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Проведен анализ изображений сканирующей туннельной микроскопии, смоделированных с помощью

теории функционала плотности и измеренных при 12K для реконструкций c(4× 2) и p(2× 2) на грани (100)
германия и кремния. Показано, что в зависимости от знака и величины напряжения смещения вид этих

изображений может существенно трансформироваться, а наблюдаемый топографический рельеф может

отражать как атомное строение, так и особенности электронной структуры поверхности. Полученные

результаты демонстрируют, что при интерпретации картин сканирующей туннельной микроскопии для

указанных реконструкций необходим тщательный учет целого ряда факторов, включая детальное знание

локальной плотности состояний.
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1. Введение

Поверхности полупроводниковых кристаллов подвер-

жены структурной и электронной перестройке, в резуль-

тате которой образуются
”
двумерные“ (поверхностные)

реконструкции с уникальными физико-химическими

свойствами [1,2]. Для их исследования на субнаномет-

ровом масштабе одним из наиболее информативных

методов является сканирующая туннельная микроскопия

(СТМ). Однако интерпретация результатов СТМ может

быть нетривиальной по целому ряду причин. Напри-

мер, в случае, когда характерное время элементарных

процессов на поверхности (колебательных движений

атомов и молекул, диффузии примесей, флуктуаций сту-

пеней и т. п.) много меньше времени перемещения иглы

СТМ, наблюдаемая топография будет представлять со-

бой усредненную картину, а не
”
моментальный снимок“

поверхностной структуры. Так, поверхностные димеры

на грани (100) кремния и германия при комнатной тем-

пературе вследствие их быстрых колебаний между двумя

возможными асимметричными (наклонными) конфигу-

рациями Si↑−Si↓ (Ge↑−Ge↓) и Si↓−Si↑ (Ge↓−Ge↑), или
движений флип-флоп (flip-flop motion), отображаются на

СТМ-картинах в симметричной форме [3,4]. В то же

время при низкой температуре (T < 200K) такие коле-

бания могут быть
”
заморожены“, и тогда поверхностные

димеры визуализируются как асимметричные.

Другая хорошо известная проблема, затрудняющая

интерпретацию изображений СТМ, связана с влиянием

электронной структуры. Для уже упомянутых граней

Si(100) и Ge(100) наблюдаемый в СТМ рельеф задается

в бо́льшей степени пространственным распределением

локальной плотности состояний (LDoS) на поверхности,
а не ее атомной геометрией. Иными словами, вид СТМ-

картин резко зависит от напряжения смещения (V ),
и при варьировании этого параметра различные элек-

тронные состояния на поверхности могут давать вклад

в наблюдаемое изображение. Природа этих состояний,

однако, до сих пор остается предметом дискуссии даже

для таких хорошо изученных систем, как Si(100) и

Ge(100) [5–29]. В работах [5,6] было показано, что

при небольших значениях |V | СТМ-топография поверх-

ности Si(100) обусловлена π- или π∗-состояниями (в
зависимости от знака приложенного напряжения смеще-

ния), расположенными на шкале энергий соответственно

немного ниже максимума валентной зоны и немного

выше минимума зоны проводимости на поверхности,

и что при бо́льших значениях |V | основной вклад в

СТМ-картину дают другие, отличные от π и π∗, со-

стояния. Что же касается последних, то их однознач-

ное объяснение в литературе отсутствует: в различных

исследованиях они были идентифицированы как σ ∗-

состояния, обусловленные связями между атомами в

димерах [6–8], и состояния, обусловленные обратными

π∗-связями (back bonding) верхних атомов димеров [6,9]
или поверхностными резонансами [10].
В случае поверхности Ge(100) вершина валентной

зоны имеет более сложный характер, чем для Si(100),
и определяется не только π-состояниями [11–15]. В ра-

боте [16] было показано, что СТМ-изображения этой

поверхности, полученные в режиме заполненных со-

стояний в области значений V от −0.6 до −0.1V,

очень сильно зависят от напряжения смещения. При

−0.1V особенности на изображении были приписаны

146



Влияние электронной структуры на топографию поверхностей Ge(100) и Si(100)... 147

