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Development of a Method for Analyzing Lunar Laser Ranging Data
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A method for analyzing modern lunar laser ranging (LLR) observations has been developed. The main elements
of the algorithm for the reduction of LLR data are considered. The features of the computational process are
described, including the determination of individual residual differences and the relationship between the theoretical
modeling of the Moon’s rotation and laser ranging, aimed at obtaining new planetophysical data.
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The time of radiation and signal registration by a laser
rangefinder is the main observed value in case of the
reduction of lunar laser ranging (LLR) [1]. Thus, the
interrelation of observations with the theory of the Moon’s
rotation is carried out through the solution of the inverse
problem. When processing LLR data, it is necessary to take
into account the fact that during the propagation of the laser
signal, the angular reflector located on the Moon and the
laser rangefinder located on the Earth’s surface change their
positions in space due to the movement of the Earth and the
Moon [2,3]. In addition, it is important to investigate many
other factors affecting the movement of celestial bodies. It
is necessary to know the exact ephemerides of celestial
bodies (at least for the solid-state model) and the tidal force
calculation model, to take into account the deflection of the
light beam due to the curvature of space-time during its
movement between the Earth and the Moon and the time
delay [4] during the passage of the signal through the Earth’s
atmosphere. All this makes the task of creating a method for
processing LLR data quite difficult even before the stages
of solving the inverse problem and the process of modeling
the effects of external effects.

Let there be three points in time: #; — time of signal
emission, , — time of signal reflection from the reflector,
t3 — time of signal arrival at the station (see figure).
The Barycentric Celestial Reference System (BCRS) will
act as the basic inertial reference system, and time will
be measured in the Barycentric Dynamic Time (TDB).
In Figure B is the barycenter, S is the position of the angular
reflector on the surface of the Moon, G is the laser optical
system on Earth. It should be said that the feature of BCRS
is that the origin coincides with the barycenter of the Solar
system, i.e. the center of mass of the entire Solar system.

The time interval between the emission of a laser signal
and the reception of its reflected beam by an optical system

Coordinate systems.

can be written as
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where A,,,, is the gravitational delay, A, is the atmo-
spheric delay along the signal path.
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We will use the recommendation of the IAU (In-
ternational Astronomical Union) under the IERS 2010
(International Earth Rotation and Reference Systems Ser-
vice) convention for calculating the station and reflector
vectors [2]:

U,
SBCRS = ’'E + SGCRS (1 - C—f - Lc)

_ % (VE 'SGCRS> i 2)

c2

where rg is the position of the Earth’s center relative to the
barycenter, and sgcrs are the coordinates of the station in
the inertial geocentric celestial reference system, corrected
for the tidal and other delays, Ug is the gravitational poten-
tial in the center of the Earth, without taking into account
the mass of the Earth, L. = 1.48082686741 - 10~% is the
relativistic parameter. The coordinates of the stations can
be found as follows:

SGCRS = RT2C (STRS + Apole + Asolid + Aocean), (3)

where Rppc is the rotation matrix from the terrestrial
Reference system TRS (Terrestrial Reference System),
which rotates with the Earth, in GCRS (Geocentric Celestial
Reference System), the vector Strs consists of three
components of the station position, A are corrections for
station coordinates resulting from pole motion, solid-state
and oceanic tides.

Similar equations can be written to obtain the coordinates
of the reflectors:

U, 1 iy —1
Iscrs = Ty + licrs (1 - —I;I) _ (MizLCRS) Far,
C 2 c

licrs = RLZClPA + A<E> + A(.S) (4)

solid moon solid moon’>

where licrs i1s the coordinate vector of the reflectors in
the inertial (non-rotating) selenocentric coordinate system
(where LCRS is the Lunar Celestial Reference System),
ry is the barycentric vector of the center of the Moon,
Uy is the gravitational potential without taking into account
the mass of the Moon, Ry,c is the matrix of transformation
from a rotating reference frame to LCRS, lp4 is the vector
of coordinates of stations in the reference frame associated
with the main axes, A is the tidal addition from the Earth
and the Sun. The formula for the tidal delay can be written,
according to the IAU IESR2010 convention, as

Ry | h
A5011'dm0on = Ha 3M [i(3(rMA : 1)2 - l)rMA
‘quMA 2
+ 3l (rMA . l) (rMA — (rMA . l)l)] s (5)
where hy, [, are the tidal Love’s (Shida) numbers,

1 = R;oclpy is a unit vector in the LCRS inertial coordinate

system (the carriage symbol indicates the unit length of
the vector), vector rys =rs —ry is the relative distance
between the Moon and the body that creates the tide (A is
the Earth or the Sun), R;5¢ is the rotation matrix describing
the physical libration of the Moon.

It should be noted that the time of sending the signal is
given in the UTC coordinated Universal time scale, however,
the TDB scale is used in our calculations. To convert the
time, we will use a data set called C04 [4], which describes
unmodeled effects at the celestial pole. This set includes the
coordinates of the earth’s pole, the correction to the celestial
pole, and the differences UT1—-UTC in one-day increments.

To obtain the coordinates of the celestial pole, we will
use the model laid down by the IAU standard in the SOFA
software package. It is necessary to download the average
longitudes of the planets of the Solar system for the program
to work. Tables of precession according to the IAU 2006
model and nutation according to the IAU 2000A model are
attached in the program code. The time point is set using
the following formula to increase accuracy:

T = ((DATE1 — DJ0O) + DATE2)/DJC, (6)

where DJC is 36525. The program returns the two
components of the celestial pole in radians.

