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Выполнено моделирование интенсивности обратного рассеяния лазерного инфракрасного излучения на

двухслойной и четырехслойной случайно-неоднородной биоткани. В качестве основного объекта исследова-

ния рассматривалась модель головы человека. Представлены результаты сравнения расчетов, выполненных

для двух предельных случаев: плоских бесконечных слоев конечной толщины и слоистой структуры

с границами в форме полусфер. Моделирование переноса излучения в биоткани осуществлялось на

основе уравнения Бете−Солпитера в лестничном приближении. Были получены зависимости интенсивности

обратного рассеяния от расстояния между точкой входа луча и точкой выхода фотона. Изучено влияние

кривизны черепа и его толщины на интенсивность рассеяния. Показано, что данные обратного рассеяния

могут быть использованы в диагностике внутричерепных повреждений.
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1. Введение

Перенос лазерного излучения ближнего инфракрас-

ного диапазона в биологических средах привлекает

внимание исследователей на протяжении длительного

времени [1,2]. Это связано, прежде всего, с возможно-

стью использования рассеянного тканями излучения в

медицинских приложениях. Излучение данного диапазо-

на, безопасного для организма человека, характеризу-

ется низким коэффициентом абсорбции, а применяемое

оборудование — относительной простотой и невысокой

стоимостью.

В исследованиях, как правило, используются три ос-

новных типа падающего излучения: непрерывное [3–7],
короткоимпульсное [8–13], а также волнами с различны-

ми вариантами модуляции излучения [13–16].
В настоящей работе рассматривается случай, когда

объект исследования, модель головы человека — об-

лучается непрерывным инфракрасным лазерным пуч-

ком. Для корректного описания рассеяния излучения

в данной модели необходимо учитывать изменeние

оптических параметров в глубину, т. е. многослой-

ную структуру черепа и подлежащих тканей. В ра-

ботах [6,17,18] расчеты проводились для двухслойной

модели
”
череп−мозг“, а в [19] — для четырехслой-

ной модели
”
кожа−череп−спинномозговая жидкость

(СМЖ)−мозг“.

Интенсивность обратно рассеянного лазерного из-

лучения определялась путем итерационного решения

уравнения Бете−Солпитера [20,21], причем члены ите-

рационного ряда соответствуют различным кратностям

рассеяния. Каждый из них моделировался методом

Монте-Карло на основе широко используемой методики

MCML [22], при этом слои предполагались плоскими.

Выбор уравнения Бете−Солпитера для описания пере-

носа излучения в случайно неоднородной среде обуслов-

лен его общей применимостью, в том числе для учета

интерференционных эффектов в процессах рассеяния.

В отличие от вычислительно более простого диффузион-

ного приближения уравнение Бете−Солпитера позволя-

ет корректно описывать рассеяние малых порядков, при

которых транспортная длина еще не сформирована. Пер-

вые успешные реализации метода Монте-Карло на осно-

ве итерационного решения уравнения Бете−Солпитера

были представлены в работах [23–26].

В работах [6,19] исследовалась зависимость строго

обратно рассеянной интенсивности от расстояния между

источником и приемником, расположенными на по-

верхности головы. Модифицированный алгоритм MCML

позволял учитывать вклад каждого акта рассеяния в

итоговую интенсивность, что существенно сокращало

время вычислений [27,28].

В настоящем исследовании данная методика была рас-

ширена на случай моделей с учетом реальной кривизны

слоев. Верхняя часть головы моделировалась в виде по-

лусферы, а границы между тканевыми слоями считались

сферическими. Выполнено сравнение зависимостей ин-

тенсивности обратного рассеяния от расстояния между

источником и приемником для моделей с плоскими и

сферическими границами. Для учета анизотропии рассе-

яния применялась фазовая функция Хеньи−Гринштейна.
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2. Перенос излучения

Перенос стационарного излучения в бесконечной

случайно-неоднородной среде может быть описан урав-

нением Бете−Солпитера в
”
лестничном“ приближении:

Ŵ(r2, r1|ks , ki) =
k4
0

4π2
G(ks − ki)δ(r2 − r1)

