
Физика твердого тела, 2026, том 68, вып. 1

08,10

Влияние структуры поверхности вольфрама на образование

кластеров калия

© Д.П. Бернацкий, В.Г. Павлов

Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

E-mail: bernatskii@ms.ioffe.ru

Поступила в Редакцию 17 декабря 2025 г.

В окончательной редакции 18 января 2026 г.

Принята к публикации 21 января 2026 г.

Обнаружено влияние структуры поверхности на образование многоатомных кластеров калия на поверхно-

сти монокристалла вольфрама. Идентификация состава кластеров осуществлялась с помощью времяпролет-

ного масс-спектрометрического анализа ионов, образованных при полевой десорбции. Изменение структуры

поверхности осуществлялось перестройкой острия нагреванием в электрическом поле, при котором

полусферическая вершина острия превращается в многогранник. Показано, что перестройка приводит к

резкому уменьшению количества многоатомных кластеров. Были зарегистрированы только одноатомные

(K+) и двухатомные (K+
2 ) ионы, тогда как на сглаженном острие число атомов в кластерах доходило до

восьми. Наиболее вероятно, обнаруженные изменения связаны с исчезновением ступеней на поверхности.

Предполагается, что образованию кластеров способствует увеличение концентрации адсорбированных

атомов калия у края ступени за счет отражающего барьера и потенциальной энергетической ямы, а также

затягивания обладающих дипольным моментом атомов в область неоднородности поля.
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1. Введение

Изучение образования кластеров связано с их при-

менением в различных областях науки и техники, в

частности, получение новых материалов, имплантация,

изучение наноразмерных структур, рост кристаллов,

нанотехнологии, фотоника [1,2]. Отмечается перспектив-

ность применения ионных кластеров, состоящих из ма-

лого количества атомов, в составе первичного ионного

пучка в методе вторично-ионной масс-спектрометрии

(ВИМС), что существенно увеличивает выход вторич-

ных ионов [3,4]. Поэтому исследования новых методов

получения кластеров является важной и актуальной

задачей. В частности, в работах [5,6] было показано, что

малоатомные кластеры щелочных металлов могут об-

разовываться на сферической поверхности тугоплавких

кристаллов. Исследования проводились в полевом де-

сорбционном микроскопе с получением масс- спектров

кластерных ионов [7]. В качестве образцов использовали

острия из вольфрама и рения. Из полученной зави-

симости числа наблюдаемых пиков от напряжения на

образце было установлено, что образование кластеров

и их состав зависит от места образования на поверхно-

сти. Острия формы отжига, использованные в качестве

образцов, имеют близкую по форме к полусферической

поверхность монокристалла с выходом на поверхность

плоских граней и переходных областей с моноатомными

ступенями. Из этого следует, что можно выделить две

области, где могли зарождаться кластеры. На плоских

гранях, в более ранних исследованиях [8–10], не на-

блюдалось образование ассоциаций из атомов щелоч-

ных металлов. Поэтому, разумно предположить, что на

образование кластеров влияют моноатомные ступени,

расположенные между плоскими гранями, Для того,

чтобы проверить это предположение, необходимо было

изменить количество моноатомных ступеней на поверх-

ности острия.

В настоящей работе исследуется образование класте-

ров калия при изменении формы и структуры поверхно-

сти подложки (монокристалла вольфрама) от полусфе-

рической формы, с большим количеством кристалличе-

ских ступеней на поверхности, к форме многогранника,

поверхность которого состоит их гладких кристалличе-

ских плоскостей.

2. Методика эксперимента

Для изучения образования кластерных ионов щелоч-

ных металлов на металлической поверхности в сильном

электрическом поле и определения их массы использо-

вался полевой десорбционный и полевой электронный

микроскоп, в котором предусмотрена возможность вре-

мяпролетного масс-спектрометрического анализа десор-

бирующихся электрическим полем ионов [7]. На рис. 1

приведена схема регистрации ионов, образованных в

процессе полевой десорбции с поверхности образца.