If a correction from the IERS C04 solution [5] is added
to the obtained components, then the true (instantaneous)
values of the celestial pole can be obtained. To obtain the
coordinates of the Earth’s pole, it is necessary to calculate
intra-day fluctuations caused by tides from the ocean,
libration effects, and additional fluctuations of the UT1 scale.

After receiving all the corrections, the rotation matrix
Rryc iau_C2TXY can be calculated from the SOFA [6]
software package. The input receives times in two different
scales — in TT (the sum of two times TTA 4+ TTB) and
in UT1 (the sum of UTA +UTB), single components of
the celestial and terrestrial poles are also fed to the input.
A matrix of dimension 3 x 3 can be obtained at the output,
which allows changing the geocentric for the Earth reference
system. An inverse or transposed matrix is needed for our
purpose.

When using the Earth’s reference system, the station
components must be adjusted for tides, since the system
is built in such a way as not to take into account the
instantaneous values of the displacement points. First cor-
rection — Earth’s pole shift A,y,. It is also calculated based
on IAULIERS 2010, where the correction is specified in the
geodetic coordinate system, which should be converted to
the Cartesian coordinate system.

S, = —335in(20)(m; cos(1) + my sin(1));
So = —9cos(26)(my cos(A) + mysin(1));
S; = 9cos(0)(m; cos(1) — mysin(1)), (7)

where the symbol m indicates the difference between the
coordinate position of the Earth’s pole, according to CO4,
and the position set in IERS 2010.
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The solid-state tides A,;4,; to the stations are calculated
based on the program developed in Ref [7]. When using
this program, the coordinates of the stations, the Sun, and
the Moon in the geocentric system are entered, as well as
the value of the observation time. The program returns
the displacement vector of the station due to lunar and
solar tides. Oceanic tides A,..., are calculated based on
a program using the FES2012 tidal ocean model. Next,
it remains to take into account the last two corrections —
gravitational Ag,.,, and atmospheric A,;m. To account for
the atmospheric delay, the program [8] is used, where the
latitude and longitude of the observation site are entered
at the input, and then, based on the temperature and the
angle at which the laser signal was released (adjusted for
compression), the compression function is calculated. The
angle can be found by the formula:

position

L-f@2-r)

TEA = arcsin(cos(position, direction)), 9)

position =

(®)

where position is the coordinate vector of the stations, direc-
tion is the direction to the reflector, f is the compression of
the Earth. Based on this compression function, you can use
the program [5], which inputs geodetic latitude, height above
the ellipsoid, surface pressure, laser wavelength, and water
vapor pressure to calculate the zenith delay (in meters),
which must be divided by the velocity to obtain a correction
in units of time.

The physical meaning of the gravitational delay is the
curvature of space [9], which, in turn, leads to a time delay
of the signal. It is necessary to pay attention to the fact that
this delay should be calculated for two time segments: when
the signal moves from the Earth to the Moon and when the
signal moves from the Moon to the Earth. The distance
from the disturbing body to the trajectory is chosen in the
following formula as the minimum during calculations. If
this factor is not taken into account, a negative value will
appear in the logarithm:

2GMy . Roa+ Roa + Ry
c(ta—19) = Ry + Z z I Roa + Roa — Rao

8G*M? Ry (10)
ct R%O — (Ros + ROS)2 ’
2GMu . Ria + Roa + Ror
c(to—11) = Ro1 + In
(o =11) o Z c? Ria + Roa — Ro1
8G>M? Ro; ()

c* R} — (Ris +Ros)?

This completes the process of describing the laser location
processing algorithm.

In conclusion, we will give a brief description of the
results obtained Ref[1], the methodology of which became
the basis of our research, and the capabilities of our
proposed LLR analysis algorithm. As shown in Ref [1],
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the combined use of DE430 and EPM with the IERS Con-
ventions 2010 models reduced the LLR inconsistencies to
1-3cm. The values 2.4—2.7cm (YAG laser, 1987—2005)
and 2.2—2.7cm (MeO-laser, 2009—2013) were obtained
based on the analysis of the residual differences O—C from
the study in Ref [1] for the CERGA station. Moreover,
the O—C discrepancies were reduced by fixing some of the
parameters (for example, gravity coefficients from GRAIL),
which reduced the number of parameters to be adjusted,
as well as by taking into account more accurate models of
tides (IERS vs. DE) due to the introduction of empirical
corrections (for example, additional terms in libration).
Our method, which optimizes the calculation of Ryy¢c and
Asoliamoon corrections, can further reduce systematic errors
for modern stations (Apache Point, Matera), especially
when processing short observation series where traditional
methods are less effective.

The key difference between our method is the automated
accounting of nonlinear effects in Ag.q and Ay, (formulas
(8)—(11)), which is especially important for stations with
rapid changes in observation conditions (for example,
Matera). A promising direction is to adapt our method
for joint use with GRAIL data, which will allow us to refine
the parameters of the physical libration of the Moon.

The proposed method can optimize the processing of
LLR data by comprehensively accounting for various effects
and using modern models. This opens up new possibilities
for studying the physical libration of the Moon and other
planetary physical phenomena.
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