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Введение

Компонентный анализ газовых проб имеет важное

прикладное значение для экологических приложений и

исследования летучих молекулярных маркеров в выдохе

пациента. Спектр поглощения газовых проб S0
mix(ν)

является суперпозицией спектров поглощения его от-

дельных компонент Si(ν) [1]:

S0
mix(ν) =

N
∑

i=1

c i Si(ν), (1)

где c i — концентрация i-й компоненты, ν — частота,

N — количество компонент в смеси. Задача декомпози-

ции спектра S0
mix(ν) сводится к определению неизвест-

ных величин c i .

Для спектров поглощения газовых проб известного

состава (так называемая
”
белая“ система [2]) разрабо-

таны эффективные методы декомпозиции, в частности,

методы многомерного разрешения кривых (multivariate

curve resolution, MCR) [3–5], одномерная калибровка

(univariate calibration, UC) [6] в сочетании с методом

наименьших квадратов [7] и методом экстремального

поиска Левенберга-Марквардта (ЛМ) [8–10].
Основная проблема при анализе газовых смесей спек-

тров поглощения природного происхождения заключа-

ется в том, что их состав известен лишь частично (так
называемая

”
серая“ система [2]). Компонентный анализ

”
серых“ систем существенно более сложен, для них

были разработаны методы декомпозиции смесей лишь

с небольшим количеством компонент.

Для декомпозиции спектров двухкомпонентных сме-

сей неизвестного состава Лоутоном и Сильвестром

был разработан метод самомоделирующего разреше-

ния кривых (selfmodeling curve resolution, SMCR) [11]
на основе преобразования исходных спектров смеси в

пространство скрытых переменных при помощи метода

главных компонент и того факта, что график нормали-

зованных спектров двухкомпонентных смесей представ-

ляет собой прямую линию в этом пространстве [12].
Расмуссен с соавторами [13] использовали SMCR для

определения числа химических компонент в смеси.

Борген и Ковальски представили метод, расширяющий

процедуру SMCR на трехкомпонентные системы [14].
Райко и Иштван [15] предложили упрощение подхода

Боргена и Ковальски на основе вычислительной гео-

метрии. В работе Охта [16] также предложено рас-

ширение метода SMCR на трехкомпонентные смеси.

Мейстер [17] разработал алгоритм на основе SMCR,

который позволяет находить решения для трехком-

понентных смесей с использованием критерия макси-

мального спектрального различия между компонентами

смеси. Кавата с соавторами [18] разработали метод на

основе оптимизации энтропии для оценки концентрации

компонент трехкомпонентных смесей. Вандегинсте с

соавторами [19] разработали аналогичный подход, ис-

пользуя условие, что спектры однокомпонентной смеси

должны иметь
”
простейший профиль“, определяемый

математически как кривую с наименьшей площадью при

заданной нормировке. Анализ единственности решения,

найденного с помощью SMCR, представлен в [20,21].
Метод поиска спектральных областей, где возможна

декомпозиция двухкомпонентных смесей, был развит

Восу с соавторами [22]. Расширение метода Восу на

трех- и четырехкомпонентные смеси предложено Голь-

шаном [23,24].

Альтернативным подходом к решению
”
серых“ си-

стем является определение наличия и концентрации

целевой компоненты с известным спектром независи-

мо от состава и концентрации остальных компонент

смеси. Данный подход реализован в методе HAMAND

(hypothetical addition multivariate analysis with numerical

80 1265



1266 Ю.В. Кистенев, Д.А. Вражнов, А.В. Борисов
0
S

m
ix

0
|d

(S
)/
d
ν
|

m
ix

0
|S

–
 c
S
|

m
ix

a b c d

e f

0
|d

(S
–

 c
S 

)/
d
ν
|

m
ix

0
|S

–
 (
c 

+
 ∆
c 

)S
|

m
ix

0
|d

(S
–

 (
c 

+
 ∆
c 

)S
)/
d
ν
|

m
ix

Рис. 1. Иллюстрация идеи метода RSC: а — модельный спектр смеси с двумя пиками, соответствующим двум компонентам, b —

модуль производной спектра смеси, c — модуль спектра смеси после точного вычитания спектра одной из компонент, d — модуль

производной спектра смеси после точного вычитания спектра одной из компонент, e — модуль спектра смеси после вычитания с

ошибкой спектра одной из компонент (предполагаемая концентрация отличается от истинной), f — модуль производной спектра

смеси после вычитания с ошибкой спектра одной из компонент (предполагаемая концентрация отличается от истинной).

differentiation) [25], а также в методе уменьшения cлож-

ности спектра, развиваемом авторами (reducing spectrum

complexity, RSC) [26–28].