+
k4
0

4π2

∫

dr3 G(ks − k23)3(r2 − r3)Ŵ(r3, r1|k23, ki), (1)

где функция когерентности Ŵ(r2, r1|ks , ki ) описывает

распространение излучения, падающего в точке r1 и

выходящего в точке r2, с начальным волновым век-

тором ki и конечным ks ; ki j = k0ri j/r i j , ri j = ri − r j ,

k0 = 2π/λ — волновое число, λ — длина волны в

вакууме. Произведение двух комплексно-сопряженных

усредненных функций Грина скалярного поля дает про-

пагатор однократного рассеяния: 3(r) = r−2 exp(−µr),
где µ = µs + µa — коэффициент экстинкции. Через G(k)
обозначен фурье-образ корреляционной функции флук-

туаций диэлектрической проницаемости:

G(k) =

∫

d(r− r0) e−ik·(r−r0)〈δε(r) δε∗(r0)〉.

Оптическая теорема связывает коэффициент рассея-

ния µs с интегральной интенсивностью однократного

рассеяния. Обе величины выражаются через корреляци-

онную функцию G(k); в частности, для скалярного поля:

µs =
k4
0

(4π)2

∫

d�s G(ks − ki ). (2)

Введя нормированную фазовую функцию

p(k̂s , k̂i ) =
G(ks − ki)

∫

d�s G(ks − ki )
,

где k̂ — единичный вектор вдоль волнового вектора k,

уравнение (1) можно переписать в виде:

Ŵ(r2, r1 | ks , ki ) = µs p(k̂s , k̂i )δ(r2 − r1)

+ µs

∫

dr3 p(k̂s , k̂23)3(r2 − r3)Ŵ(r3, r1 | k23, ki). (3)

Отметим, что фазовая функция зависит только от ко-

синуса угла θ между соответствующими векторами:

p(k̂s , k̂i ) = p(cos θ).

Пусть z — декартова координата точки r = (r⊥, z ),
перпендикулярная границам плоскопараллельного слоя

толщины T , 0 6 z 6 T , включая частный случай полу-

бесконечной среды при z > 0. С точностью до посто-

янного размерного множителя главная некогерентная

часть интенсивности рассеянного в верхнее полупро-

странство (далее —
”
назад“) излучения может быть

представлена в виде [28–30]:

J(ki , ks ) = 4π

∞
∫

0

dz 1

∫

z 2>0

dr2 Ŵ(r2, r1 | ks , ki )

× exp

(

−µ

(

z 2

cos θs

+
z 1

cos θi

))

,

где θi — угол падения, а θs — угол обратного рассея-

ния, отсчитываемый от направления, противоположного

оси z .

Итерирование уравнения Бете−Солпитера (3) при-

водит к представлению интенсивности в виде ряда по

кратностям рассеяния:

J(ki , ks ) =
∞
∑

n=1

J(n)(ki , ks ), (4)

где J(n)(ki , ks ) — вклад n-го порядка рассеяния.

В рамках лестничного приближения член n-го порядка

J(n)(ki , ks ) может быть представлен как среднее по

выборке из Nph падающих фотонов:

J(n)(ki , ks ) =
1

Nph

Nph
∑

j=1

W ( j)
n (ki , ks )

× p
(

k̂
( j)
n n−1, k̂s

)

f BLB(ki , ks , z
( j)
1 , z ( j)

n ),

(5)

где W
( j)
n (ki , ks ) — вес соответствующей траектории,

z
( j)
n — координата точки n-го рассеяния r

( j)
n .

Множитель Бугера−Ламберта−Бера

f BLB(ki , ks , z
( j)
1 , z ( j)

n )

описывает экспоненциальное затухание излучения на

пути от точки входа до первого рассеяния и от точки

n-го рассеяния до выхода из среды. Он зависит от

оптических свойств среды на пути фотонов, а также от

геометрии траектории.

