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Монокристаллы оксида галлия β-Ga2O3, легированные ионами Cr3+, были исследованы методом вы-

сокочастотного электронного парамагнитного резонанса в непрерывном режиме на частоте 94GHz при

температуре 6K. В спектрах электронного парамагнитного резонанса образцов с высокой концентрацией

трехвалентного хрома, помимо трех основных линий, характерных для ионов Cr3+ (S = 3/2) в октаэдриче-

ском окружении атомов кислорода, обнаружены еще три менее интенсивные линии. Анализ анизотропии

спектров электронного парамагнитного резонанса и численное моделирование угловых зависимостей

позволили отнести эти сигналы к ионам хрома, находящимся в тетраэдрических позициях кристаллической

решетки β-Ga2O3. Для этого нового центра определены параметры спинового гамильтониана и направления

магнитных осей, а также построена схема расщепления энергетических уровней в магнитном поле.
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1. Введение

Интерес в современном мире к металлооксидным со-

единениям вызван большими возможностями их исполь-

зования в приборостроении, и оксид галлия занимает в

этом ряду особое место. Его уникальные свойства —

большая ширина запрещенной зоны (Eg = 4.8 eV), низ-
кие токи утечки и большие значения диэлектриче-

ской проницаемости (ε = 10.2−14.2) — делают β-Ga2O3

пригодным для создания полупроводниковых приборов,

таких как тонкопленочные полевые транзисторы, ба-

рьеры Шоттки с обратными напряжениями вплоть до

нескольких киловольт и солнечно-слепые УФ-детекторы.

Высокая химическая и термическая, а также радиаци-

онная стойкость позволяют использовать оксид галлия

для разработки устройств, предназначенных для работы

при повышенных температурах и в космической отрас-

ли [1–6].
Оксид галлия Ga2O3 существует в пяти различных

кристаллических модификациях — α-, β-, γ-, δ- и

ε-фазах, каждая из которых характеризуется уникальной

структурой кристаллической решетки [7]. Полиморфные

соединения оксида галлия отличаются не только про-

странственными группами, но и координационным чис-

лом ионов галлия. Среди всех фаз особый интерес пред-

ставляет политип β-Ga2O3, термодинамически наиболее

устойчивая модификация, которую можно получить из

любой другой полиморфной формы оксида путем отжига

на воздухе при высокой температуре.

Кристаллическая структура β-Ga2O3 является моно-

клинной с пространственной группой C2/m-C3
2h. Посто-

янные решетки при температуре 273K: a = 1.223 nm,

b = 0.304 nm, c = 0.580 nm, β = 104◦ . Элементарная

ячейка содержит 4 атома галлия, находящиеся в пози-

циях типа i с локальной симметрией m-C2. Положе-

ния этих атомов кристаллографически неэквивалентны:

два атома галлия (GaI) находятся в октаэдрическом

окружении и координированы шестью атомами кис-

лорода, два других атома (GaII) окружены четырьмя

атомами кислорода, образуя тетраэдрическое окруже-

ние [8–10].

На рис. 1 приведена структура элементарной ячейки

β-Ga2O3, на которой видны октаэдрические и тетраэдри-

ческие позиции галлия в окружении атомов кислорода.

Кристаллографические оси обозначены как a , a∗, b, c .

Ось a∗ перпендикулярна плоскости (bc), а ось a откло-

нена от оси c на угол 104◦ .

Ионы переходных металлов могут вводиться в кри-

сталл специально, или они могут образовываться как

неконтролируемая примесь в процессе роста из-за их

наличия в исходной матрице. Примеси в значительной

степени определяют электрические и оптические свой-

ства кристалла. Ионы переходных металлов приводят

к образованию глубоких уровней в широкозонных по-

лупроводниках, ограничивая их электрическую проводи-

мость. В настоящее время эти примеси используются

для получения полуизолирующих материалов.
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Рис. 1. Структура элементарной ячейки монокристалла

β-Ga2O3.

Парамагнитные ионы в кристаллах выступают важ-

нейшим элементом современных высокотехнологичных

устройств: лазеров, мазеров, осцилляторов, квантовых

датчиков. Особое место занимает ион Cr3+, его введение

в корунд (Al2O3) обеспечило прорыв в создании твердо-

тельных лазеров. В настоящее время Cr3+ рассматрива-

ется как потенциальная основа для спиновых кубитов в

квантовых вычислениях [11].

Метод электронного парамагнитного резонанса

(ЭПР) позволяет однозначно идентифицировать при-

меси переходных металлов, их зарядовое состояние

и электронную структуру. В отличие от стандартных

диапазонов (X - и Q-диапазоны), применяемых в

большинстве спектрометров ЭПР, высокочастотная

спектроскопия (W -диапазон) обладает рядом значимых

преимуществ: высокой чувствительностью, высоким

спектральным разрешением, а также позволяет исследо-

вать системы с большими начальными расщеплениями

тонкой структуры.