обратным π-связям атомов димеров, а в интервале

от −0.6 до 0.45V — π-состояниям, обусловленным

оборванными связями этих атомов. Такая интерпретация

была поставлена под сомнение в сообщении [17]. Его
авторами был сделан вывод, что вершина валентной

зоны поверхности Ge(100) определяется состоянием,

обусловленным объемной решеткой германия, что под-

тверждается другими исследованиями [14,15]. Похожая,

не менее сложная ситуация наблюдается и для электрон-

ной структуры поверхности Ge(100) выше уровня Фер-

ми [18–27]. Краткий обзор поверхностных состояний,

способных давать вклад в СТМ-изображения Si(100)
и Ge(100) при различных значениях V , можно найти

в работе [29]. Таким образом, чтобы надежно иденти-

фицировать электронные состояния, обуславливающие

СТМ-топографию рассмотренных поверхностей, необ-

ходимы дальнейшие систематические теоретические и

экспериментальные исследования. Очевидно, такие ис-

следования важны для понимания результатов СТМ

не только чистых поверхностей кремния и германия,

но и адсорбатов [30–32] и примесей [33,34] на этих

подложках.

В настоящей работе проведено сравнительное тео-

ретическое и экспериментальное исследование СТМ-

изображений реконструкций c(4× 2) и p(2× 2) на по-

верхностях Ge(100) и Si(100) для выяснения основных

закономерностей влияния на них электронной струк-

туры и прояснения перечисленных выше нерешенных

вопросов (хотя бы частично). Расчеты выполнялись на

основе теории функционала плотности (DFT, density

functional theory). Для корректного сравнения получен-

ных результатов с данными экспериментов последние

проводились при T = 12K.

2. Методика расчета

Расчеты проводились в программном пакете Quantum

Espresso [35] в рамках обобщенного градиентного при-

ближения (GGA, generalized gradient approximation) с

использованием обменно-корреляционного функционала

PBE [36] и ультрамягких (ultrasoft) псевдопотенциа-

лов [37]. При выполнении расчетов применялся базис

плоских волн с энергиями отсечки по волновой функции

и электронной плотности равными 46 и 221Ry для Si

и 46 и 239Ry для Ge соответственно. Интегрирование

в зоне Бриллюэна производилось с густотой сетки ква-

зиволнового вектора обратного пространства 2× 4× 1

для Si и 3× 6× 1 для Ge. При расчете плотности

состояний густота сетки была увеличена в 4 раза для

каждого случая. Для имитации поверхности использо-

валась элементарная ячейка, содержащая плиту (slab)
толщиной пять моноатомных слоев и вакуумный проме-

жуток величиной 15�A. Нижняя часть плиты была пасси-

вирована атомами водорода для устранения оборванных

связей. Реконструкции, рассматриваемые в работе, бы-

ли получены посредством геометрической оптимизации

атомной структуры, выполненной с помощью алгорит-

ма Бройдена–Флетчера–Гольдфарба–Шано (BFGS) [38].
При этом два нижних слоя плиты были фиксированы,

а положение атомов в трех верхних слоях варьирова-

лось. Для полученных в ходе геометрической оптими-

зации структур было проведено моделирование СТМ-

изображений в рамках подхода Терсоффа–Хаманна [39]
с помощью программного пакета critic2 [40,41].

3. Методика эксперимента

Эксперименты проводились in situ с помощью ска-

нирующего туннельного микроскопа Scienta Omicron

Fermi SPM (Германия) при остаточном давлении

< 1 · 10−10 mbar. При регистрации СТМ-изображений

температура образца, как указывалось в разд. 1, поддер-

живалась равной 12K, а температура сканера микроско-

па — равной 20K. Изображения были получены в режи-

ме постоянного тока. Иглы СТМ были изготовлены из

вольфрама. Для пост-обработки и анализа изображений

применялся программный пакет WSXM [42].
В качестве образцов использовались монокристаллы

Ge(100), легированные Sb (n-тип, ∼ 1 · 1019 cm−3). Для
приготовления чистой поверхности применялась серия

бомбардировок ионами Ar+ с энергией 1.0 keV при

673K, чередуемых с прогревом кристалла при 900K.

