_m/A_p > 1$ the quantization Landau damping is controlled by Coulomb potential and for case $A_m/A_p < 1$ is determined by 2D electrons relaxation of roughness of hetero-boundary.