2. Экспериментальная часть

Объемные кристаллы β-Ga2O3:Cr были выращены ме-

тодом Чохральского на промышленной ростовой уста-

новке с индукционным нагревом иридиевого тигля.

В качестве исходного материала использовался порош-

кообразный Ga2O3 с чистотой 99.999% (5N). Ионы

Cr3+ были введены в структуру кристалла намеренно

в процессе роста, для этого использовались металли-

ческие чешуйки хрома с чистотой 99.99%. В каче-

стве затравок применяли фрагменты β-Ga2O3 в виде

брусков с приблизительными размерами 3×3×30mm,

полученные из ранее выращенных кристаллов. В процес-

се роста использовался ранее подобранный [12] состав

атмосферы, состоящий из смеси Ar и O2, содержание

кислорода составляло 4−5 vol.%. Условия роста были

следующими: давление в ростовой камере составляло

около 1.1 bar, температура — около 1850 ◦С, скорость

вращения кристалла в процессе выращивания составля-

ла 5 rpm, скорость вытягивания — около 0.15mm/min.

Были исследованы два образца β-Ga2O3:Cr с раз-

личной концентрацией хрома: 0.4mol.% (образец # 1) и

0.5mol.% (образец # 2). Для проведения экспериментов

из центральной части каждого объемного кристалла

вдоль плоскости спайности (100) были выколоты тонкие

пластины с размерами около 2×2×0.5mm. Образцы

предварительно ориентировались рентгеновскими мето-

дами в кристаллографических плоскостях. Технология

изготовления образцов подробно описана в работе [13].

Измерения были выполнены на высокочастотном

спектрометре ЭПР, разработанном в ФТИ им. А.Ф. Иоф-

фе совместно с компанией ООО
”
ДОК“. Спектрометр,

работающий как в непрерывном, так и в импульсном

режиме, построен на базе линейки микроволновых мо-

стов (94 и 130GHz) и полностью автономной магни-

тооптической криогенной системе замкнутого цикла с

диапазоном рабочих температур 1.5−300K и широким

диапазоном изменения магнитных полей (от −7T до

+7T) [14,15].

Измерения образцов β-Ga2O3:Cr проводились в непре-

рывном режиме на частоте 94GHz с применением

безрезонаторной техники регистрации [16], при темпе-

ратуре 6K и модуляции магнитного поля 5G.

3. Результаты и обсуждение

Ранее в ряде работ [17–20] сообщалось об исследова-

ниях методом ЭПР монокристаллов β-Ga2O3, легирован-

ных хромом. Также в статье [21] представлены резуль-

таты исследования методом ЭПР номинально нелеги-

рованных коммерческих объемных кристаллов β-Ga2O3.

Во всех перечисленных работах наблюдались спектры

иона хрома исключительно в октаэдрическом положении

в зарядовом состоянии Cr3+. Электронный спин иона

Cr3+ равен S = 3/2 (электронная конфигурация 3d3,

основной мультиплет 4F3/2). Поэтому в спектрах ЭПР

наблюдаются три линии. Авторами публикации [22] бы-
ли определены магнитные оси октаэдрического центра

хрома в β-Ga2O3. Следует отметить, что в исследованиях

β-Ga2O3, легированного железом, наблюдались сигналы

ЭПР от двух магнитно–неэквивалентных центров: ионов
Fe3+ как в октаэдрическом, так и в тетраэдрическом

положениях [23,24].
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Рис. 2. Угловые зависимости спектров ЭПР ионов хрома в β-Ga2O3 (образец # 1). Спектры зарегистрированы в плоскости (ca∗)
при температуре 6K и на частоте 94GHz. Расчетные зависимости показаны красными линиями, пунктирной линией обозначены

запрещенные 1ms = ±2 переходы.

На рис. 2 представлена ориентационная зависимость

сигналов ЭПР иона Cr3+ для образца # 1 с низкой кон-

центрацией хрома, зарегистрированная в непрерывном

режиме на частоте 94GHz при температуре 6K и враще-

нии образца в плоскости (ca∗) с шагом 10◦ . Ионы Cr3+

замещают галлий и занимают октаэдрические позиции

в решетке β-Ga2O3, на рис. 2 расчетные зависимости

показаны красными линиями. В магнитных полях вплоть

до 2.3 T наблюдаются сигналы парамагнитного центра
Cr3+, связанные с запрещенными 1ms = ±2 переходами,

они обозначены на рис. 2 пунктирными линиями.