Вес W
( j)
n представляет собой случайную реализа-

цию многократного пространственного интеграла, воз-

никающего при итерационном решении уравнения

Бете−Солпитера. Для его вычисления моделируется

стохастическая последовательность (траектория) точек

рассеяния: r1, . . . , rn.

3. Моделирование многократного
рассеяния света в биологической
ткани для плоскопараллельных
слоев

Альтернативой аналитическому решению уравнения

Бете−Солпитера является моделирование многократно-

го рассеяния методом Монте-Карло. Этот метод основан
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на использовании процедуры обратного преобразования.

Интегралы по полубесконечному интервалу сводятся к

интегралам по единичному интервалу. Пропагатор од-

нократного рассеяния показывает, что длина свободного

пробега фотона подчиняется экспоненциальному распре-

делению с плотностью вероятности f (r) = µ exp(−µr)
на интервале r ∈ [0, +∞), где r — расстояние между

соседними точками рассеяния. Для такой плотности

кумулятивная функция распределения ξ = F(r) вычис-

ляется следующим образом:

ξ =

r
∫

0

f (r ′)dr ′ = 1− exp(−µr). (6)

Обратное преобразование r = F−1(ξ) дает:

r = −µ−1 ln(1− ξ) = −µ−1 ln ξ ′, (7)

где ξ и ξ ′ = 1− ξ — равномерно распределенные слу-

чайные величины на интервале [0, 1].
Аналогичное обратное преобразование применяется

к косинусу угла рассеяния: из выражения γ = cos θ

получаем

χ = 2π

γ
∫

−1

p(γ ′)dγ ′, (8)

где p(γ) — нормированная фазовая функция рассеяния.

Азимутальный угол φ равномерно распределен на от-

резке [0, 2π]. Таким образом, трехмерный интеграл по

относительной координате r′j = r j−r j−1 преобразуется в

следующий вид:

∫

dr′j3(r ′j)p(t j ) f (r ′j , t j) =
1

2πµ

1
∫

0

dξ j

1
∫

0

dχ j

2π
∫

0

dφ j

× f
(

−µ−1 ln ξ j , t(χ j)
)

,

(9)
где f (r ′j , t j ) — произвольная функция, t j = t(χ j ) —

обратная функция к зависимости χ j = χ(t j ) из (8),
а φ j — азимутальный угол. После такого преобразо-

вания интеграл вычисляется как среднее по выборке

трех равномерно распределенных случайных величин:

ξ, χ и φ, где первые две лежат на интервале [0, 1], а φ —

на [0, 2π].
В результате интенсивность n-го порядка J(n)(1, s f )

в приближении усреднения по Nph падающим фотонам

вычисляется по формуле:

J(n)(1, s f ) ≃
Nph
∑

i=1

W
(i)
n

Nph

p
(

k f − k
(i)
n,n−1

)

e−µs f z
(i)
n , (10)

где W
(i)
n — статистические веса, а последовательность

точек r1, . . . , rn определяет стохастическую траекторию.

Величина z
(i)
j обозначает расстояние от j-й точки рассе-

яния до границы. Функция e−µs f z
(i)
n учитывает затухание

излучения при распространении от последней точки

рассеяния z
(i)
n до внешней границы среды.

Рассматривается неоднородная среда, свойства кото-

рой зависят от положения вдоль декартовой координа-

ты z , перпендикулярной плоским границам. Поскольку в

модели не учитывается преломление на границах между

слоями, предполагается, что направление движения фо-

тона остается постоянным при прохождении через среду.

В этом случае экспоненциальная функция затухания для

фотона, движущегося от точки r0 к точке r, обобщается

следующим образом:

exp (−µ|r− r0|) −→ exp

(

− 1

cos θ

z
∫

z 0

µ(z ′)dz ′

)

, (11)

где θ — угол между направлением движения фотона и

осью z , который должен быть задан заранее. Заметим,

что итоговое распределение зависит от начального по-

ложения фотона r0.

Плотность вероятности для координаты z , определя-

ющей новое положение фотона, задается выражением:

f (z , z 0) = C−1
0 exp

(

− 1

cos θ

z
∫

z 0

µ(z ′)dz ′

)

, (12)

где C0 — нормировочная константа.