Образовавшиеся ионы (при полевой десорбции) или

электроны (при полевой эмиссии) двигались по ради-

альным траекториям на детектор, состоящий из двух
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Рис. 1. Схема полевой десорбции и регистрации ионов.

микроканальных пластин (МКП) и люминесцентного

экрана. С помощью МКП ионные и электронные токи

усиливались и создавали на люминесцентном экране

увеличенные полевые десорбционные изображения или

полевые электронные изображение в нанометровом мас-

штабе.

Для измерения времени пролета десорбированных

ионов на острие подавался положительный потенци-

ал от двух источников: постоянный U0 = 0−30 kV и

импульсный амплитудой Up = 0−4 kV и длительностью

10−20 ns. Напряжения подбираются таким образом, что-

бы без импульса при постоянном напряжении не было

полевой десорбции, а добавление импульса напряжения

вызывало десорбцию.

При попадании ионов на детектор на люминесцентном

экране образуются световые вспышки, которые преоб-

разуются фотоэлектронным умножителем в электриче-

ские сигналы. Электрические сигналы поступают на

запоминающий осциллограф, развертка которого син-

хронизирована с генератором импульсного напряжения.

Тактовая частота импульсного напряжения выбиралась

(с учетом параметров осциллографа) в области одного

герца. Времяпролетные масс-спектры регистрировались

видеокамерой и вводились в компьютер.

Массы (m) десорбированных во время импульса ионов

определялись из измерения времени пролета (t) ионов

от поверхности образца до входной поверхности мик-

роканальной пластины по формуле m = 2qUr−2
0 t2, где

r0 — расстояние от поверхности образца до входной

поверхности МКП, q — заряд иона, U = U0 + Up —

разность потенциалов между образцом и МКП, равная

сумме постоянного напряжения и амплитуды импульс-

ного напряжения.

Радиус полусферической поверхности вершины

острия r составлял ∼ 500 nm, что существенно меньше

расстояния (r0 = 14 cm) до МКП. Это позволяет

считать, что всю энергию q(U0 + Up) десорбированный

ион набирает практически у поверхности образца.

Образец изготавливался из вольфрамовой проволоки

диаметром 0.1mm с помощью электрохимического трав-

ления в щелочном растворе. Проволока приваривалась к

вольфрамовой дужке. Полученный образец отжигался в

высоком вакууме (давление p ∼ 5 · 10−9 Torr) при тем-

пературе T = 2500K. В результате отжига происходила

очистка образца, и образовывалось острие с монокри-

сталлической полусферической вершиной с радиусом

закругления порядка 500 nm (острие формы отжига).
Поверхность вершины острия состоит из кристалличе-

ских плоскостей размером 1−50 nm и переходных обла-

стей между ними, состоящих из ступеней моноатомной

высоты.

Для изменения формы острия и структуры поверх-

ности, на которой происходит образование кластеров,

использовался прогрев острия в электрическом по-

ле [11,12]. При таком воздействии происходит расши-

рение имевшихся на поверхности исходного острия

плоских граней. Этот процесс в русскоязычной литера-

туре называется перестройкой. При более интенсивном

воздействии происходит переход от сферической формы

вершины острия к многограннику, ступени и некоторые

грани исчезают, поверхность состоит из гладких плотно-

упакованных кристаллических плоскостей (полная пере-

стройка) [12]. В случае вольфрама это плоскости {110}

и {100} (рис. 2). В нашем случае с ориентацией оси

острия параллельно кристаллографическому направле-

нию 〈110〉 поверхность вершины перестроенного острия

состоит из плоскости (110), перпендикулярной оси и

плоскостей {110} и {100} под углом 45◦ к оси (рис. 2, b).
На рис. 2, a показана стереографическая проекция вер-

шины сглаженного вольфрамового острия, а на рис. 2, b

схема плоскостей перестроенного острия. Крестиками

на рис. 2, a показаны кристаллографические плоскости,

расположенные на поверхности сферического кристалла.

Между плоскостями расположены моноатомные ступе-

ни. При перестройке острия низкоиндексные плоскости

типа {110} расширяются, и количество моноатомных

ступеней на поверхности кристалла резко уменьшается.

