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Упругие модули поликристалла (константы Ламе) второго и третьего порядка при давлении P выражены

через производные свободной энергии Гиббса по инвариантам тензора конечных деформаций Лагранжа.

Приведены соотношения, связывающие эти константы Ламе с соответствующими упругими постоянными

монокристаллических зерен с гексагональной решеткой, составляющих поликристалл. На основе данных

по упругим постоянным второго и третьего порядка ε-Fe рассчитаны соответствующие константы Ламе

поликристаллического Fe в диапазоне давлений от 50 до 340GPa. С помощью полученных результатов

проведен анализ интенсивности различных трехфононных процессов рассеяния в железе и влияние на них

давления.
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1. Введение

Железо — основной компонент внутреннего ядра

Земли, где давление достигает 330−360 GPa. Имеются

многочисленные доказательства стабильности эпсилон-

фазы железа с гексагональной плотноупакованной

(ГПУ) кристаллической решеткой при таких экстре-

мально высоких давлениях и при низких и умеренных

температурах [1–4]. Согласно экспериментальным дан-

ным, переход Fe из объемно-центрированной кубической

(ОЦК) в ГПУ-структуру при комнатной температуре

происходит при давлениях 10−18GPa, и ГПУ-фаза оста-

ется устойчивой, по крайней мере, до 400GPa [3–5].
Знание упругих свойств этой фазы имеет важное значе-

ние по многим причинам. Например, упругие свойства

железа влияют на распространение сейсмических волн

через ядро Земли, и знание их критично для интерпрета-

ции сейсмологических данных и понимания внутренней

структуры нашей планеты [6]. Исследование упругих

свойств поликристаллического железа при сверхвысоких

давлениях является перспективной задачей.

Упругие свойства ε-Fe изучались в различных экспе-

риментальных и теоретических работах. В работах [7–
10] из экспериментов с поликристаллическими образ-

цами ε-Fe найдены упругие постоянные второго поряд-

ка (SOEC) монокристаллов при различных давлениях.

Результаты расчетов SOEC монокристаллического ε-

Fe в интервале давлений до 400GPa в рамках теории

функционала плотности (DFT) приведены в [11–16].
В работе [16] рассчитаны также и упругие постоянные

третьего порядка (TOEC) ε-Fe в диапазоне давлений

50−340GPa. Наряду с SOEC, которые характеризуют

линейный упругий отклик материала, упругие посто-

янные третьего порядка определяют нелинейный от-

клик на конечную деформацию и важны для объяс-

нения ангармонических свойств твердого тела, таких

как тепловое расширение, зависимость скорости звука

от температуры и приложенной нагрузки, генерации

второй гармоники при распространении в твердом теле

ультразвуковых волн конечной амплитуды [17–20].

В случае ε-Fe речь идет об упругих постоянных твер-

дого тела, находящегося при очень высоком давлении

(давление сравнимо с величиной объемного модуля).
Давление P является, наряду с температурой T , фун-

даментальной термодинамической переменной. Однако,

в отличие от T , исследования при высоких давлениях

долго сдерживались отсутствием возможности как по-

лучения статических давлений в мегабарном диапазоне

(100GPa), так и измерения свойств сильно сжатого ма-

териала. В настоящее время после изобретения ячейки

с алмазными наковальнями (DAC) и появления совре-

менных технологий микро-нано-зондирования появилась

возможность исследовать состояние вещества за преде-

лами трех мегабар. В результате, количество исследова-

ний свойств твердых тел при высоких давлениях растет

быстрыми темпами [21]

Давление кардинально изменяет все свойства твердых

тел, в том числе упругие — упругие постоянные различ-

ных порядков. Упругие постоянные n-го порядка (n ≥ 2)
определяются как соответствующие частные производ-

ные термодинамического потенциала термоупругой сре-

ды, подвергнутой малой, но конечной деформации [22].
В переменных S (энтропия) и V (объем) термодина-

мическим потенциалом является внутренняя энергия

U = U(S,V ), в переменных T и V — свободная энергия

Гельмгольца F = F(T,V ). Для этих двух случаев (дав-
ление отсутствует) стандартное определение упругих
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постоянных n-го порядка (n ≥ 2) дано в работе [22]:

CS
i jkl... =

1

V0

( ∂nU

∂ηi j∂ηkl...

