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Development of a Method for Analyzing Lunar Laser Ranging Data
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A method for analyzing modern lunar laser ranging (LLR) observations has been developed. The main elements

of the algorithm for the reduction of LLR data are considered. The features of the computational process are

described, including the determination of individual residual differences and the relationship between the theoretical

modeling of the Moon’s rotation and laser ranging, aimed at obtaining new planetophysical data.
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The time of radiation and signal registration by a laser

rangefinder is the main observed value in case of the

reduction of lunar laser ranging (LLR) [1]. Thus, the

interrelation of observations with the theory of the Moon’s

rotation is carried out through the solution of the inverse

problem. When processing LLR data, it is necessary to take

into account the fact that during the propagation of the laser

signal, the angular reflector located on the Moon and the

laser rangefinder located on the Earth’s surface change their

positions in space due to the movement of the Earth and the

Moon [2,3]. In addition, it is important to investigate many

other factors affecting the movement of celestial bodies. It

is necessary to know the exact ephemerides of celestial

bodies (at least for the solid-state model) and the tidal force

calculation model, to take into account the deflection of the

light beam due to the curvature of space-time during its

movement between the Earth and the Moon and the time

delay [4] during the passage of the signal through the Earth’s

atmosphere. All this makes the task of creating a method for

processing LLR data quite difficult even before the stages

of solving the inverse problem and the process of modeling

the effects of external effects.

Let there be three points in time: t1 — time of signal

emission, t2 — time of signal reflection from the reflector,

t3 — time of signal arrival at the station (see figure).
The Barycentric Celestial Reference System (BCRS) will

act as the basic inertial reference system, and time will

be measured in the Barycentric Dynamic Time (TDB).
In Figure B is the barycenter, S is the position of the angular

reflector on the surface of the Moon, G is the laser optical

system on Earth. It should be said that the feature of BCRS

is that the origin coincides with the barycenter of the Solar

system, i.e. the center of mass of the entire Solar system.

The time interval between the emission of a laser signal

and the reception of its reflected beam by an optical system
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Coordinate systems.

can be written as

t2 − t1 =
|lBCRS(t2) − sBCRS(t1)|

c

+ 1grav(t1, t2) + 1atm(t1, t2),

t3 − t2 =
|sBCRS(t3) − lBCRS(t2)|

c

+ 1grav(t3, t2) + 1atm(t3, t2), (1)

where 1grav is the gravitational delay, 1atm is the atmo-

spheric delay along the signal path.

2173



2174 International Conference PhysicA.SPb, 20−24 October, 2025

We will use the recommendation of the IAU (In-
ternational Astronomical Union) under the IERS 2010

(International Earth Rotation and Reference Systems Ser-

vice) convention for calculating the station and reflector

vectors [2]:

sBCRS = rE + sGCRS

(

1−
UE

c2
− Lc

)

−
1

2

(

ṙE · sGCRS

c2

)

ṙE , (2)

where rE is the position of the Earth’s center relative to the

barycenter, and sGCRS are the coordinates of the station in

the inertial geocentric celestial reference system, corrected

for the tidal and other delays, UE is the gravitational poten-

tial in the center of the Earth, without taking into account

the mass of the Earth, Lc = 1.48082686741 · 10−8 is the

relativistic parameter. The coordinates of the stations can

be found as follows:

SGCRS = RT2C(STRS + 1pole + 1solid + 1ocean), (3)

where RT2C is the rotation matrix from the terrestrial

Reference system TRS (Terrestrial Reference System),
which rotates with the Earth, in GCRS (Geocentric Celestial
Reference System), the vector STRS consists of three

components of the station position, 1 are corrections for

station coordinates resulting from pole motion, solid-state

and oceanic tides.

Similar equations can be written to obtain the coordinates

of the reflectors:

lBCRS = rM + lLCRS

(

1−
UM

c2

)

−
1

2

(

ṙM − lLCRS

c2

)

ṙM ,

lLCRS = RL2C lPA + 1
(E)
solid moon + 1

(S)
solid moon′ , (4)

where lLCRS is the coordinate vector of the reflectors in

the inertial (non-rotating) selenocentric coordinate system

(where LCRS is the Lunar Celestial Reference System),
rM is the barycentric vector of the center of the Moon,

UM is the gravitational potential without taking into account

the mass of the Moon, RL2C is the matrix of transformation

from a rotating reference frame to LCRS, lPA is the vector

of coordinates of stations in the reference frame associated

with the main axes, 1 is the tidal addition from the Earth

and the Sun. The formula for the tidal delay can be written,

according to the IAU IESR2010 convention, as

1solidmoon =
µAR4

M

µMr3MA

[

h2

2
(3(rMA · l)2 − 1)rMA

+ 3l2(rMA · l)(rMA − (rMA · l)l)

]

, (5)

where h2, l2 are the tidal Love’s (Shida) numbers,

l = RL2C lPA is a unit vector in the LCRS inertial coordinate

system (the carriage symbol indicates the unit length of

the vector), vector rMA = rA − rM is the relative distance

between the Moon and the body that creates the tide (A is

the Earth or the Sun), RL2C is the rotation matrix describing

the physical libration of the Moon.

It should be noted that the time of sending the signal is

given in the UTC coordinated Universal time scale, however,

the TDB scale is used in our calculations. To convert the

time, we will use a data set called C04 [4], which describes

unmodeled effects at the celestial pole. This set includes the

coordinates of the earth’s pole, the correction to the celestial

pole, and the differences UT1−UTC in one-day increments.

