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The Development of a Synthetic Method for Planetary Object Recognition

Based on Neural Networks
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The development of a synthetic method for planetary object recognition based on the integration of two

architectures, Mask R-CNN and the convolutional neural network (CNN) U-Net, is presented. The proposed

method was verified on lunar craters of various categories selected from images obtained by modern satellite

missions. Object recognition is performed using criteria such as the ratio of stratigraphic characteristics,

morphological features, and optical structure.
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Introduction

Machine learning methods and neural networks (NN)
are actively used in modern scientific studies of complex

systems, which include the surfaces of celestial bodies [1].
In this paper, we have developed a synthetic method for

detecting and studying objects on the surface of planets

and their moons. The essence of the synthetic method is

to combine two Mask R architectures-CNN and (CNN)
UNET. The synthetic method allows both to expand the

existing list of studied objects and to categorize them

according to the specified morphological and planetary

parameters.

1. Research methods

Machine learning is built in Ref. [2,3] using the convo-

lutional neural network (CNN) UNET. This approach has

demonstrated high efficiency in identifying a large number

of craters. At the same time, the architecture (Mask

R-CNN) allows for intelligent indication of objects with

a selection of morphological features. There are some

differences between the methods described above:

1) UNET is based on training a system on large amounts

of data, where features are determined and optimized

independently. Morphological parameters are entered by

experts in Mask R-CNN, but the amount of training material

can be optimized for a specific task.

2) UNET automatically adapts to diverse categories of

data. For example, UNET can be applied to other planets.

It allows detecting craters of different scales, including

objects with complex shapes that do not meet classical

morphological criteria (for example, craters degraded due to

erosion or craters with a broken structure). Mask R-CNN

operates on pre-defined criteria and does not go beyond

them.

3) The UNET architecture is able to scale to analyze

large amounts of data, process large images, and find new

objects in a single iteration. The Mask R-CNN architecture

processes each object individually, so it fetches more slowly.

4) The UNET system automatically determines the mor-

phology of the crater, taking into account the small details.

Mask R-CNN is more focused on matching predefined

morphological features.

Considering all of the above, it can be concluded that

the UNET architecture allows you to increase the analyzed

system by including new objects, while Mask R-CNN can

select those objects from the entire set that meet certain

characteristics. At the same time, the UNET system gen-

erates identification features independently without proper

monitoring, since it is focused specifically on searching for

new craters, rather than on selecting certain parameters

from an existing set of objects. Thus, the synthetic method

allows you to identify the desired objects in two stages.

In the first case, the UNET architecture is used, on the

basis of which new objects are identified and located, for

example, craters [4]. During the second stage, a selection is

made from the obtained set of those objects that specifically

satisfy the characteristics entered in advance by the expert.

2. Results

This method was verified on optical images of the lunar

surface obtained during the
”
LRO“ and

”
Kaguya“ missions.

Data obtained by the
”
Kaguya“ and

”
LRO“ missions are

used in this paper for verification [5–7]. It should be

noted that the accuracy of obtaining spatial coordinates

from space topographic survey data depends on the scale
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Figure 1. LDTM in the range of ±60◦ in latitude with a resolution ∼ 59m per pixel and height accuracy of ∼ 3−4m, based on data

from LRO (LOLA) and SELENE Kaguya [7].

Figure 2. LDTM image after inversion.

and parameters of the images being processed, as well as

the methods of their photogrammetric processing. It is

possible to say that the accuracy of topographic surveys

directly depends on the resolution of the images, which is

expressed in metric unit per pixel. The method developed

in this paper solves the problem of image classification.

The training of the analytical system of the method was

performed on a training sample from images obtained by

satellite missions. The method was tested on a lunar digital

terrain model (LDTM) in the range of ±60◦ in latitude

with a resolution of ∼ 59m per pixel and heigh accuracy of

∼ 3−4m, based on data from LRO (LOLA) and SELENE

Kaguya [7] (fig. 1). Fig. 2 shows an inversion of the original

digital relief of the Moon model for the selected area of the

digital model.

