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Исследованы образцы, полученные методом твердофазного замещения элементов пятой группы мышьяком

в InP и фосфором в InAs в течение τ = 30 и 70min при температурах t = 585 и 655 ◦C. Согласно данным

вторичной ионной масс-спектрометрии, элементы пятой группы проникали на глубину до 100 nm, для InP

количество и глубина проникновения мышьяка при одинаковых τ и t имели различия при разных типах

легирования подложек.
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При изготовлении оптоэлектронных приборов, та-

ких как фотоэлектрические преобразователи на основе

GaAs и GaSb, остается актуальным метод создания

p−n-перехода за счет диффузии акцепторной примеси

Zn из паровой фазы в пластину n-AIIIBV [1]. Ранее

нами было показано, что аналогичным методом можно

проводить твердофазное замещение элементов пятой

группы BV в пластине AIIIBV другими элементами пятой

группы CV, обеспечивая формирование приповерхност-

ного слоя твердого раствора и тем самым получение

гетероструктуры AIIIBV
1−xC

V
x /A

IIIBV [2]. Одновременно

с твердофазным замещением можно проводить диффу-

зию легирующей примеси DII (Zn или Cd), тогда для

создания p−n-перехода следует использовать пластину

AIIIBV n-типа. Источником легирующих примесей DII и

элементов пятой группы CV могут служить растворы-

расплавы, включающие эти компоненты, при этом удоб-

но использовать растворы-расплавы вида Sn−DIIEIVCV
2 .

Основные факторы, влияющие на распределение за-

мещающих компонентов CV и диффундирующей леги-

рующей примеси в исходной пластине AIIIBV, — это

температура проведения процесса t, время выдержки τ

и давление паров замещающего компонента PC, которое

существенно зависит от t и атомной доли компонента

CV в растворе-расплаве xL
C. Также немалую роль иг-

рают качественный и количественный состав раствора-

расплава, химическая природа исходной пластины AIIIBV

и замещающего элемента CV, о чем более подробно

мы писали в [2]. В целом процессы, происходящие при

твердофазном замещении, зависят от довольно большого

количества различных факторов и не могут быть с доста-

точной точностью описаны теоретически, поэтому для

успешного изготовления приборных структур необходи-

мы соответствующие экспериментальные исследования.

В настоящей работе исследовалось твердофазное за-

мещение фосфора мышьяком в пластинах InP(001) и мы-

шьяка фосфором в InAs(001). В таблице приведены от-

личия в условиях получения исследованных в настоящей

работе образцов: тип материала AIIIBV и объемная кон-

центрация свободных электронов n в исходных пласти-

нах, а также индивидуальные условия технологического

процесса. Перед процессом твердофазного замещения

поверхность пластин подвергалась анодному окислению,

после чего окисел снимался в H2O:HF (7:1). Процессы

твердофазного замещения проводились в нагреваемом

кварцевом реакторе в атмосфере водорода. Исходные

пластины AIIIBV помещались в одну из камер в закрытой

графитовой кассете, а в других камерах размещались

растворы-расплавы, служащие источником паров эле-

ментов пятой группы CV и легирующей примеси DII, при

этом все камеры в кассете сообщались между собой.

На рис. 1, a представлены результаты измерений ме-

тодом вторичной ионной масс-спектрометрии (ВИМС)
образцов, полученных при τ = 30min и t = 585 ◦C. Как

можно видеть, количество фосфора, встроившегося в

пластины InAs (кривые 3, 4 на рис. 1, a), при выбранных

условиях на два порядка выше количества мышьяка,

встроившегося в InP (кривые 1, 2 на рис. 1, a), что

вполне объяснимо, если учесть различие в давлениях

паров фосфора и мышьяка во время соответствующих

технологических процессов. Согласно оценке, сделанной

нами в [3] на основе справочных данных [4,5], давление
паров фосфора на два порядка больше давления паров

