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1. Введение

Спектр носителей в графене в присутствии скрещен-

ных постоянных и однородных магнитном и электри-

ческих полях обычно рассматривается в рамках под-

хода Фока-Фейнмана-Гель-Манна [1,2], что обусловлено

формальным подобием релятивистского гамильтониана

Дирака и kp гамильтониана графена. Решение Дирак-

подобных уравнений в графене, как правило, сводит-

ся к решению дифференциальных уравнений второго

порядка, подобных шредингеровским, с помощью так

называемой операции
”
квадрирования“ [3,4]. Подобный

подход, однако, требует фиксации конкретной калибров-

ки вектора потенциала, что противоречит принципу гра-

диентной инвариантности. В этой связи особое значение

приобретает так называемый алгебраический подход,

основанный на общепринятых градиентно-инвариантных

коммутационных свойствах кинетических импульсов [5]

[πx , πy ] = i/l2B (1)

зависящих только от интенсивности магнитного поля B .

В этом выражении n̂ = p̂− eA, lB =
√
1/|eB | — маг-

нитная длина. В дальнейшем мы используем систему

единиц ~ = c = 1. Спектр задачи и волновые функции в

рамках данного рассмотрения могут быть получены без

фиксации конкретного функционального вида вектор-

потенциала. В качестве примера применения данного

подхода, напомним, как он работает при решении хоро-

шо известной задачи о движении электрона в 2D пленке

графена в присутствии статического однородного по-

перечного магнитного поля. В этой связи, используя

коммутационные соотношения для кинетических им-

пульсов, удобно перейти к понижающим (аннигилиру-

ющим) и повышающим (порождающим) Бозе операто-

рам [a, a+] = 1

a+ =
lB√
2

(π̂x − iπ̂y ), a =
lB√
2

(π̂x + iπ̂y ), (2)

kp — гамильтониан графена в окрестности точки K зоны

Бриллюэна в этих операторах имеет вид

Ĥ = vFσx π̂x + vFσy π̂y =




0

vF

√
2

lB

a+

vF

√
2

lB

a 0



 . (3)

Собственные значения ε и собственные вектора |ϕ±,n〉
задачи легко вычисляются

ε = ±vF

√
2n

lB

|ϕ±,n〉 =
1√
2

(
|n〉

±|n − 1〉

)
, (4)

где a |n〉 =
√

n|n − 1〉. Как видно, ни на одном этапе

вычислений в дираковском ket-bra представлении, нам

не потребовалось использовать конкретный вид вектор

потенциала, что необходимо при аналитическом реше-

нии в шредингеровском координатном представлении.

Как будет показано в дальнейшем, проблема движения

в скрещенных постоянных и однородных магнитном

и электрическом полях также может быть аналогично

решена без выбора конкретного вида вектор-потенциала.

Вариант подобного рассмотрения, предложенный в [6],
не может рассматриваться, как пример заявленного

алгебраического подхода, поскольку он основан с самого

начала на выборе фиксированной линейной калибровки

Ландау A = (−yB, 0). Такое рассмотрение противоре-

чит самой идее алгебраического подхода, основанного
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только на коммутационных соотношениях, зависящих

от интенсивности полей. Необходимо отметить, что

предложенное авторами рассмотрение представляется

нам необоснованно усложненным. В данной статье мы

покажем, что существует простой в решении и удобный

для интерпретации алгебраический подход к решению

данной задачи.

2. Неэрмитов след в проблеме
скрещенных полей

Гамильтониан, описывающий движение носителей в

графене в присутствии скрещенных однородных, посто-

янных электрическом (Ex 6= 0) и магнитном (перпенди-
кулярном плоскости графена Hz 6= 0) полях в окрестно-

сти точки K, имеет вид

Ĥ =

(
−eEx vF π̂

+

vF π̂
− −eEx

)
, (5)

где π̂± = π̂x ∓ iπ̂y . Решение уравнения Ĥ|9〉 − ε|9〉 = 0

будет получено с использованием подхода, изложенного

в монографии [7], поскольку рассматриваемая задача

формально математически аналогична релятивистской

задаче Дирака. С этой целью определим следующие

операторы

Ĥ+ =

(
−(eEx + ε) vF π̂

+

vF π̂
− −(eEx + ε)