)

S
, (1)

CT
i jkl... =

1

V0

( ∂nF

∂ηi j∂ηkl...

)

T
, (2)

Здесь CS
i jkl... и CT

i jkl... — соответственно адиабатические

и изотермические упругие постоянные при P = 0, ηi j —

компоненты тензора конечных деформаций Лагран-

жа [17], V0 — объем в исходном (недеформированном)
состоянии. Производные вычисляются при постоянной

энтропии S и температуре T .

В переменных S и P термодинамическим потенциалом

служит энтальпия H(S, P), а в переменных T и P —

свободная энергия Гиббса G(T, P). Поэтому адиабатиче-

ские и изотермические упругие постоянные различного

порядка предварительно нагруженного кристалла (при
давлении P) можно определить, как соответствующие

производные энтальпии H и потенциала Гиббса G по

компонентам ηi j [23–25]:

C̃S
i jkl... =

1

V0

( ∂nH

∂ηi j∂ηkl...

)

S
, (3)

C̃T
i jkl... =

1

V0

( ∂nG

∂ηi j∂ηkl...

)

T
, (4)

Эти постоянные называют
”
эффективными“ упругими

постоянными, чтобы подчеркнуть, что они определяются

не только межатомным взаимодействием (производными
n-го порядка свободной (внутренней) энергии по компо-

нентам тензора деформации ηi j), но и непосредственно

внешней нагрузкой [23,25]. Они полностью определяют

упругие свойства нагруженного кристалла: соотношение

напряжение Коши (true stress) — деформация ηi j , урав-

нение малых колебаний, условия устойчивости [17,26].
В случае гидростатического давления постоянные (3)
и (4) обладают полной фогтовской симметрией к пе-

рестановке индексов [17]. При P = 0 упругие постоян-

ные (3) и (4) совпадают с постоянными для ненагру-

женного кристалла (1) и (2). Далее, говоря об упругих

постоянных, мы будем иметь в виду постоянные (4).
В поликристаллическом состоянии материал можно

рассматривать как изотропный агрегат монокристалли-

ческих зерен. Соответственно, упругие модули поликри-

сталла (константы Ламе) можно получить путем усред-

нения тензора упругих постоянных соответствующего

порядка по всем ориентациям монокристаллических

зерен. В работах [27–30] получены соотношения, свя-

зывающие константы Ламе второго (SOLC) и третьего

порядка (TOLC) с упругими постоянными 2-го и 3-го

порядка кристалла произвольной симметрии (давление
отсутствует), а также рассмотрен частный случай моно-

кристаллических зерен кубической симметрии.

В настоящей работе приведены выражения для кон-

стант Ламе 2-го и 3-го порядка через упругие по-

стоянные монокристаллических зерен гексагональной

симметрии, составляющих поликристалл, находящийся

при высоком давлении. На основе этих соотношений,

с использованием данных по упругим постоянным ε-

Fe [16], рассчитаны SOLC и TOLC поликристаллическо-

го Fe в широком интервале давлений (50−340GPa). Оце-
нено также влияние различных трехфононных процессов

рассеяния на ангармоническое поведение ε-Fe. Получен-

ные результаты важны для интерпретации сейсмических

исследований, позволяют глубже понять механизмы фа-

зовых переходов, происходящих при высоких давлениях,

способствуют разработке новых материалов, способных

выдерживать экстремальные внешние воздействия, такие

как высокие давления и температуры.

2. Основные определения
и соотношения

Рассмотрим изотропное твердое тело (поликристалл)
в равновесном состоянии при давлении P и температу-

ре T . При заданных P и T состояние системы описыва-

ется свободной энергией Гиббса G. Пусть поликристалл

подвергается малой, но конечной деформации, описыва-

емой тензором Лагранжа с компонентами ηi j . Величина

G не должна зависеть от выбора системы координат. Она

инвариантна относительно вращения и перемещения

деформированного тела как целого. Это возможно, если

G является функцией инвариантов тензора деформации.