Основная идея метода RSC заключается в том, что

если из спектра смеси полностью удалить спектр какой-

либо компоненты (с учетом ее концентрации), то слож-

ность оставшегося спектра должна уменьшиться [28].

В качестве критерия сложности использована интеграль-

ная площадь модуля первой производной спектра:

δ f (c̃) =

∫

∣

∣

∣

∣

d(S0
mix(ν) − c̃S(ν))

dν

∣

∣

∣

∣

dν, (2)

где c̃ — неизвестная концентрация, которая в точ-

ке минимума функционала δ f (c̃) должна быть рав-

на истинной концентрации c . Здесь S(ν) — спектр

искомой компоненты, который должен быть априори

известен. Идея метода представлена на рис. 1. Метод

RSC зарекомендовал себя как эффективное средство

для определения концентраций интересующих исследо-

вателя компонент в биологических пробах [27–29] и в

атмосферном воздухе [30]. При необходимости опреде-

ления наличия и концентрации нескольких компонент

метод RSC может применяться последовательно. Однако

такой подход увеличивает кратно время анализа. Также

с учетом накопления ошибки при неудачном выборе по-

рядка восстановления концентрации компонент точность

декомпозиции может заметно снизиться.

В данной работе рассматривается обобщение метода

RSC на многомерный случай как альтернатива его

последовательному применению.

Материалы и методы

Рассмотрим экспериментально измеренный спектр

многокомпонентной газовой пробы в следующем виде:

Smix(ν) = |S0
mix(ν) + r(ν)|, (3)

где r(ν) — случайный аддитивный шум. Осуществлять

поиск нескольких компонент с помощью метода RSC

можно с использованием следующих подходов.

1. Вид минимизируемого функционала совпадает

с (2), но минимизация производится варьированием

концентраций сразу нескольких компонент:

δ f (c) =

∫

∣

∣

∣

∣

d(Smix(ν) − 6i c̃ i Si(ν))

dν

∣

∣

∣

∣

dν. (4)

2. Минимизируемый функционал является суммой

функционалов (2), каждый из которых связан с оценкой

наличия и поиском концентрации одной из искомых

компонент:

δ f (c) =

∫ N
∑

i=1

∣

∣

∣

∣

d(Smix(ν) − c̃ i Si(ν))

dν

∣

∣

∣

∣

dν. (5)

3. Комбинация подходов 1 и 2, когда минимизируемый

функционал имеет вид

δ f (c) =

∫ N
∑

i=1

∣

∣

∣

∣

d(S̃i(ν) − c̃ iSi(ν))

dν

∣

∣

∣

∣

dν, (6)

S̃i(ν) = S̃i−1(ν) − c̃ iSi(ν), S̃0(ν) = Smix(ν).

Здесь c = (c̃1, c̃2, . . . , c̃N), c̃ i — искомые концентрации

каждой из компонент, N — количество искомых компо-

нент.
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Рис. 2. Спектры поглощения паров H20, CO2, CO, CH4, SO2,

NO2, N2O, OCS в диапазоне от 1000 до 3700 cm−1 .

Рассмотрим применение метода многомерного RSC

(mRSC) с использованием подходов (4)−(6) на при-

мере декомпозиции модельных спектров атмосферного

воздуха, в состав которого входят основные компонен-

ты: N2 (∼ 78.08%), O2 (∼ 20.95%), Ar (∼ 0.93%),
CO2 (∼ 0.04%), пары H20 (содержание в воздухе —

до 4%), а также малые составляющие, являющиеся

летучими молекулярными биомаркерами и/или инду-

стриальными загрязнителями атмосферы: CO, CH4, SO2,

N2O, NO2, OCS. В рассмотренных примерах также

проверялась гипотеза о наличии NO2 и OCS, которые на

самом деле отсутствовали в модельной газовой смеси.

Случайный шум моделировался функцией

r(ν) = R ·max(S0
mix)rand(ν), (7)

где функция rand(ν) принимает случайные значения

от −0.5 до 0.5. При этом спектр Smix(ν) (3) всегда

неотрицателен.

В рассматриваемом нами спектральном диапазоне

поглощением N2, O2 и Ar можно пренебречь, поэто-

му в модельную смесь эти газы не были включены.

На рис. 2 показаны спектры поглощения компонент

модельной смеси, включая малые газовые составляю-

щие (МГС). Спектры рассчитывались для нормальных

условий с использованием базы спектральных парамет-

ров HITRAN 2020 [31] со спектральным разрешени-

ем 1 cm−1.