)
,

Ĥ− =

(
eEx + ε vF π̂

+

vF π̂
− eEx + ε

)
. (6)

Собственные значения ε и собственные вектора |9〉
являются решениями уравнения

Ĥ+|9〉 = 0. (7)

Волновую функцию будем искать в виде (множитель
lB/vF добавлен из размерностных соображений)

|9〉 =
lB

vF

Ĥ−|9〉. (8)

|9〉 и ε являются решениями уравнения, подобного

уравнению Шредингера

Ĥ+Ĥ−|9〉 = 0. (9)

Важное свойство оператора Ĥ+Ĥ− состоит в том, что

он действует раздельно в координатном пространстве и

в пространстве псевдо-спиновых переменных графена

Ĥ+Ĥ− = [v2F(π̂2
x + π̂2

y ) − (eEx + ε)2]I + ĤS, (10)

ĤS = −v2F

l2B
[σz + iδσx ],

где δ = vd/vF , vd = E/B — аналог дрейфовой скоро-

сти в классической задаче. Подобный прием
”
квадри-

рования“ исходной системы уравнений используется в

основном для решения релятивистской задачи Дирака

о движении электрона в электромагнитном поле [1–4].

Наше решение уравнения (9) стартует с диагонали-

зации оператора ĤS путем вращения в пространстве

псевдо-спинов. Отметим, что в случае проблемы Дирака

подобный оператор действует в реальном спиновом

пространстве. Реальные собственные значения ĤS имеют

вид

λ± = ±v2F

l2B
µ, (11)

где µ =
√
1− δ2. Собственные состояния ĤS имеют вид

ĤS |r±〉 = λ±|r±〉, |r+〉 =
1√
2





−iδ√
1 + µ

√
1 + µ



 ,

|r−〉 =
1√
2





√
1 + µ

iδ√
1 + µ



 . (12)

Оставшаяся шредингеровская часть псевдо-гамильтониа-

на Ĥ+Ĥ− легко диагонализируется поскольку, как будет

показано ниже, эта задача математически эквивалентна

задаче о квантовом осцилляторе в присутствии посто-

янной возмущающей силы. На этом этапе необходимо

отметить необычное свойство используемого оператора

Ĥ+Ĥ−, на которое почему-то не обратили внимания

ни в одной из известных нам статей, использующих

рассмотренный прием
”
квадрирования“. Подчеркнем,

что эта проблема существует и для релятивистского

уравнения Дирака. Дело в том, что оператор Ĥ+Ĥ−
существенно неэрмитов, благодаря присутствию псевдо-

спинового гамильтониана ĤS 6= Ĥ
↑
S . Гамильтониан по-

добного типа является унитарно-эквивалентным хоро-

шо известному неэрмитовому гамильтониану, который

используется для демонстрации необычных следствий

неэрмитовости [8,9]. Появления данной особенности не

избежали и авторы работы [6], предложившие свой ва-

риант
”
квадрирования“. Подчеркнем, что ĤS становится

эрмитовым в отсутствие внешнего электрического поля.

Несмотря на указанные особенности, связанные с

неэрмитовостью псевдо-гамильтониана, мы продолжим

рассмотрение, основываясь на том, что собственные

значения данной псевдо-спиновой задачи тем не менее

действительны. Соответственно, мы будем искать ре-

шение уравнения (9) в виде |8±〉 = |r±〉|ϕ±〉, где |ϕ±〉
удовлетворяет уравнению

[
v2F(π̂2

x + π̂2
y ) − (eEx + ε)2 + λ±

]
|ϕ±〉 = 0. (13)
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3. Операторы псевдо-момента

На данной стадии рассмотрения удобно использовать

следующее представление оператора координаты r̂ [10]

r̂ = ρ̂ + R̂, (14)