Главные инварианты тензора деформации имеют вид [19]

I1 = tr(η) = η11 + η22 + η33, (5a)

I2 =
1

2

[

(trη)2 − trη2
]

= (η11η22 − η212) + (η11η33 − η213) + (η22η33 − η223),
(5b)

I3 = detη

= η11η22η33 + 2η23η13η12 − η11η
2
23 − η22η

2
13 − η33η

2
12.

(5c)
Поскольку деформации являются малыми, разложим

G в ряд по инвариантам (5) вблизи недеформированного

состояния. Так как недеформированное состояние счи-

тается равновесным, то ( ∂G
∂I1

)0 = 0. Поэтому разложение

начинается с квадратичных членов. Коэффициенты этого

разложения представляют собой коэффициенты Ламе 2-

го и 3-го порядка.

Из инвариантов (5) можно создать два квадратичных

скаляра (I21, I2), и три кубических (I31, I1I2, I3). По ана-

логии с [19] получим

µ = − 1
2

(

∂G
∂I2

)

0
,

λ + 2µ =
(

∂2G

∂I2
1

)

0
(

∂G
∂I3

)

0
= n = A,

(

∂2G
∂I1∂I2

)

0
= −4m = −2A − 4B

(

∂3G

∂I3
1

)

0
= 4m + 2l = 2A + 6B + 2C











































. (6)
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Здесь λ и µ — константы Ламе 2-го порядка; l, m, n —

константы Ламе 3-го порядка в определении Мурнага-

на [31], A, B,C — в определении Ландау–Лифшица [32].
Константы Ламе (6) представляют собой производные

потенциала Гиббса соответствующего порядка, а не сво-

бодной энергии Гельмгольца, как в [31,32]. Конечно, при
P = 0 эти определения совпадают.

Выражение для свободной энергии Гиббса, отнесенное

к единице объема, с учетом вклада 3-го порядка имеет

вид

1G

V0

=
1

2
(λ + 2µ)I21 − 2µI2 +

1

3
(l + 2m)I31 − 2mI1I2 + nI3,

(7)
где 1G = G(P, T, η) − G(P, T, 0), V0 — объем тела

в недеформированном состоянии. В этом приближении

упругие свойства изотропного тела характеризуются

пятью константами. Чаще всего в качестве констант

Ламе 3-го порядка используют аналогичные величины

в определении Тоупина и Бернштейна — ν1, ν2, ν3 [33],
связанные с l, m, n соотношениями [28]:

ν1 = 2(l − m) + n = 2C

ν2 = m − 1
2

n = B

ν3 = 1
4

n = 1
4

A















. (8)

При таком выборе констант Ламе все они совпадают

с независимыми упругими постоянными изотропного

твердого тела [28]:

λ = C̃∗

12, µ = C̃∗

44, ν1 = C̃∗

123, ν2 = C̃∗

144, ν3 = C̃∗

456. (9)

Здесь упругие постоянные изотропного твердого тела

даны в обозначениях Фогта (1 1 − 1, 2 2 − 2, 3 3 − 3,

2 3 − 4, 1 3 − 5, 1 2 − 6).

3. Методика и детали расчета

Поликристаллический образец железа при высоком

давлении представляет собой совокупность большого

числа монокристаллических зерен с ГПУ-структурой.

Зерна произвольно ориентированы, их размеры прене-

брежимо малы по сравнению с размерами образца, но

достаточно велики, чтобы обладать объемно-упругими

свойствами. Следуя Фогту [23], считаем, что все мо-

нокристаллические зерна в поликристалле находятся

в одном и том же деформированном состоянии, поэтому

упругие константы такого материала описываются тен-

зором упругих постоянных соответствующего порядка,

усредненному по всем направлениям.