4. Моделирование многократного
рассеяния

Произведем учет кривизны черепа. В качестве модели

головы примем полусферу заданного радиуса. Тогда

слой черепа (A) будет располагаться между двумя

полусферами радиусов Rmax и RA. Таким образом, слои

находятся не между плоскостями, а между полусферами.

В точке (0, 0, 0) расположена теменная кость. Уравнение
поверхности модели головы в декартовых координатах

имеет вид:

x2 + y2 + (z − Rmax)
2 = R2

max. (13)

Если перейти к сферическим координатам с нача-

лом в точке (0, 0, Rmax), то радиус изменяется в пре-

делах r sph ∈ [0;Rmax], полярный угол — в пределах

θsph ∈ [π/2;π], а азимутальный — φsph ∈ [0; 2π]. Кри-

визна учитывается через ограничения на декартовы

координаты: x2 + y2 + (z − Rmax)
2 ≤ R2

max и z ∈ [0;Rmax].
В этом случае коэффициент ослабления µ зависит от

радиального расстояния r sph :

r = −µ−1(r sph) ln(1− ξ) = −µ−1(r sph) ln ξ
′, (14)

где ξ и ξ ′ = 1− ξ — случайные величины, равномерно

распределенные на отрезке [0, 1].
В двухслойной модели:

слой A соответствует области Rmax ≥ r sph > RA,
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слой B — области RA ≥ r sph > 0.

Алгоритм должен учитывать последовательные шаги,

которые проходит фотон, начиная из точки r0, идущий

вдоль оси Z на случайное расстояние (14). В двухслой-

ном случае:

µ(r) =

{

µA, Rmax ≥ r > RA,

µB , RA ≥ r > 0.
(15)

Тогда случайное расстояние, пройденное до рассея-

ния:

r=

{

−µ−1
A ln(1− ξ), ξA ≥ ξ > 0,

−µ−1
B

(

ln(1−ξ)+(µB−µA)(Rmax−RA)
)

, 1 ≥ ξ > ξA,

(16)
где ξA = 1− exp

(

−µA(Rmax − RA)
)

.

Анизотропия среды учитывается через фазовую функ-

цию p(cos θ), где θ — угол однократного рассеяния.

Используется функция Хеньи−Гринштейна [1]:

pHG(cos θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
, (17)

где g = 〈cos θ〉 — параметр анизотропии. Для обоих

слоев gA, gB = g = 0.9.

Интегральная функция распределения:

pHG(cos θ) =

cos θ
∫

−1

pHG(s)ds

=
1− g2

2g

(

1
√

1 + g2 − 2g cos θ
− 1

1 + g

)

,

(18)
Обратное преобразование:

cos θ =
1

2g

(

1 + g2 − (1− g2)2

(1− g + 2gχ)2

)

, (19)

где χ — равномерно распределенная случайная величи-

на на [0; 1].
Для вклада n-кратного рассеяния в интенсивность

J(n)(1, s f ), согласно методу Монте-Карло:

J(n)(1, s f ) ≃
Nph
∑

i=1

W
(i)
n

Nph

p
(

k
f − k

(i)
n,n−1

)

e−µs f l
(i)
n . (20)

Здесь l
(i)
j — расстояние от j-го события рассеяния

до границы. Так как среда неоднородна по r , эта

функция рассчитывается на основе положения точки

рассеяния r
(i)
sph,n .

На рис. 1 показано, как определяется l
(i)
j , если j-

е событие происходит в слое B . По координатам

C(x c , y c , z c) и радиусам RA, Rmax:

AB =
√

R2
max − x2

c − y2
c −

√

R2
A − x2

c − y2
c , (21)

Rmax RmaxRA

A

B

C

z

k (0, 0)

Рис. 1. Схематическое представление расчета l
(i)
j .

