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Чтобы получить более глубокое понимание механизма формирования зон поверхностного сплава Ag2Bi на

вицинальной поверхности Ag(4 2 3), в работе представлено первопринципное исследование его электронной

структуры. Происхождение поверхностных электронных состояний исследуется путем прослеживания эво-

люции зонной структуры при переходе от гладкой поверхности системы Ag2Bi/Ag(11 1)-(
√
3×

√
3)R 30◦ к ви-

цинальной поверхности Ag2Bi/Ag(4 2 3), а также при переходе от плоской конфигурациии (2
√
3×

√
3)R 30◦

свободностоящего монослоя поверхностного сплава Ag2Bi к вицинальной конфигурации (4 2 3), и далее

к ультратонким пленкам Ag толщиной в 1 и 3 монослоя, на одной из сторон которых находится

поверхностный сплав Ag2Bi. Обсуждается роль ступенчатого характера поверхности, атомов подложки

серебра и релаксации атомов Bi в формировании электронного спектра поверхностного сплава Ag2Bi на

вицинальной поверхности Ag(4 2 3).
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1. Введение

Обнаруженное в 2007 г. гигантское спин-орбитальное

расщепление электронных состояний поверхностного

сплава Ag2Bi/Ag(1 1 1) [1,2] вызвало огромный интерес

к системам такого типа, а сам поверхностный сплав

Ag2Bi стал объектом многочисленных эксперименталь-

ных и теоретических исследований, а также обзорных

работ [3–11], посвященных изучению особенностей его

атомной структуры, электронного строения, спиновой

и орбитальной текстуры. В работах [1,2] было сдела-

но заключение, что гигантское спиновое расщепление

в поверхностном сплаве Ag2Bi/Ag(1 1 1) является ре-

зультатом большого градиента потенциала в плоскости

поверхности, возникающего в результате нарушения

инверсионной симметрии поверхностного слоя и зна-

чительной релаксации атомов Bi в область вакуума.

В системе покоя электрона этот градиент проявляется

как эффективное магнитное поле вдоль нормали к по-

верхности, что приводит к усилению спинового расщеп-

ления и появлению ненулевой z -компоненты спиновой

поляризации. Расчеты для модели двумерного элек-

тронного газа, выходящей за рамки стандартной схемы

Бычкова−Рашбы, проведенные в работе [3], полностью
подтвердили эти выводы.

Для изучения механизма гигантского спинового рас-

щепления типа Бычкова−Рашбы в работе [5] методом

дифракции медленных электронов определили внешнюю

релаксацию атомов поверхностного сплава. Авторы при-

шли к выводу, что атомная структура поверхностного

сплава играет важную роль в спиновом расщеплении,

поскольку определяет потенциальный рельеф и суще-

ственно влияет на перекрытие атомных орбиталей и,

как следствие, на дисперсию электронных энергети-

ческих зон. В работе [6] были исследованы атомные

структуры, возникающие во время осаждения Bi на

поверхность Ag (1 1 1), в зависимости от степени по-

крытия. Обнаружено, что при малой степени покры-

тия атомы Bi образуют поверхностный сплав Ag2Bi

в структуре (
√
3×

√
3)R 30◦, который при покрытии

выше 0.55 монослоя преобразуется в упорядоченную

прямоугольную структуру (p×
√
3) слоя атомов Bi на

поверхности Ag (1 1 1).

Для объяснения анизотропии эффекта Бычкова−Раш-

бы, наблюдаемой в электронном спектре поверх-

ностного сплава Ag2Bi/Ag(1 1 1)-(
√
3×

√
3)R 30◦, авто-
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рами работы [7] на основе k · p-метода теории воз-

мущений, включающего спин-орбитальное взаимодей-

ствие, были построены эффективные гамильтонианы

Бычкова−Рашбы для различных точечных групп, вплоть

до третьего порядка по волновому вектору. Сравне-

ние полученных результатов с данными релятивистских

расчетов ab initio позволило авторам четко выявить

вклады и влияние соответствующих параметров Рашбы

3-го порядка и установить, что изотропный и анизотроп-

ный вклады связаны с градиентами кристаллического

потенциала по нормали к поверхности и в плоскости

поверхности соответственно.

