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The Development of a Synthetic Method for Planetary Object Recognition

Based on Neural Networks
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The development of a synthetic method for planetary object recognition based on the integration of two
architectures, Mask R-CNN and the convolutional neural network (CNN) U-Net, is presented. The proposed
method was verified on lunar craters of various categories selected from images obtained by modern satellite

missions.
morphological features, and optical structure.

Object recognition is performed using criteria such as the ratio of stratigraphic characteristics,
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Introduction

Machine learning methods and neural networks (NN)
are actively used in modern scientific studies of complex
systems, which include the surfaces of celestial bodies [1].
In this paper, we have developed a synthetic method for
detecting and studying objects on the surface of planets
and their moons. The essence of the synthetic method is
to combine two Mask R architecturessCNN and (CNN)
UNET. The synthetic method allows both to expand the
existing list of studied objects and to categorize them
according to the specified morphological and planetary
parameters.

1. Research methods

Machine learning is built in Ref. [2,3] using the convo-
lutional neural network (CNN) UNET. This approach has
demonstrated high efficiency in identifying a large number
of craters. At the same time, the architecture (Mask
R-CNN) allows for intelligent indication of objects with
a selection of morphological features. There are some
differences between the methods described above:

1) UNET is based on training a system on large amounts
of data, where features are determined and optimized
independently. Morphological parameters are entered by
experts in Mask R-CNN, but the amount of training material
can be optimized for a specific task.

2) UNET automatically adapts to diverse categories of
data. For example, UNET can be applied to other planets.
It allows detecting craters of different scales, including
objects with complex shapes that do not meet classical
morphological criteria (for example, craters degraded due to
erosion or craters with a broken structure). Mask R-CNN

operates on pre-defined criteria and does not go beyond
them.

3) The UNET architecture is able to scale to analyze
large amounts of data, process large images, and find new
objects in a single iteration. The Mask R-CNN architecture
processes each object individually, so it fetches more slowly.

4) The UNET system automatically determines the mor-
phology of the crater, taking into account the small details.
Mask R-CNN is more focused on matching predefined
morphological features.

Considering all of the above, it can be concluded that
the UNET architecture allows you to increase the analyzed
system by including new objects, while Mask R-CNN can
select those objects from the entire set that meet certain
characteristics. At the same time, the UNET system gen-
erates identification features independently without proper
monitoring, since it is focused specifically on searching for
new craters, rather than on selecting certain parameters
from an existing set of objects. Thus, the synthetic method
allows you to identify the desired objects in two stages.
In the first case, the UNET architecture is used, on the
basis of which new objects are identified and located, for
example, craters [4]. During the second stage, a selection is
made from the obtained set of those objects that specifically
satisfy the characteristics entered in advance by the expert.

2. Results

This method was verified on optical images of the lunar
surface obtained during the ,,LRO and ,,Kaguya“ missions.
Data obtained by the ,Kaguya“ and ,LRO“ missions are
used in this paper for verification [5-7]. It should be
noted that the accuracy of obtaining spatial coordinates
from space topographic survey data depends on the scale
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Figure 1. LDTM in the range of £60° in latitude with a resolution ~ 59 m per pixel and height accuracy of ~ 3—4 m, based on data

from LRO (LOLA) and SELENE Kaguya [7].

Figure 2. LDTM image after inversion.

and parameters of the images being processed, as well as
the methods of their photogrammetric processing. It is
possible to say that the accuracy of topographic surveys
directly depends on the resolution of the images, which is
expressed in metric unit per pixel. The method developed
in this paper solves the problem of image classification.
The training of the analytical system of the method was
performed on a training sample from images obtained by
satellite missions. The method was tested on a lunar digital
terrain model (LDTM) in the range of +60° in latitude
with a resolution of ~ 59 m per pixel and heigh accuracy of
~ 3—4m, based on data from LRO (LOLA) and SELENE
Kaguya [7] (fig. 1). Fig. 2 shows an inversion of the original
digital relief of the Moon model for the selected area of the
digital model.