мышьяка для величин t и xL
C, близких к тем, при

которых были получены образцы № 1−4 в настоящей

работе. За счет повышения температуры t, времени

выдержки τ и атомной доли мышьяка в жидкой фазе

xL
C (см. таблицу) для образца № 5 на основе InP удалось

увеличить количество мышьяка x в приповерхностном
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Условия технологических процессов получения образцов на основе исходных пластин AIIIBV

Номер
Исходная пластина Индивидуальные условия технологического

AIIIBV процесса

образца Материал
n, cm−3 Замещающие

t, ◦C
τ , Раствор-

xL
Cпластины элементы min расплав

1 (SPR117) InP : S ∼ 1018
Cd+As 585 30 Sn−CdGeAs2 0.05

2 (SPR118) InP : Te ∼ 1018

3 (SPR116) InAs : Sn ∼ 1018−1019 Cd+P 585 30 Sn−CdGeP2 0.08

4 (SPR119) InAs : Sn ∼ 1018−1019 Cd+Zn+P 585 30
Sn−CdGeP2 0.08

Sn−Zn3P2 0.05

5 (SPR193) InP : Fe As 655 70 Sn−InAs 0.16
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Рис. 1. Профили распределения замещающих элементов пятой группы по глубине d для образцов № 1−4 (a) и № 5 (b). Номера
кривых соответствуют номерам образцов в таблице.

слое сформировавшегося твердого раствора InP1−xAsx

как минимум на порядок (рис. 1, b).

Образцы № 1 и 2 на основе пластин InP были

получены в ходе одного технологического процесса и

находились в одной камере графитовой кассеты, т. е. t,

τ и PC для них были одинаковы. Однако исследования

методом ВИМС показали различия в распределении

мышьяка (рис. 1, a) и кадмия (рис. 2, a). Эти различия

могут быть объяснены разницей в свойствах исходных

пластин InP, которые в нашем случае легированы раз-

ными донорными примесями (см. таблицу).

Для образцов № 3 и 4 на основе пластин InAs, взятых

из одной партии, различие в распределении встроивше-

гося фосфора (рис. 1, a) может быть связано с различием

в условиях проведения технологических процессов: в

случае образца № 3 использовался только один раствор-

расплав, а в случае образца № 4 было два разных

раствора-расплава, находящихся в различных камерах

(см. таблицу), один из них служил источником паров Zn.

Как видно из рис. 2, b, профиль распределения Cd на

расстоянии 20 nm от поверхности для образцов № 3 и 4

имеет схожий характер, но на глубине более 20 nm

в образце № 4 методом ВИМС Cd нами обнаружен

не был. На рис. 2, c показан профиль распределения Zn

по толщине образца № 4. Видно, что Zn проникает на

значительную глубину (до 1.2 µm), что характерно для

данного химического элемента. Полученные таким обра-

зом в пластинах InAs приповерхностные слои твердых

растворов InPxAs1−x по своим толщинам и значениям

ширины запрещенной зоны Eg (согласно расчетам на

основе [6], их Eg = 0.5−0.7 eV) подходят на роль ши-

рокозонного оптического окна для фотоприемника на

основе материала InAs, у которого Eg = 0.354 eV.

Полученные результаты показали, что для форми-

рования приповерхностных областей твердых раство-

ров InP1−xAsx в пластинах InP с x ∼ 0.1 на глуби-

нах d = 20−40 nm необходима температура не менее

655 ◦C, повышенное содержание мышьяка в растворе-

расплаве, служащем его источником (xL
As ∼ 0.16), а

также длительное время выдержки (около часа). При-

поверхностные слои твердых растворов InPxAs1−x с

x до 0.2−0.4 в пластинах InAs на глубинах до 20 nm
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Рис. 2. Зависимость объемной концентрации c легирующих примесей от глубины d для Cd в образцах № 1, 2 на основе InP

разного типа легирования (a), для Cd в образцах № 3, 4 на основе InAs : Sn (b) и для Zn в образце № 4 на основе InAs : Sn (c).
Номера кривых соответствуют номерам образцов в таблице.

могут формироваться при более низких температурах

(около 585 ◦C), при вдвое меньших временах выдержки

и при более низком содержании фосфора в растворе-

расплаве (xL
P = 0.05−0.07).
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