Полевое электронное изображение при этом изменяется

со стандартного для острия формы отжига рис. 2, с на

изображение перестроенного острия рис. 2, d [12].
Оценку разности потенциалов U , необходимой для

полевой десорбции, можно определить по формуле

U = Fβ−1, где F — напряженность электрического поля

на поверхности острия, β — фактор электрического по-

ля, определяемый из характеристик Фаулера-Нордгейма

для данного острия. Напряженность электрического по-

ля F , при которой происходит полевая десорбция, вы-

числяли из модели сил изображения для полевой десорб-

ции атомов щелочных металлов [13]. F можно оценить

по формуле F = e−3 · [3(θ) + I − ϕ(θ) − kT ln(τ ν0)]
2,

где 3 — теплота десорбции атома, I — потенциал

ионизации атома, ϕ — работа выхода поверхности, e —

заряд электрона, θ — степень покрытия адсорбатом

поверхности, τ — время десорбции, ν0 — вибрационная

частота, k — постоянная Больцмана, T — темпера-

тура [6,13]. Для сглаженного острия формы отжига в
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Рис. 2. Схема вершины (a) и полевое электронное изображение (c) вольфрамового острия формы отжига и перестроенно-

го (b и d).

области субмонослойных покрытий калием это напряже-

ние находилось в пределах 4−8 kV. Для перестроенного

острия это напряжение будет меньше ввиду усиления

напряженности электрического поля на острых участках

поверхности перестроенного острия.

Эксперименты проводились при комнатной темпера-

туре, при которой поверхностная диффузия адсорбиро-

ванных на вольфраме атомов калия обеспечивает восста-

новление концентрации адсорбата на вершине острия во

время десорбции адатомов с поверхности [7]. Полевая

десорбция адсорбата при установлении порогового зна-

чения напряжения начинается с вершины острия в виде

лавинообразной вспышки. Это происходит из-за того,

что вследствие полевой десорбции происходит уменьше-

ние концентрации атомов щелочного металла на поверх-

ности, растет работа выхода поверхности, уменьшается

энергетический барьер для полевой десорбции и резко

возрастает скорость десорбции. В результате централь-

ная область образца лавинообразно освобождается от

адсорбата. Но, вследствие диффузии адатомов калия в

неоднородном электрическом поле на вершину острия

они десорбируются на границе центральной области,

т. е. там, где напряженность электрического поля имеет

пороговое значение. При этом если не менять напря-

жение на образце процесс полевой десорбции может

идти достаточно долго вследствие диффузии адатомов

с периферии образца. При изменении напряжения на

образце зону десорбции можно смещать к центру (при
уменьшении напряжения) или к периферии (при увели-

чении напряжения). Это позволяет сканировать области

десорбции по поверхности образца.

3. Результаты и обсуждение

На времяпролетных масс-спектрах, полученных при

полевой десорбции калия с вольфрамового острия фор-

мы отжига, присутствовали пики, соответствующие од-

ноатомным и кластерным ионам калия [6]. В каждом

спектре мог присутствовать один или несколько пиков.

Были зарегистрированы ионы, содержащие от одного до

Физика твердого тела, 2026, том 68, вып. 1
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Рис. 3. Масс-спектры ионов калия при десорбции с перестроенного острия при напряжении: a, b — 3.5 kV, c — 4kV.

восьми атомов калия. Масс-спектры были получены в

диапазоне напряжений от 5 до 7 kV.

Полевая десорбция адсорбированного калия с пере-

строенного острия в области субмонослойных покрытий

происходила, как и предполагалось, при более низких

напряжениях в интервале 2.5−5 kV. Примеры масс-

спектров, полученных при десорбции с перестроенного

острия, приведены на рис. 3. В спектрах были зареги-

стрированы одноатомные и двухатомные ионы калия.

Кластеры с большим количеством атомов зарегистриро-

ваны не были.