The accuracy provided by this approach was assessed
visually. When training the NN model, a fragment of the
digital map was manually selected, and the most character-
istic crater boundary was highlighted in the selected area
(Fig. 3,a). Based on such a training model, the software
system learned how to search for identical objects in satellite
images. The training set included images obtained by LRO
(NASA), divided into fragments of a relatively small size
(125 x 125 px) in the amount of about nine hundred pieces.
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Using the original LRO image size 1800 x 950 px, the NN
is able to recognize up to 200 craters in less than 3 min.
On average, model training lasts 40 epochs (iterations), the
duration of each is 1h. During one epoch, the image is
divided into separate tiles (batches), which are analyzed
using NN. Next, the value of the NN activation function
(AF) (based on gradient descent) is determined. When
passing through one epoch, the weights of the observations
are approximated. If there are few epochs, then the NN
becomes undertrained, and if there are many epochs, it
becomes overtrained. In the latter case, the NN begins to
identify patterns during training that are actually absent. The
optimal epoch value includes the ,,cut-off function (COF).
In this case, a diagram of AF values is constructed, and if
the values do not match the last one, the training procedure
is terminated. In practice, a pre-formed AF is initially taken
and a random number of epochs is taken, and after the COF,
the formed AF value corresponding to a smaller number of
epochs is already taken. Fig. 3, b shows a machine sample of
craters on a digital model fragment accepted for processing.
The discrepancy between the manual classification option
and the machine classification turned out to be around
4px. The scale and coordinates of the objects were not
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Figure 3. Images with manual selection of craters (a), b — with machine.

Quantitative results of NN data processing

Criterion Value (range of values) of criterion
pCNNR 53% < pCNNR < 99 %

P 62% <P <98%

Fls 77%

determined precisely at this stage, the key aspects here were
the image itself and how the NN would capture this image.

The main criteria for the operation of NN — Post-CNN
Recall (pCNNR), Precision (P), Fl-score (Fls) — for the
data set used are presented in the table.

In the future, it is planned to explore the objects
included in our catalog of lunar craters with accurate se-
lenocentric dynamic coordinates, registered with Rospatent
RU 2019620426 dated 18.03.2019.

Conclusion

Currently, we used optical images for the following
reasons:

1) Many more maps, crater catalogs, and training samples
have been created for optical images;

2) there is no coherent ,grainy“ noise characteristic of
radar data in optical images;

3) For many missions, optical cameras have better spatial
resolution compared to radars;

4) Computer vision methods (CNN, segmentation, classi-
fication) are traditionally better developed for RGB images.
But in further research, there are plans to further train the
model on other types of data (for example, radar images).

It should be noted that sampling using NN is not always
ideal, as there is a problem of under-training of the model.
At the same time, there are structures that are missing from
the sample, which indicates that the NN understands what
they are trying to teach it. The discrepancy between manual

and machine classification can be visually determined by
2 px on average. At the same time, there is a problem of
detecting small craters that are difficult to identify due to
pixelation. If the crater is less than 3m in radius, it will
be difficult to distinguish it. In order to obtain universal
NN, a number of conditions must be met: images with
optimal resolution should be used; the maximum number of
objects should be analyzed in the images, and the images
involved in the training should differ in contrast, the angles
at which the lunar surface is photographed, and the number
of objects in the image. In future work, it is planned to
use the Digital Selenocentric Dynamic Catalog (DSDC) of
optical observations of the ,,Clementine”, , Kaguya“, ,,LRO“
and ,,Apollo” missions of the visible and reverse sides of
the Moon, both freely available and obtained during joint
research.

It should also be noted that the surface of the Moon was
studied as part of the work, but the developed method is
planned to be used on such celestial bodies as Mars, Cerrera
and Titan in the future, the relevant work has already begun,
the authors have topographic data from the missions ,,Mars
Global Surveyor”, ,,Dawn“ and ,,Cassini“, as well as sets of
images of the surface of the listed celestial bodies.
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