Для нахождения изотропных средних значений упру-

гих постоянных 2-го и 3-го порядка поликристалличе-

ского ε-Fe воспользуемся результатами недавно опуб-

ликованной работы [34]. В ней разработаны числен-

ные алгоритмы символьных вычислений эффективных

упругих постоянных второго–шестого порядка для по-

ликристаллических агрегатов, имеющих симметрию лю-

бого класса, в т.ч. и полную изотропию. Предыдущие

изотропные средние значения были ограничены 4-м

порядком (см. [35]), поэтому полученные в работе [34]
результаты существенно расширяют возможности ис-

следования нелинейной упругости поликристаллических

материалов [36].
В приложении Appendix D (см. [34]) приведены

выражения для изотропных средних значений упругих

постоянных в случае произвольной симметрии кристал-

литов. Учитывая соотношения между упругими посто-

янными для гексагональной структуры (классы 622,

62̄m, 6/mmm) (Appendix A, [34]), получим для констант

Ламе (9) поликристаллического железа при давлении P

и температуре T :

λ = C̃∗

12 =
1

15
(C̃11 + 5C̃12 + 8C̃13 + C̃33 − 4C̃44); (10)

µ = C̃∗

44 =
1

15
(3.5C̃11 − 2.5C̃12 − 2C̃13 + C̃33 + 6C̃44);

(11)

ν1 = C̃∗

123 =
1

105
(−C̃111 + 10C̃112 + 3C̃113 + 11C̃122

+ 63C̃123 + 18C̃133 − 84C̃144 + 12C̃155 + C̃333 − 12C̃344);
(12)

ν2 = C̃∗

144 =
1

105
(2.5C̃111 + 3C̃112 + 13.5C̃113 + 0.5C̃122

− 24.5C̃123 + 4C̃133 + 56C̃144 − 16C̃155 + C̃333 + 2C̃344);
(13)

ν3 = C̃∗

456 =
1

210
(8.5C̃111 − C̃112 − 15C̃113 − 9.5C̃122

+ 21C̃123 − 6C̃133 − 63C̃144 + 45C̃155 + 2C̃333 + 18C̃344).
(14)

Здесь C̃αβ. — упругие постоянные (4) (точка означает,
что здесь возможны упругие постоянные как 2-го, так и

3-го порядка).
Формулы (10)−(14) полностью совпадают с получен-

ными ранее соотношениями для констант Ламе 2-го

и 3-го порядка изотропных агрегатов гексагональных

кристаллов [37] (формулы (24)−(28)), если учесть, что

C222 = C111 + C112 −C122 (Appendix A, [34]).
Нужно отметить, что полученные нами ранее в ра-

ботах [35] и [38] аналогичные соотношения для кон-

стант Ламе 4-го порядка поликристаллов с зернами

кубической и гексагональной симметрии также пол-

ностью совпадают с соотношениями, следующими из

Appendix B, [34].

4. Результаты расчета
и их обсуждение

В работе [16] в рамках теории функционала плотно-

сти (DFT) рассчитаны упругие постоянные 2-го и 3-го

порядка (см. формулу (4)) ГПУ железа в интервале дав-

лений 50−340GPa при T = 0K. Используя эти данные

и соотношения (10)−(14), найдем значения констант

Ламе в указанном интервале давлений. Полученные
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Рис. 1. Зависимость от давления модуля всестороннего сжа-

тия K = λ + (2/3)µ, а также λ и µ. Треугольники — K; круги —

λ; квадраты — µ.
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Рис. 2. Зависимость от давления констант Ламе 3-го порядка.

Треугольники — ν1; круги — ν2; квадраты — ν3.

результаты показаны на рис. 1 и 2, а часть из них

приведена в табл. 1.

Видно, что во всем исследованном интервале давле-

ний константы λ и µ положительны, а все констан-

ты Ламе 3-го порядка имеют отрицательные значения.

С ростом давления все константы 2-го и 3-го поряд-

ка увеличиваются по абсолютной величине. При этом

зависимость всех констант Ламе от давления близка

к линейной.