Для описания спектров ЭПР ионов Cr3+, представлен-

ных на рис. 2, был использован сокращенный спиновый

гамильтониан в стандартной форме:

H = µBB · gS+ D
[

S2
z − (S(S + 1))/3

]

+ E[S2
x − S2

y ], (1)

где спин S = 3/2 для Cr3+. Первый член описыва-

ет зеемановское взаимодействие с анизотропным g-

фактором, где µB — магнетон Бора. Второй и третий

члены описывают взаимодействие тонкой структуры,

приводящее к расщеплению энергетических уровней в

нулевом магнитном поле. Параметр D учитывает вклад

z -осевой части кристаллического поля, а параметр E —

неосевой части. С помощью программы Грачева [25],
которая основана на точной численной диагонализа-
ции матрицы спинового гамильтонина, были рассчитаны

спектры ЭПР ионов Cr3+ в октаэдрических позициях. За

основу были взяты параметры спинового гамильтониа-

на из работы [17]: gx = 1.969, gy = 1.964, gz = 1.940,

|D| = 16025MHz, E = 3860MHz.

Для образца # 2 с увеличенной концентрацией хрома

были получены ориентационные зависимости, представ-

ленные на рис. 3. Измерения проводились в непре-

рывном режиме на частоте 94GHz при температуре

6K и вращении образца в плоскости (ca∗) с шагом

15◦ . Помимо сигналов, ранее хорошо изученных и

относящихся к октаэдрическому центру хрома, впервые

наблюдались угловые зависимости менее интенсивных

сигналов. Анализ полученных расчетных параметров

позволил сделать вывод о принадлежности этих сиг-

налов ионам хрома, расположенным в тетраэдрических

узлах решетки. На рис. 3 красные линии соответствуют

расчетным угловым зависимостям для ионов хрома в

октаэдрическом положении, синие — для ионов хрома

в тетраэдрическом положении.

Угловые зависимости спектров ЭПР ионов Cr3+ для

образца β-Ga2O3 с увеличенной концентрацией хро-

ма были также зарегистрированы в плоскости (ba∗)
(рис. 4). Измерения проводились в непрерывном режиме

на частоте 94GHz при температуре 6K и вращении

образца в плоскости (ca∗) с шагом 15◦ . Красные и си-

ние кривые отражают расчетные угловые зависимости,

учитывающие погрешность ориентации образца, равную

4◦, при эксперименте. Как и в плоскости (ca∗), здесь
отчетливо видны две группы линий: красные соответ-

ствуют хрому в октаэдрическом положении, синие — в

тетраэдрическом.

Наблюдаемые угловые зависимости спектров ЭПР

тетраэдрического положения хрома хорошо описывают-

ся спиновым гамильтонианом (1) со следующими по-

лученными из экспериментальных данных параметрами:

gx = 1.969, gy = 1.964, gz = 1.940, |D| = 15740MHz,

E = 3350MHz. Из угловых зависимостей, представлен-

ных на рис. 3, установлено, что магнитные оси тетраэд-

рического центра хрома повернуты относительно окта-

эдрического на угол 46◦ вокруг оси b в плоскости (ca∗).

4 Физика твердого тела, 2026, том 68, вып. 1
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Рис. 3. Угловые зависимости спектров ЭПР ионов хрома в β-Ga2O3 (образец # 2). Спектры зарегистрированы в плоскости (ca∗)
при температуре 6K и на частоте 94GHz. Расчетные угловые зависимости для октаэдрического положения хрома обозначены

красной линией, для тетраэдрического — синей. Запрещенные переходы от парамагнитного центра Cr3+ с 1ms = ±2 отмечены

пунктирными линиями.
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Рис. 4. Угловые зависимости спектров ЭПР ионов хрома в β-Ga2O3 (образец # 2). Спектры зарегистрированы в плоскости

(ba∗) при температуре 6K и на частоте 94GHz. Красная линия соответствует расчетным угловым зависимостям для хрома в

октаэдрическом положении, синяя — для хрома в тетраэдрическом положении.

На рис. 5 в увеличенном масштабе изображен фраг-

мент спектра ЭПР образца Ga2O3:Cr, зарегистриро-

ванный в плоскости (ba∗) при ориентации B ‖ b. На-

блюдаются интенсивные линии и наложенные на них

четыре эквидистантные линии меньшей интенсивности.

Поскольку помимо четных изотопов хрома с ядерным

спином, равным нулю (I = 0), имеется также нечетный

изотоп 53Cr со спином I = 3/2, это предполагает нали-

чие 4 линий в сверхтонкой структуре (СТС). Но из-за

ширины линии основного изотопа наблюдаются только

Физика твердого тела, 2026, том 68, вып. 1
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Рис. 5. Фрагмент спектра ЭПР изотопа хрома 53Cr в образце

Ga2O3:Cr. Спектр зарегистрирован в плоскости (ba∗) при

температуре 6K и на частоте 94GHz. Красным цветом показан

смоделированный сигнал для октаэдрического положения хро-

ма, а синим — для тетраэдрического положения с усилением

в 20 раз.