Исследование рассеяния электронов атомными ступе-

нями монослоя Ag2Bi на поверхности Ag (1 1 1) с помо-

щью измерений интерференции квазичастиц и расчетов

спиновой и орбитальной текстур электронных состояний

этого монослоя в рамках теории функционала плотности

(DFT) [8] выявило спин-флип механизм обратного рассе-

яния, который не предсказывается теорией поверхност-

ных состояний Бычкова−Рашбы. Благодаря различной

степени локализации занятых и незанятых электронных

состояний Ag и Bi этот механизм весьма чувствителен

к химическому составу краев ступеней.

Совместное влияние обменного и спин-орбитального

взаимодействий на поверхностные состояния и состо-

яния квантовых ям пленок Ag2Bi/Ag, выращенных на

ферромагнитном Fe (1 1 0) было исследовано работе [9].
Как показали фотоэмиссионные исследования и расчеты

ab initio, одновременное нарушение симметрии обра-

щения времени и трансляционной симметрии привело

к спин-селективной гибридизации поверхностных со-

стояний Бычкова−Рашбы с состояниями квантовых ям,

расщепленных обменным взаимодействием. В резуль-

тате этого обнаружились асимметричные и зависящие

от спина запрещенные щели, возникло неравенство

числа состояний вдоль противоположных направлений

зоны Бриллюэна (k и −k) и появились дугообразные

контуры постоянной энергии. Было высказано пред-

положение, что полученная асимметрия электронной

структуры может существенно влиять на свойства спин-

поляризованного транспорта.

Значительная перестройка электронного спектра по-

верхностного сплава Ag2Bi отмечена также в нашей

недавней работе [12] на вицинальных поверхностях

Ag (4 2 3) и Ag (11 7 9), где трансляционная сим-

метрия кристалла нарушается не только поверхно-

стью, но и массивами ступеней на ней. Используя

изогнутые кристаллы Ag для выбора локальных ви-

цинальных плоскостей, мы обнаружили две
”
магиче-

ские“ (особенно стабильные) вицинальные поверхности

с решетками атомарно-острых прямых (без изломов)
ступеней, стабилизированные поверхностным сплавом

Ag2Bi. Фотоэмиссионные эксперименты с угловым раз-

решением, а также расчеты электронных состояний

в рамках DFT-подхода показали, что рассеяние поверх-

ностных состояний Бычкова−Рашбы (т. е. расщеплен-

ных спин-орбитальным взаимодействием) на ступенях

вицинальных поверхностей (4 2 3) и (11 7 9) приводит

к орбитально-селективной перенормировке зон в на-

правлении, перпендикулярном ступеням, и глубокой

модуляции плоскостного орбитального дихроизма. Эф-

фект сильного отталкивательного рассеяния на ступенях

наблюдался в основном для зон py -типа. Показано, что

взаимодействие электронов Бычкова−Рашбы со сверх-

решеткой ступеней вицинальной поверхности приводит

к сильному изменению спиновой текстуры, выводя спин

из исходной спиральной конфигурации в плоскости.

Несмотря на довольно детальное обсуждение в ра-

боте [12] электронного строения и спиновой текстуры

поверхностного сплава Ag2Bi на вицинальных поверх-

ностях Ag (4 2 3) и Ag (11 7 9), все же остался ряд

нерешенных вопросов. В частности, было отмечено, что

обнаруженная в работе сложная орбитально-селективная

перенормировка зон поверхностного сплава Ag2Bi да-

лека от картины обратного складывания жестких зон.

Кроме того, остался без ответа и вопрос о про-

исхождении некопланарных спиновых текстур поверх-

ностного сплава Ag2Bi на вицинальных поверхностях

(4 2 3) и (11 7 9).
Поэтому целью настоящей работы является ab initio

изучение электронной структуры поверхностного сплава

Ag2B на вицинальной поверхности Ag (4 2 3), для

установления роли ее ступенчатого (вицинального) ха-

рактера, атомов подложки Ag и релаксации атомов Bi

поверхностного сплава в формировании его электронно-

го спектра.