Далее была построена выборка модельных спектров

смесей указанных компонент Smix. Концентрация H20

менялась случайным образом в пределах от 0 до 4%,

а концентрация каждой из МГС менялась в виде

нормального распределения с параметрами (среднее
значение, дисперсия), указанными в табл. 1. Малые

газовые составляющие, не представленные в таблице,

имели нулевую концентрацию. Если генератор выдавал

отрицательное значение концентрации, оно заменялось

на ноль. Уровень шума менялся от R = 0 до R = 3 · 10−4

Таблица 1. Параметры моделирования концентраций МГС

Примесь σ , ppm Mean, ppm Источник

Диоксид углерода, 50 420 [32–35]
углекислый газ, CO2

Монооксид углерода, 1.0 2.5 [34–37]
угарный газ, CO

Метан, CH4 1.0 1.9 [34,38,39]
Диоксид серы, SO2 0.2 0.2 [40–42]
Оксид диазота, 0.1 0.3 [34,36,43]
оксид азота, N2O
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Рис. 3. Пример расчета спектра Smix .

с шагом 10−6. Для каждого значения уровня шума

генерировалось по 200 спектров Smix, отличающихся

концентрациями в соответствии с табл. 1.

Результаты

На рис. 3 показан пример расчета спектров Smix. При-

меняя метод mRSC к спектрам Smix, найдем c̃ i и относи-

тельную ошибку δi = | c i−c̃ i

c i
| для функционалов (4)−(6).

В табл. 2 представлен пример истинных (фактических)
c i и найденных c̃ i концентраций для одного из спектров

Smix при уровне шума R = 0.

Видно, что функционал (6) обеспечивает более вы-

сокую точность восстановления концентрации МГС по

сравнению с использованием функционалов (4) и (5).
Это подтверждается средней относительной ошибкой 〈δ〉
и ее среднеквадратичным отклонением восстановления

концентрации МГС на полной выборке модельных спек-

тров (табл. 3). Газы, имеющие нулевую концентрацию,

здесь не рассматривались.

На рис. 4 показаны результаты расчета зависимости

средних значений относительной ошибки 〈δ〉 восстанов-
ленных с использованием функционала (6) концентра-

ций МГС от амплитуды шума R и отношения
”
сиг-

нал/шум“ (SNR).
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Таблица 2. Пример восстановленных c̃ i и истинных c i концентраций для одного из спектров Smix при уровне шума R = 0

Примесь c i , ppb c̃ i , ppb

Функционал (4) Функционал (5) Функционал (6)

CO 2500.0 2168.8 1755.0 2486.5

CH4 10 9.0 9.1 9.8

SO2 200.0 205.4 142.6 202.0

NO2 0 0.1 −106.9 0.00003

N2O 20.0 19.1 24.0 19.4

OCS 0 −0.78 154.6 0.1

a b

2 4 6
0

0.1

0.3

0.5

R

0.4

0 8

<
δ

>

CO

CH4

SO2

N O2

0.2

–4× 10

0

0.1

0.3

SNR

0.4

<
δ

>

0.2

610410

CO

CH4

SO2

N O2

Рис. 4. Результаты расчета зависимости средних значений относительной ошибки 〈δ〉 концентраций МГС, восстановленных с

использованием функционала (6), от уровня шума R (а) и отношения
”
сигнал/шум“ SNR (b).

Таблица 3. Средняя относительная ошибка 〈δ〉 и среднеквад-

ратичное отклонение значений восстановленных концентраций

МГС на полной выборке модельных спектров при уровне шума

R = 0

Газ 〈δ〉

Функционал (4) Функционал (5) Функционал (6)

CO 0.062± 0.050 0.122± 0.090 0.021± 0.008

CH4 0.076± 0.034 0.136± 0.034 0.028± 0.002

SO2 0.062± 0.049 0.122± 0.080 0.021± 0.006

N2O 0.061± 0.031 0.131± 0.061 0.023± 0.006

Заключение

В данной работе предложен метод декомпозиции спек-

тров поглощения газовых проб неизвестного состава при

произвольном количестве компонент. Метод основан на

уменьшении
”
сложности“ спектра при точном удалении

из суммарного спектра одной из компонент. В качестве

критерия сложности использована интегральная пло-

щадь модуля первой производной спектра. Рассмотрены

три варианта минимизируемого функционала, пригод-

ного для декомпозиции спектров поглощения газовых

проб неизвестного состава при произвольном количе-

стве компонент. Метод проиллюстрирован на примере

оценки наличия и восстановления концентрации МГС

в атмосферном воздухе. Рассчитанная ошибка деком-

позиции, в том числе при различном уровне шума,

показала эффективность предложенного метода при

восстановлении концентрации МГС вплоть до уровня

десятков ppb, несмотря на наличие основных компонент,

дающих существенный вклад в поглощение воздуха в

рассмотренном диапазоне спектра.
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