BC =
√

R2
A − x2

c − y2
c − Rmax. (22)

Если j-е событие происходит в слое A, то:

l(i) j =
√

R2
max − x2

c − y2
c − Rmax. (23)

Так как мы не учитываем преломление на границе,

предполагается, что направление фотона не изменяет-

ся при прохождении через границу. Экспоненциальное

затухание от точки рассеяния r до границы описывает-

ся как:

e−µ(r)·l
(i)
n . (24)

При этом в зависимости от положения точки рас-

сеяния:

e−µ(r)·l
(i)
n =







e
−µA

(√
R2
max−x2

c−y2
c−Rmax

)

, r > RA,

e−(µAAB+µB BC), r ≤ RA,
(25)

где AB и BC определены в формулах (21) и (22).

5. Моделирование с учетом кривизны
слоев

В данном разделе представлены результаты численно-

го моделирования интенсивности обратного рассеяния

лазерного излучения ближнего инфракрасного диапазо-

на в двухслойной биологической среде. Оптические па-

раметры тканей, использованные в расчетах, приведены

в табл. 1.

Моделирование выполнялось методом Монте-Карло с

использованием обратного преобразования кумулятив-

ной функции распределения длины свободного пробега

фотона [22]. Предполагалось, что лазерное излучение

входит в среду вдоль оси Z. В процессе многократного

рассеяния формируется обратное рассеяние, вклад кото-

рого в результирующую интенсивность регистрировался

в каждой точке рассеяния.

Поскольку модель обладает цилиндрической симмет-

рией, интенсивность обратного рассеяния оценивалась
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Таблица 1. Коэффициенты абсорбции µa (mm−1) и приве-

денные коэффициенты рассеяния µ′
s (mm−1) для различных

тканей при заданной длине волны [31]

Длина волны, λ

Ткань 750 nm 850 nm 950 nm 1050 nm

µa µ′
s µa µ′

s µa µ′
s µa µ′

s

Мозг 0.036 0.859 0.106 0.762 0.114 0.622 0.118 0.525

Череп 0.006 1.974 0.013 1.876 0.019 1.757 0.019 1.665

Кровь 0.530 0.725 0.720 0.649 0.930 0.650 0.560 0.645

Кожа 0.046 1.535 0.038 1.485 0.030 1.625 0.022 1.695

R
max

R
max

z

x

y

Рис. 2. Схематическое представление расположения колец для

удобства подсчета (вид сверху).

на поверхности полусферы на расстоянии ρ от оси Z.

В расчетах использовалось ограничение на максималь-

ное число рассеяний n = 3 · 105 при общем числе фото-

нов Nph = 106.

В биомедицинской оптике часто применяется приве-

денный коэффициент рассеяния µ′
s = (1− g)µs , где g —

средний косинус угла рассеяния. Для моделирования

использовались значения из табл. 1.

Целью моделирования является определение зависи-

мости логарифма интенсивности log10 J(ρ) от радиаль-

ного расстояния ρ. Верхняя граница по ρ выбрана

равной 40mm, поскольку на больших расстояниях ин-

тенсивность снижается более чем на 10 порядков по

сравнению с центральной областью (ρ = 0).

При регистрации обратного рассеяния учитывалось,

из какого кольцевого детектора был
”
вылет“ фотона.

На рис. 2 показана схема расположения кольцевых

зон регистрации. Эта схема позволяет агрегировать

статистику по зонам в пределах определенных радиусов.

Гипотеза заключается в том, что при достаточно боль-

ших радиусах модель с кривизной слоев должна давать

результаты, приближенные к случаю плоских слоев. Для

проверки этого предположения были смоделированы

различные конфигурации среды.

Для определения границ применимости используемой

модели проведено моделирование однослойной системы,

состоящей из мозговой ткани, при различных значениях

параметра анизотропии рассеяния g . В качестве крите-

рия применимости модели использовано условие откло-

нения интегральной интенсивности обратного рассеяния

не более чем на 10% относительно базового значения:

|J/J0 − 1| < 10%, где J — интегральная интенсивность

при заданном значении параметра g , а J0 — значение

при g = g0 = 0.9. Результаты моделирования представ-

лены на рис. П10. Они демонстрируют устойчивость

модели в диапазоне значений параметра анизотропии

g ∈ [0.85; 0.92].