Процедура повторялась до тех пор, пока не была получе-

на атомно-гладкая, свободная от чужеродных примесей,

поверхностная реконструкция.

4. Результаты и их обсуждение

4.1. Атомная геометрия

На рис. 1 представлены оптимизированные атомные

структуры реконструкций c(4× 2) и p(2× 2) на поверх-
ностях Si и Ge. Дальний порядок и тип элементарной

ячейки в них обусловлен особенностями димеризации в

верхнем атомном слое кристалла. В структуре c(4× 2)
(рис. 1, a) наблюдается чередование наклона димеров

(↑ − ↓ или ↓ − ↑) в двух направлениях: вдоль образу-

емых ими рядов и в поперечном направлении перпен-

дикулярно этим рядам. Иными словами, ближайшими

соседями для димера Si↑−Si↓ (Ge↑−Ge↓) в ряду и в

смежных с ним рядах будут димеры Si↓−Si↑ (Ge↓−Ge↑)
и наоборот. Таким образом, наклон димеров в рекон-

струкции c(4× 2) аналогичен направлению спина элек-

тронов в антиферромагнитных системах. В структуре

p(2× 2) (рис. 1, b) чередование асимметричных димеров

происходит только в одном направлении — вдоль их

рядов. В поперечном направлении соседние димеры

всегда наклонены в одну и ту же сторону. Значения

длины связи и угла наклона димеров в полученных

структурах приведены в таблице.

Эти значения хорошо согласуются с опубликованны-

ми ранее величинами [43–48]. По энергии рассматрива-
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a b

Рис. 1. Атомные модели реконструкций на Si(100) и Ge(100): a — c(4× 2), b — p(2× 2). В верхней части каждой панели показан

вид атомной структуры сбоку (side view), в нижней — сверху (top view). Пунктирной линией выделены границы элементарной

ячейки поверхностной сверхструктуры.

Параметры оптимизированных структур c(4× 2) и p(2× 2).
Обозначения: d — расстояние между атомами (длина связи) в

димере и α — угол наклона димера относительно поверхности

Si(100) Ge(100)

d, �A α, deg d, �A α, deg

c(4× 2) 2.37 19.26 2.58 17.23

p(2× 2) 2.37 19.22 2.58 20.11

емые реконструкции отличаются очень незначительно,

т. е. практически вырождены; например, для кремния

такое отличие составляет 0.7meV/dimer [49]. Это приво-

дит к тому, что при взаимодействии с иглой структура

c(4× 2), которая является основным состоянием, может

спонтанно переходить в p(2× 2) и наоборот. Более по-

дробно такие переходы будут рассмотрены в разд. 4.3.2.

Далее реконструкции c(4× 2) и p(2× 2), приведен-
ные на рис. 1, будут использованы для расчетов плотно-

сти состояний и моделирования СТМ-изображений.

4.2. Электронная структура

На рис. 2 и 3 приведены результаты расчета парци-

альной плотности состояний (pDoS, partial density of

states), т. е. проекции полной плотности состояний на

s- и p-орбитали атомов димеров (сплошные линии),
для реконструкций c(4× 2) и p(2× 2) на Si и Ge.

Область, закрашенная серым цветом, показывает сум-

марную плотность состояний для верхнего (Si↑ или Ge↑)
и нижнего (Si↓ или Ge↓) атома. Величина E = 0 на

шкале энергии соответствует положению уровня Ферми.

Выделим наиболее характерные особенности приве-

денных результатов.

Прежде всего, при анализе полученных распределений

pDoS необходимо учитывать, что в димерах на поверхно-

стях Si(100) и Ge(100) происходит образование π связей

и перетекание заряда от нижнего атома к верхнему. Это

должно приводить к появлению связывающих π- и анти-

связывающих π∗-состояний ниже и выше уровня Ферми

соответственно. Для всех реконструкций на рис. 2 и 3 в

области энергий выше уровня Ферми наблюдаются две

характерные узкие зоны, связанные с π∗-состояниями:

одна при малых значениях E (∼ 0.1 eV), а другая —

при более высоких значениях: ∼ 0.8−0.9 eV для Si

(рис. 2) и ∼ 0.6−0.8 eV для Ge (рис. 3). Основной

вклад в эти зоны дает антисвязывающая pz -орбиталь

(ось z ориентирована по нормали к поверхности). При

E ≈ 0.1 eV эта орбиталь локализована вблизи нижнего

атома димера. При бо́льших значениях энергии она ме-

нее локализована, особенно для Si: соответствующая ей

плотность состояний распределена вблизи обоих атомов

димера. Кроме того, небольшую добавку к ней дает

px -орбиталь, располагающаяся у нижнего атома (ось x

лежит в плоскости поверхности и перпендикулярна

рядам димеров).