где ρ̂ — описывает
”
быстрое“ циклотронное вращение,

а вектор R̂ при классическом рассмотрении определяет

центр вращения (guiding center vector). Подобное раз-

деление используется при описании поведения плазмы

в слабо-меняющихся как в пространстве, так и во

времени электромагнитных полях. Разделение оператора

координаты на две составляющие, имеющие вполне

определенный физический смысл, также многократно

использовалось и используется при квантовом описа-

нии поведения электрона в магнитном поле. Впервые

оно появилось в работе [11]. В этой статье приведе-

ны соответствующие коммутационные соотношения для

операторов R̂, задающих местоположение циклотронной

орбиты (guiding center vector), которые обеспечивают

коммутацию операторов координат. Поскольку цикло-

тронное движение удобно представлять через операторы

кинетических моментов

ρ̂ = l2B(−π̂y , π̂x ). (15)

вектор-операторы центра вращения R̂ могут быть опре-

делены по аналогии с (15) через введение так называе-

мых псевдо-моментов [12]

k̂ = π̂ − e[r× B]. (16)

Поскольку при этом

R̂ = l2B [k̂× B]/|B|, (17)

можно показать, используя результаты [11], что опреде-

ленные таким образом операторы псевдо-моментов под-

чиняются следующим коммутационным соотношениям

[k̂x , k̂y ] = −i/l2B, [k̂ i , π̂ j ] = 0. (18)

Аналог данного разбиения, например, используется в

работе [13] при описании релятивистских уровней Лан-

дау, где соответствующие операторы носят названия

циклотронных и магнетронных. Необходимо подчерк-

нуть, что как следует из их определения (16), опера-

торы псевдо-моментов k̂ являются строго градиентно-

инвариантными. Действительно, кинетические моменты

градиентно-инвариантны по построению, а операторы

координат нечувствительны к градиентным преобразо-

ваниям по определению. В данных операторах уравне-

ние (13) приобретает вид
[
v2F π̂

2
x + v2Fµ

2π̂2
y + 2ε̂vdπ̂y − ε̂2 + λ±

]
|ε±〉 = 0, (19)

где ε̂ = ε + vd k̂y . Поскольку k̂y коммутирует с Ĥ+Ĥ−,
решение уравнения (19) можно искать в виде

|ϕ±〉 = |ψ±〉a |ky〉b . (20)

В этом выражении |ky〉b является собственной функцией

оператора k̂y . Используя приведенные коммутационные

соотношения (18) для псевдо-импульсов определим со-

ответствующие Бозе операторы b и b+ ([b, b+] = 1)

b =
lB√
2

(k̂y + i k̂x), b+ =
lB√
2

(k̂y − i k̂x), b|0〉b = 0.

(21)
Следуя [14–16], рассмотрим состояние

|ky 〉b =
el2B k2

y /2

(2π)1/4

√
2lB

∞∫

−∞

dkx |
√
2klB〉b

=
el2B k2

y/2π1/4

23/4
e−(

√
2ky lB −̂b+)2/2|0〉b, (22)

где k = ky + ikx , |
√
2klB〉 — когерентное состояние

b|
√
2klB〉 =

√
2klB |

√
2klB〉. Легко установить справедли-

вость следующего коммутационного соотношения

be−(
√
2ky lB−̂b+)2/2 = e−(

√
2ky lB−̂b+)2/2

[
b̂ +

√
2ky lB − b̂+

]
.

(23)
Используя (23) легко показать, что (22) есть искомый

собственный вектор оператора k̂y

k̂y |ky 〉b = ky |ky 〉b. (24)

Состояния |ky〉b нормированы на дельта функцию Дира-

ка

〈k ′
y |ky 〉b = δ(k ′

y − ky). (25)

Это условие является следствием следующего инте-

грального равенства [16]

∞x

−∞

dydy ′

π
〈z ′/z 〉=

∞x

−∞
dydy ′ exp−1

2

(
|z |2+|z ′|2+2z ′∗z

)

= (2)−1/2π3/2e−x2/2δ(x − x ′), (26)

где z = x + iy . Используя полученные собственные век-

тора |ky〉b , ε̂ — оператор в уравнении (19) мож-

но рассматривать как c-число ε̂ → ε = ε + vdky . При

этом уравнение, определяющее волновую функцию

|ψ±〉a (19), приобретает вид

[
v2F π̂

2
x + v2Fµ

2π̂2
y + 2εvd π̂y − ε2 + λ±

]
|ψ±〉a = 0. (27)

4. 1D отображение

На данном этапе рассмотрения воспользуемся эффек-

тивным 1D свойством уравнения (27). Существование

точного соответствия описания 2D системы квантового

Холла эффективной 1D системе обсуждается, например,

в работе [17]. Подобное
”
проектирование“ осуществля-

ется путем определения операторов квази-координаты Q̂

и квази-момента P̂

Q̂ = −l2B π̂y , P̂ = π̂x . (28)

Физика твердого тела, 2026, том 68, вып. 1
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Эти операторы подчиняются стандартному коммута-

ционному соотношению координата-импульс [Q̂, P̂] = i .