2. Метод и детали расчета

Была рассчитана электронная структура поверхност-

ного сплава Ag2Bi на гладкой Ag(1 1 1)-(
√
3×

√
3)R 30◦

и вицинальной Ag (4 2 3) поверхностях. Для исследова-

ния генезиса поверхностных состояний, наблюдавшихся

в эксперименте и DFT-расчетах работы [12] на ви-

цинальной поверхности (4 2 3), был также рассчитан

электронный спектр поверхности (1 1 1) с расчетной

ячейкой (2
√
3×

√
3)R 30◦, поверхностный слой которой

имел почти такую же атомную структуру и содержал

ровно такое же количество атомов Bi и Ag, как терраса

вицинальной поверхности (4 2 3). Атомные структуры

упомянутых выше поверхностей представлены на рис. 1,

из которого видно, что в верхнем слое элементарной

ячейки пленки (4 2 3) находятся 4 атома Ag и 2 атома Bi.

Атомы Bi располагаются таким образом, что один из них

лежит на террасе, а другой формирует край ступени.

Гладкая (1 1 1) и вицинальная (4 2 3) поверхности

серебра, на которых находился поверхностный сплав

Ag2Bi, моделировались асимметричными пленками из 21

(толщина ∼ 65�A) и 28 (толщина ∼ 70�A) атомных слоев

соответственно. Кроме этого, для исследования генезиса

поверхностных состояний, наблюдавшихся в работе [12],
были выполнены расчеты электронной структуры гипо-

тетических свободно стоящих монослоев поверхностно-

Физика твердого тела, 2026, том 68, вып. 1
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Рис. 1. Атомная структура поверхностного сплава Ag2Bi на гладкой Ag(1 1 1)-(
√
3×

√
3)R 30◦ (a, b) и вицинальной Ag (4 2 3) (c, d)

поверхностях. Вид сверху (a, c) и вид сбоку (b, d) (показан верхний и несколько подповерхностных слоев). a′ и b′ —

вектора решетки поверхности Ag (1 1 1). a, b — вектора решетки структуры (
√
3×

√
3)R 30◦ . Модули этих векторов связаны

соотношениями |a| = |
√
3a′|, |b| = |

√
3b′|. aν , bν — вектора решетки вицинальной поверхности Ag (4 2 3). Серые шарики

представляют атомы Ag, оранжевые — атомы Bi.

го сплава Ag2Bi в структуре (2
√
3×

√
3)R 30◦ гладкой

поверхности (1 1 1) и в структуре вицинальной поверх-

ности (4 2 3), а также поверхностного сплава Ag2Bi на

ультратонких пленках Ag толщиной в 1 и 3 монослоя.

Для выявления роли релаксации атомной структуры (по-
ложений атомов Bi) монослоев поверхностного сплава

Ag2Bi в плоской (2
√
3×

√
3)R 30◦ и вицинальной конфи-

гурациях была рассчитана их электронная структура для

трех положений атомов Bi: (i) атомы Bi находятся в слое

атомов Ag (нерелаксированный монослой); (ii) атомы Bi

смещены вдоль оси Z (в направлнении вакуума)
на 1/2 релаксированного положения, и (iii) атомы Bi

находятся в полностью релаксированном положении.

Под полностью релаксированным положением понима-

ется положение атомов Bi на поверхностях толстых

релаксированных пленок — гладкой и вицинальной.

Мы оптимизировали положения атомов в четырех

поверхностных слоях пленок и наблюдали значительную

внешнюю релаксацию атомов Bi. На гладкой поверх-

ности (1 1 1) она составила 0.75�A, а на вицинальной

поверхности (4 2 3) — 0.67�A для атомов Bi на террасе

и 0.13�A для атомов Bi, образующих край ступени.

В обоих случаях атомы Bi смещаются почти пер-

пендикулярно плоскости террасы. Экспериментальные

измерения дифракции низкоэнергетических электронов

(LEED) [5] на гладкой поверхности (1 1 1) дали значение

внешней релаксации 0.65± 0.10�A, а расчеты ab initio —

0.35�A [1] и 0.85�A [2], что хорошо согласуется с нашими

результатами.