При более высоких значениях энергии (≥ 1.2 eV для

Ge и ≥ 1.4 eV для Si) вклад в плотность состояний дают

одновременно несколько антисвязывающих орбиталей,

включая s и py (ось y параллельна рядам димеров). Это
вызвано формированием σ - и/или обратных π-связей

между поверхностными атомами.

Ниже уровня Ферми вклад связывающей pz -орбитали

в плотность состояний является доминирующим при

энергиях от −0.9 до −0.25 eV для Si и от −1.1

Физика твердого тела, 2026, том 68, вып. 1
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Рис. 2. Парциальная плотность состояний для реконструкций на поверхности Si(100).

до −0.5 eV для Ge. Эта орбиталь локализована на верх-

них атомах димеров. При ме́ньших энергиях плотность

состояний определяется несколькими, менее локализо-

ванными, орбиталями, а их вклад сопостави́м.

Отметим также еще одну интересную деталь элек-

тронного строения рассматриваемых реконструкций.

Вершина валентной зоны для Si и Ge обусловлена раз-

личными состояниями. В случае Si максимум этой зоны

(он находится ниже уровня Ферми на ∼ 0.23−0.25 eV

на рис. 2) формируется, прежде всего, pz -орбиталью, к

которой подмешаны s -состояния. Принципиально иная

картина наблюдается для Ge-реконструкций. В этом

случае максимум валентной зоны (∼ 0.05−0.08 eV ниже

уровня Ферми на рис. 3) обусловлен орбиталью py . Что

же касается минимума зоны проводимости, то для всех

исследованных структур его природа одинакова. За его

формирование отвечают антисвязывающие pz -состояния.

4.3. Сканирующая туннельная микроскопия

4.3.1. Моделирование

При анализе результатов СТМ важно учитывать, что

вклад поверхностного состояния c энергией E в тун-

нельный ток зависит от приложенного напряжения сме-

щения V . Согласно [41,50], туннельный ток может быть

представлен как I ∝
∫ eV

0
ρ(E)T (E, eV )dE , где e — заряд

электрона, T (E, eV ) — проницаемость барьера между

острием и образцом для электрона (т. е. вероятность

прохождения последнего через вакуумный зазор), а

ρ(E) — значение LDoS на поверхности образца. Данное

выражение справедливо, когда LDoS поверхности острия

вблизи уровня Ферми слабо зависит от энергии, что

является разумным предположением в случае металли-

ческих игл, выполненных, в частности, из вольфрама.

Значение проницаемости барьера может быть выраже-

но в виде T (E, eV ) = e−2κs , где s — протяженность

вакуумного зазора, а κ — инверсная длина затухания.

Последняя величина равна

κ =

√

2m

~2

(ϕ + ϕ∗

2
− E +

eV

2

)

+ k2
‖,

где ϕ и ϕ∗ — значения работы выхода образца и иглы со-

ответственно, k‖ — компонента волнового вектора для

поверхностного состояния, параллельная поверхности,

m — масса электрона и ~ — постоянная Планка–Дирака.
Из только что приведенных выражений вытекает, что

вклад в туннельный ток состояния с энергией E макси-

мален при V = E/e и уменьшается с ростом напряжения

смещения.
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Рис. 3. То же, что и на рис. 2, но для поверхности Ge(100).

На рис. 4 показаны результаты моделирования СТМ-

изображений для реконструкций c(4× 2) и p(2× 2) при
различных значениях напряжения смещения. Геометри-

ческие положения верхних и нижних атомов димеров

показаны зелеными и синими кружками соответственно.