Используя введенные операторы (28), определим со-

ответствующие Бозе операторы рождения/уничтожения

ĉ, ĉ+

ĉ =
lB√
2µ

[
P̂ − i

µQ̂

l2B

]
, ĉ+=

lB√
2µ

[
P̂ + i

µQ̂

l2B

]
, [ĉ, ĉ+] = 1.

(29)
В дальнейшем нам понадобится связь операторов ĉ,

диагонализирующих неэрмитов гамильтониан, с опера-

торами â определенными в (2)

ĉ =
lB√
2µ

[π̂x + iµπ̂y ]

=
1

2
√
µ

[(1 + µ)â + (1− µ)â+] = uâ + v â+, (30)

где

u = coshϕ = (1 + µ)/2
√
µ, v = sinhϕ = (1− µ)/2

√
µ.

При таком переопределении искомое решение уравне-

ния (27) становится эквивалентно решению 1D задачи

Шредингера о поведении квантового осциллятора при

приложении внешней постоянной силы [18]

[
v2Fµ

l2B
(2ĉ+ĉ + 1) + i2ε

vd

lB

√
2µ

(ĉ+ − ĉ) − ε2 + λ±

]

× |9±〉c = 0. (31)

Собственные вектора |9±〉c , являющиеся решени-

ем (27), впервые появились в работе [19] под на-

званием
”
полу-когерентные состояния“, или как они

были названы в дальнейшем,
”
обобщенные когерентные

состояния“ [20]. Для их определения зададим оператор

сдвига

D(αε) = exp[αε ĉ
+ − α∗

ε ĉ], αε = −i2
δlBε

(2µ)3/2vF

. (32)

Используя (32), обобщённое когерентное состояние, яв-

ляющееся решением уравнения (31), можно представить

в виде [20]

|9±〉 = |n, αε〉c = D(αε)|n〉c . (33)

Используя

|8〉±,n,ky
= |r±〉|n, αε〉c |ky 〉b, (34)

искомый спектр задачи определяется из уравнения

µ3 v
2
F

l2B
(2n + 1± 1) − ε2n = 0. (35)

Здесь εn = εe,h
±,n + vdky . Окончательный ответ

εe,h
±,n = −vdky + sµ3/2 vF

lB

√
2n + 1± 1. (36)

В этом выражении s = +1(c) относится к зоне прово-

димости, а s = −1(h) к валентной зоне. Полученный

результат совпадает с ответами, полученными в совер-

шенно отличных подходах, включающих квазикласси-

ческое рассмотрение [21], метод псевдо-лоренцевских

преобразований [22–24], а также вариант алгебраиче-

ского решения [6]. Предложенное нами алгебраиче-

ское рассмотрение представляется более простым по

сравнению с [6]. Необходимо отметить, что авторы

в данной работе используют фиксированную функци-

ональную зависимость вектор потенциала (калибровка
Ландау), что противоречит самой идеи алгебраического

подхода к решению данной задачи. Проверим, совпадает

ли полученный ответ с известным ответом, полученным

в предельном случае отсутствия электрического поля

(E = vd = δ = 0, µ = 1, ĉ = â). В этом случае неэрми-

товая псевдо-спиновая часть гамильтониана становится

эрмитовой и выражение для собственных векторов |r±〉
упрощается

|r+〉 =

(
0

1

)
, |r−〉 =

(
1

0

)
. (37)

Удивление вызывает тот факт, что в нашем рассмотре-

нии мы получаем двукратное вырождение для данного

положительного (отрицательного) значения собствен-

ной энергии

εe
+,n−1 =

vF

lB

√
2(n − 1) + 2 = εe

−,n =
vF

lB

√
2n. (38)

Поскольку в данном случае гамильтониан не зависит

от псевдо-импульсов, которые теперь служат лишь для

нумерации вырожденной системы собственных векто-

ров, принадлежащих данному уровню Ландау, мы можем

опустить зависимость от k i в выражениях для двух

векторов. Поскольку в данном случае δ = 0 (µ = 1),

|8〉e,+,n−1,ky
=

(
0

1

)
|n − 1〉a , |8〉e,−,n,ky

=

(
1

0

)
|n〉a .