To obtain the coordinates of the celestial pole, we will

use the model laid down by the IAU standard in the SOFA

software package. It is necessary to download the average

longitudes of the planets of the Solar system for the program

to work. Tables of precession according to the IAU 2006

model and nutation according to the IAU 2000A model are

attached in the program code. The time point is set using

the following formula to increase accuracy:

T = ((DATE1− DJ00) + DATE2)/DJC, (6)

where DJC is 36525. The program returns the two

components of the celestial pole in radians.

If a correction from the IERS C04 solution [5] is added

to the obtained components, then the true (instantaneous)
values of the celestial pole can be obtained. To obtain the

coordinates of the Earth’s pole, it is necessary to calculate

intra-day fluctuations caused by tides from the ocean,

libration effects, and additional fluctuations of the UT1 scale.

After receiving all the corrections, the rotation matrix

RT2C iau C2TXY can be calculated from the SOFA [6]
software package. The input receives times in two different

scales — in TT (the sum of two times TTA+TTB) and

in UT1 (the sum of UTA+UTB), single components of

the celestial and terrestrial poles are also fed to the input.

A matrix of dimension 3× 3 can be obtained at the output,

which allows changing the geocentric for the Earth reference

system. An inverse or transposed matrix is needed for our

purpose.

When using the Earth’s reference system, the station

components must be adjusted for tides, since the system

is built in such a way as not to take into account the

instantaneous values of the displacement points. First cor-

rection — Earth’s pole shift 1pole . It is also calculated based

on IAU,IERS 2010, where the correction is specified in the

geodetic coordinate system, which should be converted to

the Cartesian coordinate system.

Sr = −33 sin(2θ)(m1 cos(λ) + m2 sin(λ));

Sθ = −9 cos(2θ)(m1 cos(λ) + m2 sin(λ));

Sλ = 9 cos(θ)(m1 cos(λ) − m2 sin(λ)), (7)

where the symbol m indicates the difference between the

coordinate position of the Earth’s pole, according to CO4,

and the position set in IERS 2010.
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The solid-state tides 1tidal to the stations are calculated

based on the program developed in Ref. [7]. When using

this program, the coordinates of the stations, the Sun, and

the Moon in the geocentric system are entered, as well as

the value of the observation time. The program returns

the displacement vector of the station due to lunar and

solar tides. Oceanic tides 1ocean are calculated based on

a program using the FES2012 tidal ocean model. Next,

it remains to take into account the last two corrections —
gravitational 1grav and atmospheric 1atm. To account for

the atmospheric delay, the program [8] is used, where the

latitude and longitude of the observation site are entered

at the input, and then, based on the temperature and the

angle at which the laser signal was released (adjusted for

compression), the compression function is calculated. The

angle can be found by the formula:

position =
position

1− f (2− f )
, (8)

TEA = arcsin(cos(position, direction)), (9)

where position is the coordinate vector of the stations, direc-

tion is the direction to the reflector, f is the compression of

the Earth. Based on this compression function, you can use

the program [5], which inputs geodetic latitude, height above

the ellipsoid, surface pressure, laser wavelength, and water

vapor pressure to calculate the zenith delay (in meters),
which must be divided by the velocity to obtain a correction

in units of time.

The physical meaning of the gravitational delay is the

curvature of space [9], which, in turn, leads to a time delay

of the signal. It is necessary to pay attention to the fact that

this delay should be calculated for two time segments: when

the signal moves from the Earth to the Moon and when the

signal moves from the Moon to the Earth. The distance

from the disturbing body to the trajectory is chosen in the

following formula as the minimum during calculations. If

this factor is not taken into account, a negative value will

appear in the logarithm:

c(t2 − t0) = R20 +
∑ 2GMA

c2
ln

R2A + R0A + R20

R2A + R0A − R20

+
8G2M2

S

c4

R20

R2
20 − (R2S + R0S)2

, (10)

c(t0 − t1) = R01 +
∑ 2GMA

c2
ln

R1A + R0A + R01

R1A + R0A − R01

+
8G2M2

s

c4

R01

R2
01 − (R1S + R0S)2

. (11)

This completes the process of describing the laser location

processing algorithm.

In conclusion, we will give a brief description of the

results obtained Ref.[1], the methodology of which became

the basis of our research, and the capabilities of our

proposed LLR analysis algorithm. As shown in Ref. [1],

the combined use of DE430 and EPM with the IERS Con-

ventions 2010 models reduced the LLR inconsistencies to

1−3 cm. The values 2.4−2.7 cm (YAG laser, 1987−2005)
and 2.2−2.7 cm (MeO-laser, 2009−2013) were obtained

based on the analysis of the residual differences O−C from

the study in Ref. [1] for the CERGA station. Moreover,

the O−C discrepancies were reduced by fixing some of the

parameters (for example, gravity coefficients from GRAIL),
which reduced the number of parameters to be adjusted,

as well as by taking into account more accurate models of

tides (IERS vs. DE) due to the introduction of empirical

corrections (for example, additional terms in libration).
Our method, which optimizes the calculation of RT2C and

1solidmoon corrections, can further reduce systematic errors

for modern stations (Apache Point, Matera), especially

when processing short observation series where traditional

methods are less effective.

The key difference between our method is the automated

accounting of nonlinear effects in 1grav and 1atm (formulas

(8)−(11)), which is especially important for stations with

rapid changes in observation conditions (for example,

Matera). A promising direction is to adapt our method

for joint use with GRAIL data, which will allow us to refine

the parameters of the physical libration of the Moon.

The proposed method can optimize the processing of

LLR data by comprehensively accounting for various effects

and using modern models. This opens up new possibilities

for studying the physical libration of the Moon and other

planetary physical phenomena.
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