5.1. Моделирование для двухслойной биоткани

Из рис. П1,П2 можно утверждать, что выдвинутая

гипотеза оказалась верна. Отличия есть только при

больших ρ, но их можно объяснить случайными причи-

нами. Далее выясним, на каких радиусах плоские слои и

полусферы не отличаются. Смоделируем три ситуации:

1. Плоские слои с толщиной T = 150mm.

2. Сферические слои с радиусом Rmax = 150mm.

3. Сферические слои с радиусом Rmax = 80mm.

В ходе моделирования было выяснено, что ни один

фотон из 106 не рассеялся ниже 150mm. В связи

с этим мы будем рассматривать плоские слои с толщи-

ной T = 150mm. Рассмотрим рассеяние при различных

толщинах слоя A(черепа).
Как видно из рис. П1, П2, различий практически нет,

т. е. мы можем приближенно рассматривать сферические

слои, как плоские.

5.2. Сравнение результатов моделирования
рассеяния в системах с плоскими
и сферическими слоями

Одной из ключевых задач данной работы является

исследование влияния кривизны полусферической моде-

ли головы на интенсивность обратного рассеяния. Для

этого необходимо определить, начиная с какого радиуса

головы сферическую модель уже нельзя приближенно

считать плоской.

Для анализа рассмотрим однослойную модель из кост-

ной ткани (слой A) при различных радиусах Rmax. Радиус

будет постепенно уменьшаться от 80mm до 10mm.
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Rmax

Rmax

z

k (0, 0)–Rmax

R = 80 mm R = 75 mm

x

Рис. 3. Схематическое сравнение моделей с плоскими и

сферическими слоями.

Таблица 2. Коэффициенты поглощения µa (mm−1) и приве-

денные коэффициенты рассеяния µ′
s (mm−1) для СМЖ при

различных длинах волн

Длина волны, λ

Ткань 750 nm 850 nm 950 nm 1050 nm

µa µ′
s µa µ′

s µa µ′
s µa µ′

s

СМЖ 0.002 0.001 0.004 0.001 0.039 0.001 0.016 0.001

Анализ приведенных графиков позволяет сделать вы-

вод, что влияние кривизны на интенсивность обрат-

ного рассеяния становится заметным при радиусах

Rmax ≤ 40mm. При больших радиусах геометрия слоя

может быть приближенно рассмотрена как плоская.

На рис. 3 представлена схематическая иллюстрация

различий между моделями с плоскими и сферическими

слоями.

Согласно данным [32], в среднем в голове человека

содержится около 100−150ml крови. При травматиче-

ском попадании крови в СМЖ различают три степени

тяжести в зависимости от объема крови:

• Легкая — Vblood ≤ 50ml,

• Средняя — 50 < Vblood ≤ 100ml,

• Тяжелая — Vblood > 100ml.

Рассмотрим, как наличие крови в слое СМЖ влияет

на интенсивность обратного рассеяния. Для этого ис-

пользуются соответствующие значения оптических ко-

эффициентов поглощения µa и приведенного коэффици-

ента рассеяния µ′
s для крови [11].

6. Влияние радиуса кривизны модели
на результаты расчетов
в четырехслойной модели

Рассмотрим расширенную модель, включающую четы-

ре слоя: кожу (A), череп (B), СМЖ (C) и мозг (D).
Ниже представлены результаты моделирования зависи-

мости интенсивности обратного рассеяния лазерного

излучения от расстояния ρ между точкой регистрации

и осью Z.

Дополнительно проанализируем влияние наличия кро-

ви в СМЖ, что может возникать, например, при

черепно-мозговой травме.

Будем считать, что:

• слой A: область Rmax ≥ r > RA;

• слой B : область RA ≥ r > RB ;

• слой C : область RB ≥ r > RC ;

• слой D: область RC ≥ r > 0.