Как видно, характерные особенности, наблюдаемые для

двух структур, подобны, а различия в СТМ-картинах

обусловлены неодинаковым расположением атомов на

этих поверхностях. Поэтому далее в настоящем разделе

будем рассматривать только результаты для реконструк-

ции p(2× 2). Выводы, сделанные для этой структуры,

легко перенести и на случай реконструкции c(4× 2).

Прежде всего, отметим, что знак напряжения смеще-

ния на рис. 4 качественно влияет на основные тенденции

изменения изображений с ростом параметра V . Более

простым является случай туннелирования электронов

из заполненных состояний образца на пустые уровни

в игле (случай V < 0). В этом режиме, как следует из

рисунка, выступам на изображениях, т. е. участкам, на

которых игла поднимается на максимальную высоту, со-

ответствуют верхние атомы димеров. Это обусловлено

двумя факторами. Во-первых, LDoS вблизи этих атомов

выше, чем на нижних атомах димеров. И во-вторых,

атомы Si↑ и Ge↑ приподняты над атомами Si↓ и Ge↓ на

0.75−0.88�A.

Также следует отметить, что в случае Ge выступы

хорошо разрешены при всех значениях V от −2.0 до

−0.5V. Можно предположить, что это связано с формой

pz -орбиталей, локализованных на атомах Ge↑ . Похожая

тенденция наблюдается и для Si при смещениях V от

−1.5 до −0.5V. В случае V = −2.0V выступы не раз-

решаются и сливаются в зигзагообразную цепочку. Это

связано с тем, что туннельный ток при данном напряже-

нии смещения примерно в равной степени обусловлен

несколькими орбиталями. Таким образом, в режиме за-

полненных состояний при всех выбранных значениях V

выступы на полученных изображениях соответствуют

положениям атомов Ge↑ и Si↑. Как уже было сказано,

этот случай прост для интерпретации: наблюдаемый то-

пографический рельеф на СТМ-изображениях примерно

повторяет атомное строение поверхности.

Более сложная ситуация наблюдается в режиме неза-

полненных состояний (V > 0). При малых значениях

напряжений смещения (0.5 V) в случае Ge выступы

на СТМ-изображениях соответствуют нижним атомам

димеров. Эти особенности образуют зигзагообразные
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Рис. 4. СТМ-изображения, смоделированные для различных реконструкций: a — Ge(100)p(2× 2), b — Si(100)p(2× 2), c —

Ge(100)c(4× 2), d — Si(100)c(4× 2). На вставках указаны величины напряжений смещения. Зелеными и синими кружками

обозначены положения верхних и нижних атомов димеров.

цепочки. В то же время вблизи верхних атомов на

изображениях наблюдаются впадины. Такая топогра-

фия обусловлена тем, что π∗-состояния в области

энергий ≤ 0.5 еV сильно локализованы на атомах Ge↓
(рис. 2 и 3).

Для Si на изображении при V = 0.5V также на-

блюдаются аналогичные зигзагообразные цепочки, обу-

словленные атомами Si↓. В дополнение к ним видны

небольшие выступы округлой формы, которые распо-

ложены вблизи атомов Si↑ и отсутствуют в случае

Ge. По-видимому, такие дополнительные особенности

обусловлены вкладом в туннельный ток s -орбиталей,

локализованных на атомах Si↑ (рис. 2).

При увеличении напряжения смещения до 1.0V и

нижние, и верхние атомы германиевых и кремниевых

димеров дают сопоставимый вклад в СТМ-изображения,

что приводит к появлению широких полос вместо зиг-

загообразных цепочек. Причиной этого является ме-

нее локализованный характер π∗-состояний при энерги-

ях ∼ 1.0 eV (разд. 4.2). Указанный эффект выражен силь-
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нее в случае кремниевых реконструкций, для которых

димеры имеют форму, напоминающую симметричную.

Очевидно, что в данном случае более высокая плотность

состояний на нижнем атоме димера компенсируется

геометрическим положением верхнего атома — он при-

поднят над нижним. Аналогичные выводы можно сделать

и для случая V = 1.5V.

При V = 2.0V картина качественно меняется. Наи-

более яркие особенности (выступы) на изображении

соответствуют верхним атомам димеров. Это более

рельефно проявляется в случае Ge. Нижним атомам

димеров также соответствуют характерные особенности.