При напряжении на образце из нижней части этого ин-

тервала (2.5−3 kV) были зарегистрированы одно и двух-

атомные ионы калия. Количество двухатомных ионов

было больше чем одноатомных, что может быть связано

с более низким потенциалом ионизации кластеров. При

повышении напряжения количество двухатомных ионов

резко уменьшалось, а одноатомных возрастало. Обра-

ботка массивов спектров с целью выявления влияния

величины десорбирующего напряжения на образование

ионов калия приведена на рис. 4. По оси абсцисс отло-

жено суммарное напряжение U = U0 + Up приложенное

к образцу, а по оси ординат доля ионов определенной

массы зарегистрированных в спектрах при десорбции

при данном напряжении.

При низких напряжениях десорбция происходит с

мест наибольшего усиления поля — углов, ребер и

краев ступеней, т. е. там, где достигается пороговое

значение электрического поля, необходимое для поле-

вой десорбции. Наблюдается преимущественное обра-

0
3000 4000 5000

0.5

U, V

+
K

+
K 2

Рис. 4. Зависимость доли ионов калия от приложенного

напряжения при десорбции с перестроенного острия.

зование двухатомных кластеров калия. При повышении

напряжения зона десорбции смещается в область с мень-

шим усилением поля. В нашем случае перестроенного

острия это плотноупакованные кристаллические плоско-

сти. При этих условиях в масс-спектрах наблюдается

преобладание одноатомных ионов калия. Количество

двухатомных кластерных ионов калия в спектрах резко

уменьшается. Учитывая, что на ребрах перестроенного

вольфрамового острия [14] имеются узкие моноатомные

ступени плоскости {112}, можно сделать вывод, что

Физика твердого тела, 2026, том 68, вып. 1
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Рис. 5. Схема потенциальной энергии взаимодействия ад-

сорбированного на поверхности атома вблизи ступени, где

Ed — энергия диффузии адсорбированного атома, Eα и Eβ —

потенциальные барьеры для отделения от края ступени.

образование двухатомных кластеров калия происходит

преимущественно на ребрах и у краев этих ступеней.

При повышении десорбирующего напряжения доля де-

сорбции с плоских граней возрастает, что и приводит

к увеличению количества одноатомных ионов калия в

десорбционных масс-спектрах. Отсутствие на перестро-

енном острие кластеров калия с количеством атомов

больше двух, по всей видимости, может быть связано с

отсутствием широких моноатомных ступеней, в отличие

от сглаженного острия формы отжига. Следствием ре-

зультатов этих экспериментов является вывод, что для

образования кластеров калия необходимы ступени на

поверхности.

Для объяснения наблюдаемых эффектов можно при-

влечь результаты исследования движения атомов по по-

верхности металлических кристаллов [15–17] и предпо-

ложить, что к образованию кластеров приводит увеличе-

ние концентрации (скопление) адсорбированных атомов

у края ступени. На рис. 5 приведен пример схемы

потенциальной энергии атома на поверхности кристалла

вблизи края ступени из работы [15]. На приведенной

зависимости потенциальной энергии взаимодействия по-

верхностного атома с подложкой показано, что в обла-

сти ступени образуется потенциальная яма, и имеются

барьеры для ухода атома от ступени. Таким образом,

к возможным причинам скопления адсорбированных

атомов калия у ступени можно отнести наличие отра-

жающего барьера, потенциальной ямы на краю ступени

и притяжения адатомов-диполей [8–11] к месту усиления

поля у края ступени.

4. Заключение

1. С помощью полевой десорбционной микроскопии

и масс- спектрометрического анализа обнаружено вли-

яние структуры поверхности на образование кластеров

щелочного металла (калия).

2. Обнаружено, что на поверхности, состоящей из

гладких кристаллических плоскостей, не происходит

образование кластеров с числом атомов больше двух.

3. Образование кластеров происходит при наличии

ступеней на поверхности. Уменьшение площади моно-

атомных ступеней на поверхности кристалла приводит к

резкому уменьшению количества кластерных ионов.

4. Образование кластеров на ступенях объясняется

увеличением поверхностной концентрации диффундиру-

ющих адсорбированных атомов у края ступени за счет

отражающего барьера, потенциальной энергетической

ямы и притяжением обладающих дипольным моментом

адатомов калия в область усиления поля.
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