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Направленность вывода излучения из кольцевых микролазеров

с нарушенной вращательной симметрией
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Исследованы инжекционные полупроводниковые микролазеры с кольцевым резонатором радиусом 15 µm

с несимметричным расположением внутреннего отверстия резонатора. Показано, что асимметрия обеспе-

чивает формирование в диаграмме направленности двух лепестков излучения, разориентированных на 50◦

относительно оси смещения внутреннего отверстия. Измеренная добротность резонаторов сопоставима с

добротностью дисковых резонаторов и находится на уровне ∼ 106 .
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Полупроводниковые дисковые микролазеры, поддер-

живающие оптические моды шепчущей галереи (МШГ),
позволяют достичь высокой добротности при размерах

в единицы-десятки микрометров и рассматриваются как

потенциальные компоненты квантовой оптической свя-

зи [1], фотонных интегральных схем [2], высокочувстви-
тельных датчиков [3], оптических гироскопов [4]. Однако
вращательная симметрия диска приводит к изотропному

излучению в свободное пространство, в то время как

многие приложения (например, источники одиночных

фотонов, фотонные интегральные схемы) требуют на-

правленного вывода излучения. Были предложены раз-

личные подходы для его достижения в дисковых лазерах:

точечный рассеиватель [5], линейный дефект [6], опти-
ческие наноантенны [7]. Альтернативным подходом бы-

ло использование резонаторов асимметричной формы,

таких как спираль [8], закругленный треугольник [9],
микростадион [10], улитка Паскаля [11]. Методы [5–7]
не предполагают групповую технологию изготовления.

Для методов [8–10] характерны низкая добротность (Q)
и, как правило, высокий порог генерации вследствие

деформации резонатора. Для метода [11] получен на-

правленный вывод излучения с сохранением высокой

добротности, однако для геометрии улитки Паскаля, как

и для дисков, характерно наличие внутренней области

в резонаторе, не вносящей вклад в лазерную генерацию

на МШГ [12]. В [13,14] была предложена схема создания

асимметрии в микрорезонаторах за счет использования

кольцевой геометрии с несимметричным расположени-

ем внутреннего отверстия, обеспечивающая формиро-

вание высокодобротных мод и направленного излуче-

ния. В настоящей работе экспериментально исследованы

высокодобротные инжекционные микролазеры с асим-

метричной геометрией резонатора и квантовыми точка-

ми In0.4Ga0.6As/GaAs в активной области, работающими

в непрерывном режиме.

Эпитаксиальная структура синтезирована методом га-

зофазной эпитаксии из металлоорганических соединений

на подложке n+-GaAs, разориентированной на 6◦ от

плоскости (100). Активная среда представляла собой

пять слоев квантовых точек In0.4Ga0.6As/GaAs, помещен-

ных в волноводный слой GaAs общей толщиной 0.79 µm.

Эмиттерные слои Al0.39Ga0.61As толщиной 1.5µm были

легированы кремнием (n-слой) и цинком (p-слой). Кон-

тактный слой p+-GaAs легирован до уровня 1019 cm−3.

Микрорезонаторы диаметром 30µm были сформирова-

ны с помощью электронной литографии и плазмохими-

ческого травления глубоких мез цилиндрической формы.

Внутри цилиндра было сделано отверстие диаметром

d = 10 µm, расстояние от края резонатора до отверстия

было равно 5µm (см. вставку на рис. 1, а). Также для

сравнения были изготовлены микродисковые лазеры без

внутреннего отверстия. Глубина травления мез состави-

ла 4µm. Верхние омические контакты к p+-GaAs были

сформированы с помощью металлизации AgMn/Ni/Au и

имели кольцевую форму. Нижний сплошной контакт к

n+-подложке был сформирован с помощью металлиза-
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Рис. 1. а — спектры электролюминесценции микрокольца с отверстием, полученные при различных токах накачки; b — ватт-

амперная зависимость, измеренная со стороны отверстия (сплошная линия) и с противоположной стороны (штриховая линия). На
вставке — изображение кольцевого микролазера, полученное с помощью растрового электронного микроскопа.

ции AuGe/Ni/Au. Далее GaAs-подложка с микролазерами

была разделена на отдельные чипы.