Все расчеты проводились в рамках DFT-подхода

с использованием метода проекционных присоеди-

ненных волн (PAW) [13], реализованного в коде

VASP [14,15]. Обменно-корреляционный потенциал учи-

тывался в приближении обобщенного градиента в форме

Пердью−Бурке−Эрнцерхофа [16]. В гамильтониан были

включены скалярно-релятивистские поправки, а спин-

орбитальное взаимодействие учитывалось методом вто-

рой вариации [17]. В расчетах использовался базисный

набор плоских волн с энергией до 250 eV. Электронная

структура поверхности была рассчитана с использовани-

ем модели повторяющихся пленок. Интегрирование по

зоне Бриллюэна производилось с использованием гаус-

сианов с параметром
”
размытия“ 0.01 eV. Самосогласо-

вание электронной плотности проводилась с точностью

до 10−5 eV/atom. На каждой итерации самосогласования

собственные значения гамильтониана рассчитывались

на сетках k-точек (5×5×1) и (3×5×1) во всей зоне

Бриллюэна для гладкой (
√
3×

√
3)R 30◦, а также глад-

кой (2
√
3×

√

3)R 30◦ и вицинальной Ag (4 2 3) по-

верхностей соответственно. Релаксация атомной струк-

туры поверхностей рассматриваемых пленок осуществ-

лялась вплоть до 8-го слоя и выполнялась до тех

пор, пока силы, действующие на атомы, не станови-

лись меньше 10meV/�A. Положения атомов в остав-

шейся части пленок фиксировались в узлах идеаль-

ной гранецентрической кубической решетки. Толщи-

на вакуумного слоя для всех расчетов была выбра-

на ∼ 12�A.
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Рис. 2. a) Элементарные ячейки и вектора решетки, b) зоны Бриллюэна, вектора обратной решетки и точки высокой

симметрии, c) электронный зонный спектр поверхностного сплава Ag2Bi на гладкой поверхности Ag (1 1 1) в структурах

(
√
3×

√
3)R 30◦ (слева), (2

√
3×

√
3)R 30◦ (в центре) и на вицинальной поверхности Ag (4 2 3) (справа). Зоны с большим вкладом

pxy -состояний Bi показаны с их орбитальным дихроизмом Dxy синими (Dxy < 0) и красными (Dxy > 0) кружками. Радиусы кружков

пропорциональны величине орбитального дихроизма Dxy . Линиями светло-серого цвета показаны зоны атомов подложки серебра.

3. Результаты и обсуждение

3.1. Электронная структура толстых пленок

На рис. 2 представлены расчетные ячейки и соот-

ветствующие им зоны Бриллюэна с указанием k-точек

высокой симметрии, а также электронно-энергетические

зонные структуры поверхностного сплава Ag2Bi на глад-

кой (1 1 1) и вицинальной (4 2 3) поверхностях серебра.
В выбранной нами системе координат ступени вициналь-

ной поверхности (4 2 3) расположены перпендикулярно

оси x , т. е. двумерный вектор решетки av направлен

под небольшим углом (∼ 10.5◦) к ступени. Для ана-

лиза орбитального состава поверхностных состояний

был рассчитан орбитальный дихроизм Dxy по формуле

Dxy = (px−py )/(px + py), где px и py — вклады соот-

ветствующих p-орбиталей Bi. На рис. 2, c синие кружки

отвечают условию Dxy > 0, что означает преобладание

вклада px -орбитали, а красные кружки — условию

Dxy < 0, что соответствует преобладанию вклада py -

орбитали. Так как вклад pz -орбиталей Bi, гибридизован-

ных с s -орбиталями Ag, превалирует только в верхней

части парабол Бычкова−Рашбы s1 (выше точки крамер-

совского вырождения), то есть в очень небольшой части

зоны Бриллюэна (см. рис. S5 и S6 в [18]), здесь мы его

не показываем.
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Рассмотрим эволюцию электронной структуры по-

верхностного сплава Ag2Bi при переходе от гладкой

поверхности Ag (1 1 1) к вицинальной (4 2 3). Элек-

тронные спектры, представленные на рис. 2, c, демон-

стрируют сильное и сложное влияние вицинальности

поверхности на дисперсионную зависимость E(k) спи-

ральных состояний Бычкова−Рашбы гладкой поверхно-

сти Ag2B/Ag(1 1 1)-(
√
3×

√
3)R 30◦, отмеченных буква-

ми s1, s2 и s3. Влияние вицинальности обусловлено

двумя факторами: размерным эффектом (элементар-
ная ячейка вицинальной поверхности (4 2 3) содержит