(39)
В то же время факт, что данному положительному

(отрицательному) значению собственной энергии при-

надлежит один и только один собственный вектор, легко

проверяется при непосредственном решении уравнения

Ĥ+|9〉 = 0 (E = 0). Покажем, что в определении
”
пра-

вильных“ собственных векторов |9〉 в предложенном

подходе решающее значение приобретает оператор Ĥ−,
действующий согласно определению (8) |9〉 = Ĥ−|8〉.
Напомним, что подобная процедура возвращения к эр-

митовому описанию изложена в монографии [7] при

решении релятивистского уравнения Дирака. В присут-

ствии лишь магнитного поля

Ĥ− =

(
ε vFπ

+

vFπ
− ε

)
. (40)
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Применение оператора Ĥ− приводит для обоих векто-

ров (39) к результату

|9〉e,+,n−1,ky
=

lB

vF

Ĥ−|r+〉|n − 1〉a

=
√
2

(√
n a+

a
√

n

)(
0

1

)
|n − 1〉a =

√
2n

(
|n〉a

|n − 1〉a

)
,

|9〉e,−,n,ky
=

lB

vF

Ĥ−|r−〉|n〉a

=
√
2

(√
n a+

a
√

n

)(
1

0

)
|n〉a =

√
2n

(
|n〉a

|n − 1〉a

)
. (41)

Использование Ĥ− сохраняет status quo, поскольку

в обоих случаях мы получаем один и только один

собственный вектор, принадлежащий данному (невы-
рожденному) значению энергии, как и должно быть.

Легко показать, что подобный
”
коллапс“ собственных

векторов справедлив и для отрицательных значений

энергий. Докажем, что подобное фиктивное вырождение

отсутствует и в общем случае при наличии электри-

ческого поля. Рассмотрим ненормированные собствен-

ные вектора |9〉+,n−1,ky
и |9〉−,n,ky

, которые принадле-

жат одному и тому же электронному уровню энергии

εn = vFµ
3/2

√
2n/lB − vdky

|8〉+,n−1,ky
= D(αεn

)|r+〉|n − 1〉c |ky 〉b,

|8〉−,n,ky
= D(αεn

)|r−〉|n〉c |ky 〉b. (42)

Для доказательства отсутствия реального вырождения в

рассматриваемой задаче после применения дополнитель-

ной операции мы должны получить

|9〉n,ky
=

lB

vF

Ĥ−|8〉+,n−1,ky
=

lB

vF

Ĥ−|8〉−,n,ky
. (43)

где Ĥ− (6) имеет вид

Ĥ−(εn) =
vF

√
2

lB

×




−i δ

2
(â+−â)+ lB

vF

√
2
εn â+

â −i δ
2
(â+−â)+ lB

vF

√
2
εn





=
vF

√
2

lB

×




−i δ

2
(u+v)(ĉ+−ĉ)+ lB

vF

√
2
εn (uĉ+−v ĉ)

(uĉ−v ĉ+) −i δ
2
(u+v)(ĉ+−ĉ)+ lB

vF

√
2
εn



.

(44)
Используя полученные выражения для состояний

|8〉±,n,ky
(42) для доказательства (43) достаточно пока-

зать, что

D†(αεn
)Ĥ−D(αεn

)|r+〉|n−1〉c =D†(αεn
)Ĥ−D(αεn

)|r−〉|n〉c .