Их яркость несколько меньше, чем в случае верхних ато-

мов. Подобная трансформация СТМ-изображений обу-

словлена изменениями pDoS, о которых говорилось в

разд. 4.2.

Таким образом, вид изображений, полученных для

V > 0, качественно отличается от аналогичных при

V < 0, а также существенно зависит от величины на-

пряжения смещения. При малых значениях V основные

особенности изображений в режиме незаполненных со-

стояний обусловлены нижними атомами димеров и фор-

мируют непрерывные зигзагообразные цепочки. Верхние

атомы димеров дают небольшой вклад в изображения

(для Si) или не дают вовсе (для Ge). При высоких зна-

чениях V основные особенности изображений связаны с

верхними атомами. В промежуточной же области значе-

ний напряжения смещения и тот, и другой атом димера

дают примерно одинаковый вклад в туннельный ток,

что приводит к появлению полос на изображении. Такая

сложная зависимость топографии СТМ от электронной

структуры означает, что для прямой визуализации атом-

ного строения реконструкций Si(100) и Ge(100) более

подходит режим заполненных состояний; в то же время в

режиме незаполненных состояний наблюдаемый рельеф

обусловлен, прежде всего, особенностями электронного

строения данных поверхностей.

4.3.2. Эксперимент

Как известно, использование обменно-корреляцион-

ного функционала PBE в расчетах электронной струк-

туры приводит к систематическому занижению шири-

ны запрещенной зоны [51]. Поэтому сравнение СТМ-

изображений, полученных с помощью этого функциона-

ла, с экспериментальными изображениями при одних и

тех же значениях напряжения смещения, является, стро-

го говоря, некорректным. В настоящей работе целью

эксперимента было выявить общие тенденции в эволю-

ции картин СТМ при вариации напряжения смещения и

сравнить их с аналогичными закономерностями, наблю-

дающимися при моделировании (разд. 4.3.1). Измерения

проводились только для реконструкций на поверхности

Ge(100). При взаимодействии этой поверхности с иглой

СТМ, как сообщалось в литературе [20,21], возможен

обратимый фазовый переход c(4× 2) ↔ p(2× 2). Со-

гласно указанным работам, направление стрелки в обо-

13.2

0

41.6

0

p
m

p
m

–2.0 V

–0.6 V

Рис. 5. СТМ-изображения поверхности Ge(100)c(4× 2), по-
лученные при V = −0.6 и −2.0V. Туннельный ток 2.0 nA.

Размер изображений 3.7× 4.1 и 3.7× 4.5 nm соответственно.

значении данного перехода зависит от типа носителей,

инжектируемых в поверхность кристалла из иглы. При

туннелировании электронов в незаполненные состоя-

ния структуры c(4× 2) она переходит в p(2× 2) и

далее сохраняется до переключения полярности напря-

жения смещения V . После переключения полярности и

туннелирования электронов из заполненных состояний

p(2× 2) в иглу, т. е. инжекции дырок в кристалл, указан-

ная структура вновь переходит в c(4× 2) и сохраняется

неизменной до смены знака напряжения смещения и

типа инжектируемых в образец носителей. Приведенная

схема фазовых превращений полностью подтверждается

в настоящем исследовании. Эти результаты означают,

что анализ СТМ-изображений структуры c(4× 2) может

быть проведен только для случая V < 0, а структуры

p(2× 2) — при V > 0.
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Рис. 6. СТМ-изображения поверхности Ge(100)p(2× 2), по-
лученные при V = 0.3, 0.8 и 1.6 V. Туннельный ток 500 pA.

Размер изображений 3.7× 3.9, 3.5× 3.8 и 3.7× 4.1 nm соот-

ветственно.