Тогда функция коэффициента ослабления µ(r) задает-

ся следующим образом:

µ(r) =







































µA, Rmax ≥ r > RA,

µB , RA ≥ r > RB ,

µC , RB ≥ r > RC ,

µD, RC ≥ r > 0.

(26)

Путь фотона и его взаимодействие со средой зависят

от оптических характеристик каждого слоя, через кото-

рый он проходит между событиями рассеяния.

Параметры анизотропии g для различных тканей

приняты равными:

• gA = 0.9 — кожа [2];

• gB = 0.9 — кость [22];

• gC = 0.98 — СМЖ [33];

• gD = 0.9 — мозг [34].

На рис. 4 общее расстояние от начальной точки до

точки j-го рассеяния AE включает последовательные

участки: AE = AB + BC + CD + DE . Используя коорди-

наты точки рассеяния E(xE , yE , z E) и заданные значения

границ слоев, можно определить длины этих отрезков

аналогично формулам (21), (22).
Как и в случае двухслойной модели, при расчетах

учитывается экспоненциальное ослабление излучения в

соответствии с законом Бугера−Ламберта−Бера.

Моделирование проводилось аналогично двухслойной

системе. Число разрешенных событий рассеяния со-

ставляло n = 3 · 105, а общее количество фотонов —

Nph = 106 .
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Рис. 4. Схематическое представление расчета l
(i)
j в случае

четырех слоев.

Особое внимание уделено сценарию, при котором

кровь проникает в слой СМЖ. В этом случае коэффици-

ент ослабления µ для слоя C пересчитывается с учетом

процентного содержания крови:

µC = (1− α)µСМЖ + αµкровь,

где α — доля крови в объеме СМЖ.

Поскольку, как показано в разд. 3, результаты моде-

лирования для Rmax = 80mm и Rmax = 150mm практи-

чески совпадают, в дальнейшем используется значение

Rmax = 80mm, что соответствует среднему радиусу го-

ловы взрослого человека. Толщины слоев A, B и C в

расчетах принимались равными 3, 7 и 2mm соответ-

ственно.

На рис. П8 и П9 показано, что присутствие крови

в СМЖ существенно снижает интенсивность обратного

рассеяния на расстояниях более 20 mm от точки входа

излучения. Это обусловлено тем, что на малых рас-

стояниях основной вклад в обратное рассеяние вносят

верхние слои головы, тогда как на больших расстояниях

вклад от внутренних и внешних слоев становится сопо-

ставимым.

Для оценки пороговой чувствительности модели бы-

ли проанализированы различные концентрации крови

в СМЖ. Результаты показали, что при содержании

крови более 10% происходит заметное изменение ин-

тенсивности обратного рассеяния, особенно на рассто-

яниях более 30mm от точки входа. Это открывает

перспективу применения метода для неинвазивного об-

наружения внутричерепных кровоизлияний по скорости

спадания интенсивности обратно рассеянного лазерного

излучения с ростом расстояния между детектором и

точкой входа луча. Однако в настоящий момент авторам

неизвестно о реализации подобных подходов в практике

неинвазивной диагностики.

7. Заключение

Проведено численное моделирование интенсивности

обратного рассеяния инфракрасного лазерного излуче-

ния для биологических тканей, представленных в виде

двухслойной и четырехслойной случайно-неоднородной

среды. Рассмотрены два геометрических приближения:

модель плоских слоев конечной толщины и модель

полусферических слоев, имитирующих форму головы

человека. Модель не учитывает вариации толщины слоев

кожи и кости, которые зависят от анатомического участ-

ка головы и возраста человека. Также не принимается

во внимание различие в пигментации кожи, способ-

ное существенно повлиять на результаты моделирова-

ния.

Точность вычисляемых параметров контролировалась

по устойчивости численных значений при увеличении

объема выборки. При объеме выборки равном 106 интен-

сивность обратного рассеяния сохраняет стабильность

с точностью не менее четырех значащих цифр. Однако

для обеспечения сопоставимой точности с остальны-

ми результатами продемонстрированные на рис. П8, П9

данные могут потребовать увеличения объема выбор-

ки на два.три порядка. Тем не менее даже при сни-

женной точности полученные зависимости позволяют

достоверно оценить характер изменений исследуемых

величин.