Чипы с одиночными микролазерами напаивались

n-контактом на медный теплоотвод и тестировались

в непрерывном режиме. Для электрической накачки

использовался источник питания Keithley 2401. Для

электрических соединений применялись игольчатые зон-

ды. Для сбора излучения микролазера использовался

микрообъектив Mitutoyo Plan Apo NIR 20X. Спектры

электролюминесценции регистрировались анализатором

оптического спектра Yokogawa AQ6370C. Спектральная

ширина линии измерялась с помощью установки на ос-

нове интерферометра Фабри−Перо Thorlabs SA210-8B

со спектральным разрешением 67MHz. Абсолютное

значение оптической мощности оценивалось с помощью

фотодиода Thorlabs S132C, расположенного на расстоя-

нии 4mm от тестируемого микролазера. Распределение

оптической мощности по азимутальному углу измеря-

лось путем вращения образца вокруг оси и регистрации

оптической мощности фотодиодом, при этом угловое

разрешение задавалось диафрагмой, ограничивающей

апертуру фотодиода, и составляло ∼ 0.3◦ .

На рис. 1, а приведены спектры электролюминесцен-

ции микролазера с отверстием. Спектральное положение

линии генерации находится вблизи максимума элек-

тролюминесценции спонтанного излучения квантовых

точек In0.4Ga0.6As/GaAs и составляет 1060 nm. Порого-

вый ток лазерной генерации определялся по перегибу

на ватт-амперной зависимости (рис. 1, b) и составил

I th = 11mA. С увеличением тока накачки наблюдается

длинноволновое смещение лазерной линии, вызванное

саморазогревом лазера. Из-за увеличения температуры

активной среды и уменьшения ширины запрещенной

зоны слоев InGaAs/GaAs при повышении тока накачки

происходит наблюдаемое на рис. 1, а увеличение ин-

тенсивности электролюминесценции спонтанного излу-

чения в области длин волн 1080−1100 nm. Рост оптиче-

ской мощности наблюдается до тока инжекции 35mA и

далее ограничен саморазогревом лазера. Максимальное

значение оптической мощности со стороны отверстия

в 2.5 раза больше (рис. 1, b), чем с противоположной

стороны.

Далее было выполнено более подробное исследова-

ние распределения мощности по азимутальному углу

расположения детектора (β) относительно оси смеще-

ния внутреннего отверстия для дискового лазера с

вращательной симметрией (µ-disk) и асимметричного

кольцевого микролазера (µ-ring) (рис. 2, а). Видно, что
излучение кольца содержит два интенсивных лепестка

при ±50◦, в то время как диаграмма направленности

диска не имеет выделенных направлений излучения, его

локальные максимумы излучения связаны с рассеянием

на шероховатостях боковой поверхности. Провал интен-

сивности лазеров, наблюдаемый вблизи −90◦, образован

тенью игольчатого зонда, используемого для подключе-

ния лазера к источнику питания.

На экспериментальной зависимости ширины линии

генерации для асимметричного кольцевого микролазера

от тока накачки можно выделить два участка (рис. 2, b):
на первом участке ширина линии излучения резко

уменьшается с ростом тока накачки вследствие перехода

в режим лазерной генерации, на втором наблюдается

медленный рост, обусловленный различными фактора-

ми, в том числе разогревом, увеличением плотности

носителей и фотонов в микрорезонаторе и т. п. [15].
Для сравнения приведена зависимость спектральной

ширины лазерной линии от тока накачки для дискового

микролазера. Вблизи порога как для симметричной,

так и для асимметричной формы резонатора ширина

лазерной линии составляет около 170−200MHz, что
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Рис. 2. а — азимутальный профиль дальнего поля для дискового (нижняя кривая) и кольцевого (верхняя кривая) микролазеров

(сдвинуты по вертикальной оси для удобства восприятия); b — зависимость ширины лазерной линии от тока.

близко к значениям, полученным в других работах

с использованием спектроскопии высокого разрешения

для дисковых микролазеров такого же диаметра [16].
Добротность кольцевого резонатора с направленным

выводом, оцененная как отношение длины волны к ее

ширине, составила ∼ 106. Полученный результат пока-

зывает, что формирование смещенного отверстия данной

геометрии в микрорезонаторе не приводит к уширению

лазерной линии и уменьшению добротности.

Таким образом, в работе исследованы микролазе-

ры с активной областью на основе квантовых точек

InGaAs/GaAs с кольцевым резонатором, содержащим

смещенное относительно центра отверстие. Показано,

что введение асимметрии в геометрию резонатора поз-

воляет сформировать направленное излучение со сто-

роны отверстия. Диаграмма направленности содержит

два интенсивных лепестка примерно при ±50◦, порог

генерации и добротность не ухудшаются по сравнению

с таковыми для дисковых микролазеров без асимметрии

формы резонатора, при этом добротность составляет

не менее 106. Полученные результаты демонстрируют

возможность реализации компактных микролазеров с

контролируемым направлением излучения без снижения

добротности, что показывает потенциал их использова-

ния в качестве активных компонентов фотонных инте-

гральных схем.
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