вдвое больше атомов, чем элементарная ячейка глад-

кой поверхности (
√
3×

√
3)R 30◦) и влиянием ступен-

чатого потенциала на поверхности. Для анализа раз-

мерного эффекта мы рассчитали электронную струк-

туру гладкой поверхности Ag2Bi/Ag(1 1 1) в структу-

ре (2
√
3×

√
3)R 30◦, то есть с удвоенной вдоль одно-

го из векторов решетки поверхностной элементарной

ячейкой. Поскольку положение атомов в элементарной

ячейке (2
√
3×

√
3)R 30◦ почти совпадает с положением

атомов на террасе вицинальной поверхности, сравнение

электронных спектров этой гладкой поверхности и ви-

цинальной поверхности (4 2 3) позволило выявить вли-

яние ступенчатого потенциала на электронный спектр

поверхностного сплава Ag2Bi.

Рассчитанный нами спектр гладкой поверхности

Ag2B/Ag(1 1 1)-(
√
3×

√
3)R 30◦, представленный в ле-

вой панели рис. 2, c, очень хорошо согласуется с ре-

зультатами расчетов других авторов [2]. Электронный
спектр гладкой поверхности (2

√
3×

√
3)R 30◦ приведен

в центральной панели рис. 2, c. Зелеными стрелками

показан результат сворачивания (folding) направлений

MŴ и ŴK гексагональной зоны Бриллюэна структу-

ры (
√
3×

√
3)R 30◦ в направления XŴ и ŴY соответ-

ственно, прямоугольной зоны Бриллюэна структуры

(2
√
3×

√
3)R 30◦ . Хорошо видно, что левые ветви состо-

яний Бычкова−Рашбы, распространяющиеся от точки Ŵ

к точке M вниз по энергии, в середине направления

MŴ, соответствующего точке X прямоугольной зоны

Бриллюэна структуры (2
√
3×

√
3)R 30◦, отражаются от

границы прямоугольной зоны Бриллюэна и распростра-

няются обратно к точке Ŵ. Сворачивание гексагональной

зоны Бриллюэна в прямоугольную зону Бриллюэна

сокращает направление ŴK до направления ŴY (см. цен-
тральную панель рис. 2, b). Это приводит к отражению

от границы новой зоны Бриллюэна четырех состояний

Бычкова−Рашбы, распространяющихся вниз по энергии

из точки Ŵ к точке K. Кроме того, в спектре поверхности

(2
√
3×

√
3)R 30◦ в направлении ŴY наблюдается зона

при энергиях ниже −1.4 eV, являющаяся результатом

сворачивания направления MK
′

и ŴK гексагональной

зоны Бриллюэна поверхности (
√
3×

√
3)R 30◦. Таким

образом, мы описали модификацию спектра гладкой

поверхности (
√
3×

√
3)R 30◦ при удвоении ее элементар-

ной ячейки вдоль одного из векторов решетки.

Рассмотрим модифицикацию спектра состояний

Бычкова−Рашбы гладкой поверхности (2
√
3×

√
3)R 30◦

при переходе к вицинальной поверхности (4 2 3),
т. е. при появлении решетки моноатомных ступеней.

Как видно из рис. 2, a и b, элементарные ячейки

и зоны Бриллюэна гладкой (2
√
3×

√
3)R 30◦

и вицинальной (4 2 3) поверхностей имеют примерно

одинаковый размер и несколько различаются по

форме. Ступени вицинальной поверхности (4 2 3)
ориентированы перпендикулярно оси X , поэтому,

как видно из левой панели рис. 2, b, симметричное

направление ŴX перпендикулярно ступени. Вектор ky

в этом случае не параллелен ступени, поэтому

симметричное направление ŴY зоны Бриллюэна

вицинальной поверхности лежит к ней под небольшим

углом (∼ 10.5◦). Отметим, что в случае гладкой

поверхности (средняя панель рис. 2, b) симметричное

направление ŴY перпендикулярно оси X , то есть на

гладкой и вицинальной поверхностях направления

ŴY не совпадают, а лежат под небольшим углом

друг к другу.

