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Представлены результаты экспериментального исследования собирающей оптической системы (колли-
матора) для квантово-каскадного лазера с частотой ∼ 4.1 THz, представляющей собой гиперполусферу —

полусферическую линзу, приклеенную к пластине-спейсеру, прижатой к торцу квантово-каскадного лазера.

Линза и спейсер были изготовлены из полиметилпентена (ТРХ) — материала с низкой дисперсией в

широком диапазоне длин волн, прозрачного как в видимом, так и в терагерцевом диапазоне. Проведен

расчет и экспериментально подобрана оптимальная толщина спейсера. Обнаружено увеличение собираемой

мощности излучения квантово-каскадного лазера с использованием гиперполусферы в 14 раз.
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Терагерцевые (THz) технологии интенсивно развива-

ются и находят множество практических приложений в

области бесконтактного неразрушающего контроля раз-

личных сред и материалов [1], мониторинга окружающей

среды и диагностики заболеваний [2–4], выявления угроз
безопасности [5,6], широкополосной связи [7].

Развитие в области компактных лазерных источников

THz-диапазона предъявило новые требования к оптиче-

ским системам, использующимся для сбора, коллимации

и фокусировки THz-излучения. При субволновых разме-

рах активной области такие лазеры имеют на выходе

сильно расходящийся пучок [8–11]. Для sub-THz-излу-

чения в диапазоне 0.3−1THz могут использоваться

микрополоски и их массивы, антенны на базе углерод-

ных нанотрубок, метаповерхностей, а также рупорные

антенны и дипольные микрорезонаторные антенны [12].
Для более высоких частот (> 1THz) ввиду умень-

шения длины волны предпочтительнее использовать

оптические элементы, которые могут изготавливаться

из высокоомного кремния (HR-FZSi), германия, сап-

фира, а также полиметилпентена (коммерческая марка

TPX), полипропилена, полиэтилена высокой плотности

(HDPE) [13]. Показатель преломления кремния близок

к показателю преломления GaAs — основы квантово-

каскадного лазера (ККЛ), поэтому в ряде работ для

сбора излучения из ККЛ в диапазоне 1−5THz использу-

ются HR-FZSi-линзы [14], но точное позиционирование

пары линза−ККЛ затруднено в силу непрозрачности

кремния в видимом диапазоне. Однако использование

кремниевых линзы и призмы позволяет значительно

повысить эффективность вывода THz-излучения из ККЛ

при черенковской генерации [15]. Сапфир также исполь-

зуется для изготовления оптических элементов THz-

диапазона. Однако, несмотря на высокую стабильность

оптических и механических свойств, прозрачность в

видимом диапазоне, сапфир имеет довольно низкое

пропускание (при толщине 1mm менее 0.3 на длине

волны 100 µm [13]) и сильную дисперсию (показатель
преломления составляет ∼ 1.77 и ∼ 1.59 для длин волн

0.6 и 100 µm соответственно). Полиметилпентен имеет

ряд преимуществ по сравнению с HR-FZSi: он прозра-

чен в видимом диапазоне и обладает более высоким

коэффициентом пропускания в диапазоне ∼ 4THz —

для пластин толщиной 2mm ∼ 0.52 и ∼ 0.8 для HR-

FZSi и TPX соответственно [13]. Низкая дисперсия

TPX (показатель преломления ∼ 1.45 как для видимого,

так и для THz-диапазона) дает возможность настройки

оптической системы по видимому лазерному источнику.

Цель настоящей работы — экспериментально про-

демонстрировать возможность формирования пучка

THz-излучения из ККЛ и его эффективный сбор при

использовании оптических элементов из пластика ТРХ.

Для эксперимента использовался ККЛ (внутренний но-

мер 4111) с двойным металлическим волноводом Ti/Au

длиной 875 µm, шириной 50µm, толщиной 10µm с

частотой основной линии излучения 4.08 THz (рис. 1).
Измеренная при помощи калиброванного пироэлек-

трического приемника THZ5I-BL-BNC (Gentec Electro-

Optics, Inc.) мощность излучения ККЛ составляла

∼ 2µW.

Структура с двойным металлическим волноводом яв-

ляется эффективным теплоотводом для лазерного чи-
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Рис. 1. Спектр излучения ККЛ при T = 12K, I = 1.2A.

па [16] и имеет низкие пороговые токи [14]. Теплоотвод
с ККЛ был размещен на столике гелиевого криоста-

та замкнутого цикла. Линзы изготавливались горячим

прессованием в алюминиевую матрицу заготовки из

пластика TPX при температуре 220 ◦C. Коллимация

излучения ККЛ осуществлялась при помощи гиперполу-

сферы диаметром 6mm, состоящей из полусферической

линзы, приклеенной к пластине-спейсеру, прижатой к

торцу активной области ККЛ так, чтобы последний

оказался в фокусе гиперполусферы. Являясь конструк-

ционным элементом, служащим для позиционирования

и закрепления линзы на определенном расстоянии от

торца ККЛ, спейсер позволяет варьировать оптические

характеристики гиперполусферической линзы. Толщина

спейсера с показателем преломления 1.46 при фокус-

ном расстоянии для полусферической линзы в вакуу-
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Рис. 2. а — размещенный на медном теплоотводе в криостате замкнутого цикла ККЛ со спейсером и линзой; b — схема

установки для сбора излучения от ККЛ с использованием линзы и спейсера ТРХ. Расстояние D составляет 50mm.