(45)

Используя определение оператора D(αεn
) (32) и

полученное выражение (44) для Ĥ−(εn), оператор

D†(αεn
)Ĥ−D(αεn

) можно представить в виде

D†(αεn
)Ĥ−D(αεn

) =
vF

√
2n

lB

√
mu

θ̂ +
vF

lB

√
2µ

[ϑ̂ ĉ+ + ϑ†ĉ],

(46)

θ̂ =

(
1 iδ

−iδ 1

)
, ϑ̂ =

(
−iδ 1 + µ

µ − 1 −iδ

)
.

Действие операторов θ̂ и ϑ̂ на псевдо-спиновые вектора

|r+〉 и |r−〉 задается равенствами

θ̂|r+〉 = µ|r+〉∗ θ̂|r−〉 = µ|r−〉∗ ϑ̂ |r+〉 = 2µ|r−〉∗

ϑ̂ |r−〉 = 0 ϑ̂†|r−〉 = 2µ|r+〉∗ ϑ̂†|r+〉 = 0. (47)

Используя эти равенства, получаем искомое выражение

для невырожденной волновой функции

|9〉n = Ĥ−|8〉+,n−1,ky
= Ĥ−|8〉−,n,ky

= µ
vF

√
2n

lB

D(αεn
)
[
|r+〉∗|n − 1〉c + |r−〉∗|n〉c

]
.

(48)
Это важный, хотя и ожидаемый результат. Мнимое

вырождение, порожденное
”
квадрированием“ и обуслов-

ленное присутствием неэрмитовой составляющей в эф-

фективном гамильтониане, которое проявляется в неор-

тогональности собственных псевдо спиновых векторов,

исчезает при учете операции Ĥ−. На необходимость

дополнительной операции, подобной рассмотренной в

нашей работе, для получения
”
правильных“ волновых

функций указано в монографии [7]. Однако, поскольку
речь идет о решении соответствующих дифференци-

альных уравнений, в [7] это мотивируется необходимо-

стью избавления от
”
лишних“ решений, возникающих

при рассмотрении квадрированных уравнений второго

порядка, в то время как первоначально мы стартуем

с рассмотрения дифференциальных уравнений первого

порядка. Как следует из предложенного в работе под-

хода, это не совсем точное утверждение. Предложенное

дополнительное операторное действие призвано приве-

сти к исчезновению мнимого двукратного вырождения

обеспечив коллапс соответствующих волновых векторов

к одному выражению и ортогональности полученных

собственных волновых функций.

5. Заключение

В настоящей работе мы предложили последователь-

ный алгебраический подход, независящий от необхо-

димости выбора конкретной калибровки вектор потен-

циала к проблеме нахождения спектра носителей в

графене в присутствии скрещенных постоянных и од-

нородных магнитном и электрическом полях. Решение

получено в рамках подхода Фока-Фейнмана-Гель-Манна,
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что обусловлено формальным подобием релятивистско-

го гамильтониана Дирака и kp гамильтониана графена

и основано на градиентной инвариантности коммута-

ционных соотношений операторов и псевдо-импульсов.

Решение системы Дирак-подобных уравнений в графене

как правило сводится к решению дифференциальных

уравнений второго порядка подобных шредингеровскому

с помощью операции
”
квадрирования“. Однако подобное

рассмотрение требует фиксации конкретного функцио-

нального вида вектор-потенциала. Рассмотренный нами

алгебраический подход с использованием операторов

псевдо-импульсов позволяет полностью отказаться от

конкретного выбора калибровки вектор-потенциала, что

отличает его от традиционного подхода к данной про-

блеме. Показано, что особенностью алгебраического

решения в скрещенных полях, которое проходит через

стадию
”
квадрирования“, является появление неэрмито-

вой составляющей в псевдо-шредингеровском гамиль-

тониане, действующей в пространстве псевдо-спиновых

переменных графена. Отмечено, что аналогичная про-

блема в данном подходе возникает и при решении реля-

тивистского уравнения Дирака в скрещенных полях [7].
Поскольку данный неэрмитовый гамильтониан инвари-

антен относительно PT преобразования, собственные

значения его остаются действительными, что позволя-

ет получить действительный спектр задачи, игнорируя

отсутствие эрмитовости. Единственным наследием по-

явления неэрмитовости при решении является коллапс

уровней Ландау при стремлении дрейфовой скорости к

скорости Ферми графена.
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