The accuracy provided by this approach was assessed

visually. When training the NN model, a fragment of the

digital map was manually selected, and the most character-

istic crater boundary was highlighted in the selected area

(Fig. 3, a). Based on such a training model, the software

system learned how to search for identical objects in satellite

images. The training set included images obtained by LRO

(NASA), divided into fragments of a relatively small size

(125 × 125 px) in the amount of about nine hundred pieces.

Using the original LRO image size 1800 × 950 px, the NN

is able to recognize up to 200 craters in less than 3min.

On average, model training lasts 40 epochs (iterations), the

duration of each is 1 h. During one epoch, the image is

divided into separate tiles (batches), which are analyzed

using NN. Next, the value of the NN activation function

(AF) (based on gradient descent) is determined. When

passing through one epoch, the weights of the observations

are approximated. If there are few epochs, then the NN

becomes undertrained, and if there are many epochs, it

becomes overtrained. In the latter case, the NN begins to

identify patterns during training that are actually absent. The

optimal epoch value includes the
”
cut-off function“ (COF).

In this case, a diagram of AF values is constructed, and if

the values do not match the last one, the training procedure

is terminated. In practice, a pre-formed AF is initially taken

and a random number of epochs is taken, and after the COF,

the formed AF value corresponding to a smaller number of

epochs is already taken. Fig. 3, b shows a machine sample of

craters on a digital model fragment accepted for processing.

The discrepancy between the manual classification option

and the machine classification turned out to be around

4 px. The scale and coordinates of the objects were not
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a b

Figure 3. Images with manual selection of craters (a), b — with machine.

Quantitative results of NN data processing

Criterion Value (range of values) of criterion

pCNNR 53% < pCNNR < 99%

P 62% < P < 98%

F1s 77%

determined precisely at this stage, the key aspects here were

the image itself and how the NN would capture this image.

The main criteria for the operation of NN — Post-CNN

Recall (pCNNR), Precision (P), F1-score (F1s) — for the

data set used are presented in the table.

In the future, it is planned to explore the objects

included in our catalog of lunar craters with accurate se-

lenocentric dynamic coordinates, registered with Rospatent

RU 2019620426 dated 18.03.2019.

Conclusion

Currently, we used optical images for the following

reasons:

1) Many more maps, crater catalogs, and training samples

have been created for optical images;

2) there is no coherent
”
grainy“ noise characteristic of

radar data in optical images;

3) For many missions, optical cameras have better spatial

resolution compared to radars;

4) Computer vision methods (CNN, segmentation, classi-

fication) are traditionally better developed for RGB images.

But in further research, there are plans to further train the

model on other types of data (for example, radar images).

It should be noted that sampling using NN is not always

ideal, as there is a problem of under-training of the model.

At the same time, there are structures that are missing from

the sample, which indicates that the NN understands what

they are trying to teach it. The discrepancy between manual

and machine classification can be visually determined by

2 px on average. At the same time, there is a problem of

detecting small craters that are difficult to identify due to

pixelation. If the crater is less than 3m in radius, it will

be difficult to distinguish it. In order to obtain universal

NN, a number of conditions must be met: images with

optimal resolution should be used; the maximum number of

objects should be analyzed in the images, and the images

involved in the training should differ in contrast, the angles

at which the lunar surface is photographed, and the number

of objects in the image. In future work, it is planned to

use the Digital Selenocentric Dynamic Catalog (DSDC) of

optical observations of the
”
Clementine“,

”
Kaguya“,

”
LRO“

and
”
Apollo“ missions of the visible and reverse sides of

the Moon, both freely available and obtained during joint

research.

It should also be noted that the surface of the Moon was

studied as part of the work, but the developed method is

planned to be used on such celestial bodies as Mars, Cerrera

and Titan in the future, the relevant work has already begun,

the authors have topographic data from the missions
”
Mars

Global Surveyor“,
”
Dawn“ and

”
Cassini“, as well as sets of

images of the surface of the listed celestial bodies.
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