ме 4.5mm от плоской поверхности составит ∼ 3mm.

Другой торец структуры представлял собой скол без

каких-либо покрытий. Юстировка линзы относительно

торца ККЛ осуществлялась при визуальном наблюде-

нии торца ККЛ сквозь линзу, которая далее приклеива-

лась к спейсеру. Теплоотвод с ККЛ крепился на столик

гелиевого криостата замкнутого цикла с минимальной

температурой 12K. Для наилучшего сбора излучения

спейсер и линза, изготовленные из ТРХ, были располо-

жены максимально близко к ККЛ (рис. 2, a). Для срав-

нения были также измерены интенсивности излучения

без использования линзы, при этом излучение из ККЛ

заводилось в промежуточный цилиндрический волновод

из полированной нержавеющей стали диаметром 8mm

с окном из HDPE, максимально приближенным к ККЛ

внутри криостата. Общий вид установки и схема изме-

рений представлены на рис. 2, b. Для возбуждения ККЛ

использовался источник тока на базе MOSFET-ключа

с частотой 1 kHz с длительностью импульса от 500 ns

до 2µs. Излучение ККЛ заводилось в волновод, выпол-

ненный из полированной нержавеющей стали диаметром

18mm с Ge:Ga-приемником, помещенным в жидкий

гелий. Длина волновода составляла 1.5m, при этом его

часть (∼ 50 cm) находилась в атмосфере. Сигнал с детек-

тора усиливался токовым усилителем и регистрировался

цифровым осциллографом.

Были проведены расчеты интенсивности излучения

ККЛ в зависимости от толщины спейсера при диаметре

полусферической линзы 6mm. Расчеты проводились в

приближении геометрической оптики. Полагалось, что

ближний к линзе торец лазера находится на границе

материалов ККЛ/ТРХ на оси линзы и излучает сфе-

рическую волну. Построена зависимость интенсивности

собранного излучения ККЛ от толщины спейсера для
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расстояний от спейсера до волновода D = 3.5 и 4 cm

(рис. 3).
Экспериментальные результаты при использовании

линзы со спейсерами толщиной 2.5, 3 и 3.4mm обозна-

чены на рис. 3 квадратами, измеренные интенсивности

собранного излучения соотносились как 0.22, 1, 0.48

соответственно. Максимум сигнала на рис. 3 при уве-

личении толщины спейсера соответствует оптимальной

коллимации пучка. Различное положение максимумов

измеренной и расчетной интенсивности излучения обу-

словлено малым количеством экспериментальных точек,

а также особенностями геометрии эксперимента, трудно

учитываемыми при расчетах. Были также измерены

распределения интенсивности излучения ККЛ с линзой

и спейсером и без них при сканировании диафрагмой

диаметром 5mm по двум координатам в плоскости вход-

ной апертуры приемного волновода. Расстояние от торца

ККЛ до торца волновода составляло 50mm. При ис-

пользовании полусферической линзы диаметром 6mm в

сочетании со спейсером толщиной 3mm сигнал увели-

чивался в 14 раз по сравнению с сигналом без линзы

и спейсера. Результаты измерений приведены на рис. 4.

Несколько максимумов интенсивности излучения соот-

ветствует различным лазерным модам, обусловленным

геометрией структуры. При определенной настройке

оптической системы из совокупности излучаемых мод

может быть выбрана одна для формирования параллель-

ного пучка, что невозможно сделать для многих мод,

излучаемых под различными углами из ККЛ.

Таким образом, применение оптической собирающей

системы, состоящей из пластины спейсера и полусфери-

ческой линзы, изготовленных из пластика TPX, увели-

чивает интенсивность падающего на входную апертуру

приемника излучения ККЛ, генерирующего на частоте

4.08 THz, в 14 раз. Малая дисперсия материала ТРХ и

прозрачность в видимом диапазоне длин волн позволяют
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Рис. 3. Зависимость интенсивности собранного излучения

ККЛ от толщины спейсера для расстояний от спейсера до

волновода D = 3.5 и 4 cm.
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Рис. 4. Распределение интенсивности излучения ККЛ с лин-

зой и спейсером толщиной 3mm (а) и без них (b) перед

апертурой волновода приемника.

использовать источники видимого диапазона для точной

юстировки пары терагерцевый ККЛ−линза, генерирую-

щих в диапазоне от 2.4 до 6.4 THz.
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