Основное внимание уделено двухслойной

модели
”
череп−мозг“ и четырехслойной модели

”
кожа−череп−СМЖ−мозг“. Исследовано влияние

кривизны модели головы на характеристики обратного

рассеяния.

Результаты моделирования показывают, что кривиз-

на оказывает существенное влияние на интенсивность

обратного рассеяния при радиусах регистрации ме-

нее 40mm. При больших расстояниях отклонения ста-

новятся пренебрежимо малыми, что позволяет исполь-

зовать упрощенную модель с плоскими слоями без

значительной потери точности.

Дополнительно рассмотрено влияние наличия крови

в СМЖ в контексте моделирования внутричерепной

травмы. Показано, что при объемной концентрации

крови в СМЖ более 10% наблюдаются существенные

изменения в характеристиках обратного рассеяния. Это

может быть использовано для неинвазивной диагностики

внутричерепных повреждений и геморрагий.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.
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Рис. П1. Зависимость интенсивности обратного рассеяния в двухслойной модели череп (A) и мозг (B) от расстояния

источник−приемник. Толщина слоев в случае плоских Tfull = 150mm, в случае сферических слоев Rmax = 150mm. Значения

толщины слоя TA = 3mm (a) и TA = 5mm (b). � — сферические слои, • — плоские слои.
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Рис. П2. Зависимость интенсивности обратного рассеяния в однослойной модели из костной ткани (a) и мозга (b) от расстояния

источник−приемник. Толщина плоских слоев равна Tfull = 150mm, радиус сферических слоев Rmax = 150mm: � — сферические

слои, • — плоские слои.
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Рис. П3. Зависимость интенсивности обратного рассеяния в

однослойной модели сферических слоев (Rmax = 150mm) от

расстояния источник−приемник: � — костная ткань, • — мозг.
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Рис. П4. Зависимость интенсивности обратного рассеяния в

двухслойной модели череп (A) и мозг (B) от расстояния

источник-приемник для толщины слоя T (A) = 3mm в трех

случаях: � — Rmax = 80mm, • — Rmax = 150mm, N —

T = 150mm.
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Рис. П5. Зависимость интенсивности обратного рассеяния в

двухслойной модели череп (A) и мозг (B) от расстояния

источник−приемник для толщины слоя T (A) = 5mm в трех

случаях: � — Rmax = 80mm, • — Rmax = 150mm, N —

T = 150mm.
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Рис. П6. Зависимость интенсивности обратного рассеяния

в полусфере из костной ткани от расстояния

источник−приемник при различных радиусах: � —

Rmax = 150mm, • — Rmax = 80mm, N — Rmax = 60mm,

H — Rmax = 40mm.
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Рис. П7. Зависимость интенсивности обратного рассеяния

в полусфере из костной ткани от расстояния

источник−приемник при различных радиусах: � —

Rmax = 150mm, • — Rmax = 40mm, N — Rmax = 30mm,

H — Rmax = 20mm, � — Rmax = 10mm.
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Рис. П8. Зависимость интенсивности обратного рассеяния в

четырехслойной модели: кожа (A), череп (B), СМЖ (C),
мозг (D) от расстояния источник-приемник при различной

концентрации крови в СМЖ: � — плоские слои (0%), • —

полусферические слои (0%), N — плоские слои (100%), H —

полусферические слои (100%).
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Рис. П9. Зависимость интенсивности обратного рассеяния в

четырехслойной модели: кожа (A), череп (B), СМЖ (C),
мозг (D) от расстояния источник-приемник при различной

концентрации крови в СМЖ: � — 0%, • — 10%, N — 50%.
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Рис. П10. Зависимость отклонения интегральной интенсивно-

сти обратного рассеяния от ключевого значения J0(g) = J(g0),
где g0 = 0.9, в однослойной системе, состоящей из мозговой

ткани, при различных значениях параметра анизотропии g .

Изображены три кривые для различных значений кривизны

поверхности.
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