Оранжевыми стрелками на рис. 2, c показан ре-

зультат действия потенциала ступеней на вицинальной

поверхности (4 2 3). Видно, что рассеяние состояний

Бычкова−Рашбы гладкой поверхности на ступенях вици-

нальной приводит к кардинальному изменению диспер-

сии зон, образованных преимущественно py -орбиталями,

тогда как зоны px -состояний модифицируются не так

сильно. При этом наибольшие изменения дисперсии зон

наблюдается вдоль направления XŴ, перпендикулярного

ступеням. Так, зона py -состояний s2 гладкой поверх-

ности (1 1 1), претерпевшая сворачивание в точке X

(s2 и s ′2), на вицинальной поверхности (4 2 3) в ре-

зультате рассеяния на ступенях расщепляется в точ-

ке X примерно на 1.5 eV, и изменяет свою дисперсию

вдоль направления XŴ. Напротив, зоны px -состояний

s1 и s2 гладкой поверхности (1 1 1), также испытавшие

сворачивание в точке X, практически не изменяют свою

дисперсию на вицинальной поверхности, лишь становясь

более диффузными (размытыми) за счет рассеяния на

ступенях вицинальной поверхности, и поэтому слабее

проявляющимися на рисунке.

Мы не обсуждаем здесь вклад pz -орбитали Bi, по-

тому что ступенчатый потенциал вицинальной по-

верхности размывает ее вклады по большому коли-

честву зон. В результате на вицинальной поверхно-

сти (4 2 3) отсутствуют зоны с преобладающим вкладом

pz -орбитали Bi. Соответствующую иллюстрацию можно

видеть на рис. S6 в [18].
На рис. 3 показаны распределения электронной плот-

ности поверхностного сплава Ag2Bi на гладкой (1 1 1)
и вицинальной (4 2 3) поверхностях серебра. Отчетливо

видна большая анизотропия распределения валентного

заряда на атомах Bi поверхностного сплава. Дипольный

момент атомов Bi на террасе вицинальной поверх-

ности (4 2 3) направлен почти ортогонально террасе,

т. е. как на гладкой поверхности (1 1 1). Из рис. 3, b
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Рис. 3. Распределение электронной плотности поверхност-

ного сплава Ag2Bi a) на гладкой поверхности Ag (1 1 1)
и b) на вицинальной поверхности Ag (4 2 3). Положение ато-

мов Ag(Bi) показано маленькими светло-серыми (фиолетовы-
ми) шариками. Светло-зеленые изоповерхности соответствуют

электронной плотности 0.01 e/�A3, темно-зеленые — 0.02 e/�A3,

желтые — 0.03 e/�A3, серые — 0.04 e/�A3, красные — 0.05 e/�A3.

видно, что дипольный момент атомов Bi, образующих

край ступени, ориентирован примерно под углом в 45◦

к плоскости террасы.

Разница в связывании атомов Bi, расположенных на

краю ступени и на террасе, со своими ближайшими

соседями приводит к разным направлениям поляриза-

ции этих атомов из-за анизотропного распределения

валентного заряда, что отчетливо видно на рис. 3.

В результате на вицинальной поверхности возникает

градиент потенциала, а значит, и электрическое поле

с внутриплоскостной и внеплоскостной компонентами,

которые, воздействуя на электроны в поверхностных

связях, приводят к различным ориентациям спиновой

поляризации.

3.2. Электронная структура монослоев

и ультратонких пленок

На рис. 4 представлены электронные зонные спек-

тры свободно стоящих монослоев поверхностного спла-

ва Ag2Bi в структуре (2
√
3×

√
3)R 30◦ гладкой (1 1 1)

и в структуре (4 2 3) вицинальной поверхностей, рас-

считанные для трех положений атомов Bi. Как видно

на рис. 4, a–c, смещение атомов Bi из слоя атомов Ag

приводит к значительной трансформации электронного

спектра монослоя поверхностного сплава Ag2Bi в плос-

кой конфигурации. Это связано как с изменением (ослаб-
лением) гибридизации электронных состояний атомов

Ag и Bi, так и с проявлением спин-орбитального взаимо-

действия типа Бычкова−Рашбы, обусловленного возник-

новением градиента поверхностного потенциала вдоль

нормали к поверхности ∂V/∂z . Значительную трансфор-

мацию испытывают состояния pz -типа, вклад которых

уменьшается с увеличением смещения атомов Bi. Кроме

того, это смещение приводит к увеличению абсолютного

значения орбитального дихроизма |Dxy | (т. е. к более

четкому разделению вкладов состояний px - и py -типа)