На рис. 5 показаны экспериментальные СТМ-
изображения, полученные при значениях V = −0.6 и
−2.0V. Как видно, топография реконструкции c(4× 2)
на этих изображениях практически неизменна, что хоро-
шо согласуется с результатами расчета (рис. 4). Сдвоен-
ные выступы на рис. 5 обусловлены парами соседних
атомов Ge↑ в структуре c(4× 2), как и в случае на
рис. 4. Единственное отличие состоит в том, что на
картинах, полученных в эксперименте, эти атомы не раз-
решаются. Одной из возможных причин такого отличия
может быть неидеальная форма иглы, используемой в
измерениях. Кроме того, заметную роль в эксперименте
может играть туннелирование в боковом направлении
(sideways tunneling) [29], которое не учитывается при мо-
делировании СТМ-изображений. Можно предположить,
что при регистрации картин на рис. 5 игла занима-
ет максимальную высоту, когда она находится между
соседними атомами Ge↑ и туннелирование происходит
из них одновременно. Профили линий, полученные для
выступов на рис. 5 (в статье не показаны), полностью
подтверждают это предположение.
Отметим также, что величина контраста на изображе-

ниях рис. 5 зависит от значения напряжен V . При −0.6V
перепад высот составляет 41.6 pm, а при −2.0V —
13.2 pm. Причину, почему меняется контраст на изобра-
жениях, легко понять, сравнивая плотности состояний
на атомах Ge↑ и Ge↓ в реконструкции c(4× 2) при
соответствующих энергиях на рис. 3.
В режиме незаполненных состояний при малых зна-

чениях напряжения смещения (V = 0.3V) выступы на
экспериментальном изображении (рис. 6) соответствуют
атомам Ge↓ реконструкции p(2× 2). Эти выступы обра-
зуют зигзагообразные линии, что находится в полном
согласии с расчетными данными на рис. 4.
При увеличении значения V до 0.8 V зигзагообразные

цепочки на изображении структуры p(2× 2) плавно
трансформируются в почти прямые линии (полосы).
Это обусловлено возрастанием вклада в туннельный ток
атомов Ge↑. Наконец, при 1.6 V на изображении вновь
появляются характерные зигзагообразные цепочки. Мак-
симумы туннельного тока при данных условиях соот-
ветствуют атомам Ge↑ . Все указанные трансформации
СТМ-картин согласуется с результатами DFT (рис. 4).
Обращает на себя внимание последовательное пони-

жение контраста изображений при увеличении напряже-
ния смещения на рис. 6: перепад высот при V = 0.3, 0.8
и 1.6V составляет соответственно 75.0, 53.0 и 17.5 pm.
Причины этого аналогичны причинам изменения контра-
ста СТМ-изображений при V < 0, обсуждаемым выше.
Таким образом, проведенные эксперименты полно-

стью подтверждают основные закономерности, которые
были выявлены для СТМ-изображений, полученных для
поверхности Ge(100) с помощью DFT (рис. 3 и 4).

5. Заключение

С помощью DFT-моделирования и измерений при
12K исследованы общие закономерности влияния элек-
тронной структуры реконструкций c(4× 2) и p(2× 2)
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на Ge(100) и Si(100) на вид СТМ-изображений этих

поверхностей в режиме постоянного туннельного тока.

Показано, что топографический рельеф на них суще-

ственно зависит от напряжения смещения. При V < 0,

т. е. в режиме заполненных состояний, СТМ-картины

определяются, прежде всего, атомным строением по-

верхностей при всех напряжениях смещения от −2.0

до −0.5V. Выступы на этих картинах соответствуют

димерным атомам Ge↑ и Si↑, в частности, они обу-

словлены туннелированием из локализованных на этих

атомах pz -орбиталей. При V > 0 (режим незаполнен-

ных состояний) ситуация кардинально меняется: СТМ-

картины отражают в значительной степени электронное,

а не атомное строение реконструкций. При малых зна-

чениях V ≈ 0.3−0.5V основные выступы на них соот-

ветствуют нижним атомам димеров, образуя зигзагооб-

разные цепочки, и обусловлены антисвязывающими π∗-

состояниями, сильно локализованными на этих атомах.

При увеличении напряжения смещения до 0.8−1.0V эти

состояния становятся менее локализованными, и оба

атома димеров дают приблизительно равный вклад в

изображения, приводя к появлению полос. При даль-

нейшем росте напряжения (при V > 1.5V) основные

особенности на СТМ-изображениях соответствуют верх-

ним атомам димеров, а туннельный ток определяется

разными орбиталями на поверхности.
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