Ключевую роль при объяснении ряда свойств твер-

дых тел, таких как теплопроводность, температурные

Таблица 1. Результаты расчетов констант Ламе (GPa) в по-

ликристаллическом железе

P, GPa K λ µ ν1 ν2 ν3

54.27 521.3 331.8 284.3 −348.4 −622.3 −623.0

90.67 664.3 438.2 339.1 −401.8 −772.1 −736.2

126.6 799.6 540.0 389.5 −451.1 −910.2 −840.9

162.1 929.7 638.5 436.9 −500.5 −1041 −940

197.4 1056 734.8 481.3 −554.6 −1163 −1028

232.4 1178 829.0 523.7 −602.8 −1280 −1117

267.3 1298 921.6 564.2 −647.0 −1393 −1203

302.1 1415 1013 602.9 −687.5 −1504 −1290

319.4 1473 1059 621.7 −709.5 −1560 −1333

336.6 1531 1104 640.5 −729.4 −1616 −1375

Таблица 2. Относительная интенсивность трехфононных про-

цессов рассеяния в поликристаллическом железе

P, GPa d/c d/b b/c

54.27 401 151.0 2.65

126.6 381 148.4 2.57

197.4 369 147.5 2.50

267.3 361 147.4 2.45

336.6 355 147.3 2.41

зависимости теплоемкости и скорости звука играют

трехфононные процессы рассеяния. Используя соотно-

шения (A1)−(A4) (см. Приложение), оценим интенсив-

ность этих процессов в поликристаллическом железе

при высоких давлениях. В табл. 2 приведены отноше-

ния интенсивностей различных трехфононных процес-

сов рассеяния в интервале давлений 50−340GPa.

Видно, что решающее значение в объяснении ангармо-

нических свойств железа при высоких давлениях имеет

процесс d (A4), (L+L↔L). Два других процесса —

b (A2) и c (A3) — гораздо менее эффективны.

С ростом давления интенсивности трехфононного

рассеяния b, c и d монотонно увеличиваются примерно

в одинаковой степени:

b(337)

b(54)
= 5.2;

c(337)

c(54)
= 5.7;

d(337)

d(54)
= 5.0.

5. Заключение

Константы Ламе 2-го и 3-го порядка при произволь-

ном давлении P определены методом разложения сво-

бодной энергии Гиббса по инвариантам тензора конеч-

ных деформаций Лагранжа. Для изотропного агрегата

монокристаллических зерен с гексагональной структу-

рой получены соотношения, связывающие константы

Ламе 2-го и 3-го порядка с соответствующими упругими

постоянными кристаллитов. С использованием данных

по упругим постоянным ε-Fe вычислены константы

Ламе 2-го и 3-го порядка поликристаллического железа

Физика твердого тела, 2026, том 68, вып. 1
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в диапазоне давлений от 50 до 340GPa. С давлением

все константы 2-го и 3-го порядка растут по абсолютной

величине по закону, близкому к линейному. В данном

интервале давлений также оценен вклад различных

трехфононных процессов рассеяния в ангармонические

свойства поликристаллического железа.

Полученные в работе результаты важны для интер-

претации геофизических исследований и способствуют

разработке новых материалов, пригодных для работы

в экстремальных условиях (высокие давления и темпе-

ратуры).

Приложение

Кубический ангармонический член в разложении

упругой энергии можно связать с интенсивностями

трехфононного рассеяния (the three-phonon scattering

strengths) ⌈Ass ′s ′′⌉
2

[39], которые описывают в изо-

тропной континуальной модели следующие возможные

процессы рассеяния акустических фононов [39]:

T+T ↔ L; T+L ↔ L; T+T ↔ T; L+L ↔ L,

где T и L — поперечные и продольные акустические

фононы соответственно.

В терминах изотропных упругих констант величины

⌈Ass ′s ′′⌉
2
имеют вид [39]

a = |ATTT|
2

= 0, (A1)

b = |ATLL|
2

= 0.0255(A + 3µ)2 + 0.1333(λ + 2B)2

+ 0.0593(A + 3µ)(λ + 2B), (A2)

c = |ATTL|
2

= 0.1333[λ2 + 1.5B(λ + B)] + (A + 4µ)

× [0.0124(A + 4µ) + 0.0222(λ + 2B)], (A3)

d = |ALLL|
2

= [3λ + 6µ + 2(A + 3B + C)]2. (A4)

Здесь A, B и C — константы Ламе 3-го порядка

в определении Ландау–Лифшица, связанные с ν1, ν2, ν3
соотношением (8). Из (A1) следует, что в модели

изотропного континуума интенсивность рассеяния для

процесса T+T↔T равна нулю.
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