в результате формирования двух комплексов зон ти-

па Бычкова−Рашбы в области энергий 0.1 и 1.1 eV

на рис. 4, c (зоны, отмеченные синим и красным цветом).
На рис. 4, a–c видно, что эти комплексы возникают

в результате трансформации двух пар зон при энергиях

−0.85 и 0.7 eV в точке Ŵ на рис. 4, a. С увеличением

смещения атомов Bi, зоны, образованные его px - и py -

состояниями, стремятся к меньшим энергиям связи

(сдвигаются вверх по энергии), а зоны, образованные

с участием его pz -состояний, смещаются к бо́льшим

энергиям связи.

Прежде чем анализировать электронные спектры

вицинальной конфигурации монослоя поверхностного

сплава Ag2Bi (рис. 4, d–f ), сделаем следующее замеча-

ние. Как мы уже сообщили, на поверхности толстой

пленки (4 2 3) атомы Bi, образующие край ступени,

в результате релаксации из плоскости террасы смеща-

ются много слабее (более чем в пять раз), чем атомы

Bi на террасе, поэтому в расчетах монослоя мы эти

атомы не смещали. Таким образом, переход от рис. 4, d

к рис. 4, f показывает влияние релаксации только атомов

террасы, а переход от рис. 4, a−c к рис. 4, d−f— влияние

вицинальности на электронный спектр гипотетического

монослоя. Поэтому зоны, испытывающие наибольшие

изменения при переходе от рис. 4, d к рис. 4, f, следует

ассоциировать с атомами Bi на террасе (т. к. они испы-

тывают смещение), а зоны, почти не изменяющие своего

положения и формы — с атомами Bi, образующими край

ступени, т. к. они в данных расчетах не смещались.

Сравнивая между собой электронные спектры вици-

нальной конфигурации монослоя поверхностного сплава

Ag2Bi (рис. 4, d−f ), можно видеть, что смещение атомов

Bi из плоскости террасы приводит к их значитель-

ной трансформации. Однако при этом не происходит

уменьшения вклада состояний Bi pz -типа, как это было

для гладкого монослоя, но наблюдается значительное

снижение их вклада по сравнению с гладким монослоем

(последнее представляет эффект вицинальности).

Рассматривая попарно спектры плоского моно-

слоя (2
√
3×

√
3)R 30◦ (рис. 4, a−c) и вицинального

(рис. 4, d−f) можно заключить, что потенциал ступе-

ней вицинального монослоя оказывает очень сильное

влияние на формирование его электронного спектра,

особенно вдоль направления XŴ, перпендикулярного

ступени. Здесь электронные зоны кардинально изме-

няют свою дисперсию E(k) (становятся более поло-

гими) и сдвигаются по энергии. В направлении ŴY,

почти параллельном ступени, тоже наблюдается значи-

тельная перестройка электронного спектра монослоя.

Практически все зоны здесь испытывают расщепление,

но в целом их дисперсия, особенно зон, отмеченных

большим орбитальным дихроизмом Dxy , сохраняет свою

тенденцию. Заметим также, что, как и в случае плос-

кого монослоя, с увеличением смещения атомов Bi из

террасы, зоны, образованные его px - и py -состояниями,

стремятся к меньшим энергиям связи (сдвигаются вверх
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Рис. 4. Электронные зонные спектры свободно стоящих гипотетических монослоев поверхностного сплава Ag2Bi в структуре

(2
√
3×

√
3)R 30◦ гладкой поверхности (1 1 1) (a–c) и в структуре вицинальной поверхности (4 2 3) (d–f ), рассчитанные для трех

положений атомов Bi: a, d) атомы Bi находятся в слое атомов Ag (нерелаксированный монослой); b, e) атомы Bi смещены вдоль

оси Z (в направлении вакуума) на 1/2 релаксированного положения, и c, f ) атомы Bi находятся в полностью релаксированном

положении. Зоны с большим вкладом pxy -состояний Bi показаны с их орбитальным дихроизмом Dxy синими (Dxy < 0) и красными

(Dxy > 0) кружками. Вклад pz -орбиталей показан зелеными кружками. Радиусы кружков пропорциональны величине орбитального

дихроизма Dxy и вкладу pz -орбиталей.