крайние линии СТС хрома. Центральная интенсивная

линия обусловлена четным изотопом хрома, а линии

малой интенсивности представляют собой компоненты

магнитной СТС нечетного изотопа. Отношение интен-

сивностей наблюдаемых линий в спектре ЭПР соответ-

ствует природной распространенности изотопов хрома.

На рис. 5 представлены смоделированные сигналы: крас-

ный соответствует октаэдрическому положению хрома,

синий — тетраэдрическому. При расчете формы линии

были использованы следующие параметры: для хрома

в октаэдрическом кислородном окружении — константа

сверхтонкой структуры A = 125G и ширина линии 60G;

для тетраэдрической позиции хрома — A = 90G и ши-

рина линии 67G. Сигналы ЭПР, приведенные на рис. 5,

полностью соответствуют ожидаемым для ионов Cr3+ в

двух неэквивалентных положениях.

На рис. 6 представлена схема расщепления энерге-

тических уровней основного состояния хрома в тет-

раэдрическом положении для трех направлений маг-

нитных осей x ′, y ′, z ′ . Расчет выполнен с использова-

нием параметров спинового гамильтониана (1). Верти-
кальными линиями на схеме отмечены ЭПР-переходы

для иона Cr3+ в тетраэдрическом кислородном окру-

жении на частоте 94GHz: черные линии соответ-

ствуют разрешенным переходам, а красные — запре-

щенным.

С использованием программы Vesta XTalDraw [26]
выполнено моделирование кристаллической структуры

β-Ga2O3. На рис. 7 представлена ее проекция на плос-

кость (010) с указанием направлений магнитных осей

для двух положение хрома, которые были получены в

результате проведенных расчетов (таблица). Углы для

магнитных осей октаэдрического (θ, ϕ) и тетраэдриче-

ского (θ′, ϕ′) положений Cr3+ в β-Ga2O3 приведены в

сферической системе координат. Следует отметить, что

направления магнитных осей для октаэдрического цен-

тра хрома полностью совпадают с данными работы [22],

а для тетраэдрического положения Cr3+ эти направления

определены впервые в рамках настоящего исследования.
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Рис. 6. Схема энергетических уровней основного состояния

ионов Cr3+ в тетраэдрическом кислородном окружении в

β-Ga2O3 с указанием ЭПР-переходов, соответствующих W -

диапазону. Разрешенные ЭПР-переходы отмечены черными

вертикальными линиями, а запрещенные — красными.
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Таблица. Значения углов для магнитных осей октаэдрическо-

го (x, y, z ) и тетраэдрического (x ′, y ′, z ′) положений Cr3+ в

β-Ga2O3 в сферической системе координат

Октаэдрическое положение Тетраэдрическое положение

иона Cr3+ в β-Ga2O3 иона Cr3+ в β-Ga2O3

θ, ◦ φ, ◦ θ′, ◦ φ′, ◦

x 72.5 0 x ′ 118.5 0

y 90 90 y ′ 90 90

z 17.5 −180 z ′ 28.5 0

a

b c

O

Ga

θ' = 28.5°

x '

z '

θ = 17.5°
z

x

Cr

Рис. 7. Проекция элементарной ячейки β-Ga2O3 на плос-

кость (010). Фиолетовыми стрелками обозначены направления

магнитных осей ионов Cr3+ для октаэдрического и тетраэд-

рического положений. Значения углов между магнитными и

кристаллографическими положениями приведены в таблице.

4. Заключение

Исследования легированных хромом монокристаллов

β-Ga2O3 методом ЭПР в W -диапазоне показали, что

хром сначала замещает энергетически более выгодные

положения — ионы Ga3+I в октаэдрическом кислородном

окружении. При увеличении концентрации хром также

занимает тетраэдрические позиции Ga3+II . Это обуслов-

лено различием ионных радиусов: для октаэдрического

положения Ga3+I радиус составляет 0.062 nm, тогда как

для тетраэдрического Ga3+II он существенно меньше —

0.0477 nm [17].

На основе анализа анизотропных спектров и чис-

ленного моделирования рассчитаны параметры спино-

вого гамильтониана, а также определены направления

магнитных осей для хрома в тетраэдрическом положе-

нии. Согласно данным моделирования кристаллической

структуры, магнитная ось z ′ тетраэдрического центра

хрома совпадает с направлением одной из связей Ga-O,

что согласуется с проведенными расчетами направлений

магнитных осей для данного центра.
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