по энергии), а зоны, образованные с участием его pz -

состояний — к бо́льшим энергиям связи.

Сравнивая электронные спектры поверхностного

сплава Ag2Bi на толстых пленках, моделирующих глад-

кую (1 1 1)-(2
√
3×

√
3)R 30◦ и вицинальную (4 2 3) по-

верхности (рис. 2, c), со спектрами гладкого (рис. 4, e)
и вицинального (рис. 4, f ) гипотетического монослоя

Ag2Bi, можно видеть, что основные спектральные осо-

бенности электронной структуры поверхностного спла-

ва Ag2Bi, отмеченные на рис. 2, c буквами s1, s2 и s3,

оказываются в целом сформированными уже на уровне

монослоя. Однако в монослое их энергии заметно выше,

чем на толстых пленках.

На рис. 5 показаны рассчитанные электронные

зонные спектры монослоев Ag2Bi в плоской

(1 1 1)-(2
√
3×

√
3)R 30◦ (a) и вицинальной (4 2 3) (b, c)

конфигурациях на подложках из одного (a, b) и трех (c)
слоев серебра. Как следует из рисунков, добавление

слоев подложки Ag приводит к уменьшению вклада

pz-состояний Bi, вместо которого увеличивается вклад

атомов Ag. Хотя вклад атомов Ag на рисунке не показан

явно, о его наличии можно говорить для тех зон,

у которых отсутствует какой-либо вклад состояний Bi.

Другим основным эффектом добавления слоя серебра

является смещение зон вниз по энергии. Так, добавление

лишь одного слоя Ag (рис. 5, a и b) cмещает состояния

Bi монослоя Ag2Bi таким образом, что они становятся

очень похожими на основные спектральные особенности

электронной структуры поверхностного сплава Ag2Bi

на толстых пленках. Добавление трех монослоев Ag
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Рис. 5. Электронные зонные спектры монослоев Ag2Bi в a) плоской (1 1 1)-(2
√
3×

√
3)R 30◦ и b, c) вицинальной (4 2 3)

конфигурациях на подложках из одного (a, b) и трех (c) слоев серебра. Красными и синими кружками показан орбитальный

дихроизм Dxy зон, зелеными кружками — вклад pz -состояний. Радиусы кружков пропорциональны величине представляемой

характеристики.

(рис. 5, c) делает спектр состояний Bi более плавным

и уже довольно хорошо воспроизводящим спектр

поверхностного сплава Ag2Bi на толстых пленках.

4. Заключение

В рамках теории функционала плотности исследован

генезис электронных состояний поверхностного сплава

Ag2Bi на вицинальной поверхности Ag (4 2 3). Для

этого был проведен анализ изменения электронной

структуры поверхностного сплава Ag2Bi при переходе

от гладкой поверхности Ag(1 1 1)-(
√
3×

√
3)R 30◦ к ви-

цинальной Ag (4 2 3). Изучение роли вицинальности

поверхности, роли атомов подложки серебра и релак-

сации атомов Bi в формировании электронного спектра

поверхностного сплава Ag2Bi на вицинальной поверх-

ности Ag (4 2 3) было проведено в рамках модель-

ной задачи, рассматривающей гипотетический монослой

Ag2Bi в плоской (1 1 1) и вицинальной (ступенчатой)
(4 2 3) конфигурациях. Выявлено, что закон дисперсии

зон поверхностного сплава Ag2Bi на массивной под-

ложке Ag (4 2 3) формируется, главным образом, за

счет вицинального характера поверхности. Значительная

релаксация атомов Bi поверхностного сплава в сторону

вакуума вызывает расщепление энергетических зон по

спину и их смещение к меньшим энергиям связи. Атомы

подложки Ag слабо влияют на дисперсию поверхност-

ных зон, но значительно увеличивают их энергию связи.

Уже при толщине подложки Ag, равной 3 атомным

слоям, энергетический спектр поверхностного сплава

принципиально не отличается от спектра при толщине

подложки, равной 27 слоям.

Таким образом, мы получили простую, интуитивно

понятную модель, которая проливает свет на происхож-

дение двумерных состояний и объясняет их дисперсию,

наблюдаемую в экспериментах по фотоэмиссионной

спектроскопии с угловым разрешением.
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