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Проведено исследование температурной зависимости световых вольт-амперных характеристик кремни-

евых гетероструктурных солнечных элементов, выполненных на кремниевых подложках n- и p-типа, в

широком диапазоне температур (от −100 до +100 ◦C). Наблюдаемое различие в поведении световых вольт-

амперных характеристик объясняется особенностями энергетических зонных диаграмм гетероструктурного

солнечного элемента на кремнии.
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В последние десятилетия солнечная энергетика стала

перспективным и экологически чистым источником для

производства электроэнергии. Среди технологий солнеч-

ных элементов (СЭ) на основе кремния гетероструктур-

ные СЭ (heterojunction technology solar cells, HJT СЭ)
привлекают наибольшее внимание благодаря превосход-

ной пассивации поверхности, высоким напряжениям хо-

лостого хода и рекордным значением КПД, который при

промышленном производстве СЭ достигает 27.3% [1].
На практике в наземной солнечной энергетике для

изготовления HJT СЭ используется кремниевая под-

ложка n-типа, обеспечивающая большее значение КПД,

чем подложка p-типа. Однако использование кремние-

вых элементов в солнечных батареях для космических

аппаратов требует перехода на кремниевую подложку

p-типа, так как она менее чувствительна к радиационно-

му воздействию. Температурные режимы эксплуатации

солнечной батареи на орбите колеблются в диапазоне

от −100 до +100 ◦C, и для предсказания характеристик

солнечной батареи требуется знать поведение солнеч-

ных элементов в этом диапазоне температур.

Вольт-амперные характеристики (ВАХ) являются од-

ним из основных диагностических инструментов для

оценки фотоэлектрических характеристик и выяснения

механизмов протекания тока в СЭ [2]. Обычно иде-

альные световые ВАХ имеют прямоугольную форму,

определяемую значениями плотности тока короткого

замыкания (Jsc), напряжения холостого хода (Voc) и

коэффициента заполнения (FF), которые в совокупности
определяют значение КПД (η). Однако в реальных

условиях эксплуатации часто наблюдается неидеаль-

ное поведение, проявляющееся в искажениях кривой

ВАХ, которые служат критическими индикаторами ме-

ханизмов снижения КПД [3]. Известно [3–5], что на

кремниевых подложках n-типа в HJT СЭ наблюдает-

ся S-образная ВАХ. Причину этого эффекта связыва-

ют с особенностями энергетической зонной диаграммы

HJT СЭ на кремниевой подложке n-типа [6,7] или с

конструктивными особенностями солнечного элемента,

такими как прозрачные проводящие слои на поверх-

ности HJT СЭ [8]. Кроме того, было обнаружено, что

S-образные формы становятся менее выраженными при

повышении температуры [9], что также свидетельствует

в пользу влияния барьерного эффекта при переносе

заряда. Данные о поведении световых ВАХ в HJT СЭ

на подложках p-типа в широком диапазоне температур

до сих пор отсутствовали.

Исследованию влияния температуры на этот эффект

на образцах HJT СЭ, выполненных на подложках n- и

p-типа, посвящена настоящая работа.

Образцы HJT СЭ (рис. 1) изготавливались на под-

ложках кристаллического кремния n- или p-типа про-

водимости толщиной ∼ 125 µm, полученных методом

Чохральского, с легированием фосфором и галлием.

Концентрация носителей заряда в подложке составляла

6 1016 сm−3.

Пленки аморфного гидрогенизированного кремния

a -Si:H p- и n-типа толщиной 10−15 nm, выращенные

поверх тонкого (∼ 7 nm) буферного слоя с собственной

проводимостью (i)a -Si:H, формируют гетеропереходы на

поверхностях n- или p-типа кристаллической кремние-

вой пластины. Создание буферных слоев из аморфного
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Рис. 1. Структура образцов HJT СЭ с базой n- или p-типа.
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Рис. 2. Световые ВАХ HJT СЭ на основе подложек c-Si n-типа (а) и p-типа (b) в спектре AM0 (1367W/m2) в диапазоне

температур T от −100 до +100 ◦C. T = −100 (1), −80 (2), −60 (3), −40 (4), −20 (5), 0 (6), +20 (7), +40 (8), +60 (9), +80 (10),
+100 ◦C (11).

гидрогенизированного кремния с собственной прово-

димостью в структурах современных HJT СЭ нацеле-

но на снижение темпов поверхностной рекомбинации.

Такой технологический прием позволяет эффективно

пассивировать поверхности кремниевой пластины после

химической обработки, и в этом случае результирующие

рекомбинационные потери в HJT СЭ практически пол-

ностью определяются временем жизни носителей заряда

в подложке [10].

Исследовались образцы площадью 1 cm2, вырезанные

из HJT СЭ, изготовленных в ООО
”
НТЦ ТПТ“, без

последующей пассивации боковых поверхностей.

Температурные зависимости световых ВАХ измеря-

лись в азотном криостате при засветке коллимиро-

ванным световым потоком на импульсном имитаторе

со спектром излучения АМ0 и плотностью энергии

1367W/m2.

Экспериментальные световые ВАХ HJT СЭ на кри-

сталлических кремниевых подложках p- и n-типа пред-

ставлены на рис. 2.

Из рисунка видно, что при температурах ниже −40 ◦C

световые ВАХ образца, изготовленного на подложке

n-типа, приобретают S-образный вид, что ведет к зна-

чительному снижению коэффициента заполнения FF и

эффективности фотоэлектрического преобразования η.

Однако данный эффект отсутствует, если HJT СЭ из-

готовлен на подложке p-типа. Аналогичные экспери-

ментальные результаты для подложки n-типа уже были

описаны ранее, например, в работах [3,11].

S-образный вид световых ВАХ HJT СЭ, изготовлен-

ных на подложках n-типа, при низких температурах, на

наш взгляд, связан с особенностями энергетических зон-

ных диаграмм их полупроводниковых структур (рис. 3).
Оценки величин разрывов зон проводимости (1EC) и
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Рис. 3. Энергетические зонные диаграммы полупроводниковых структур HJT СЭ на основе кристаллических подложек n-типа (a)
и p-типа (b) при комнатной температуре. Электроны и дырки обозначены символами ⊖ и ⊕ соответственно.

валентных зон (1EV ) проводились на основе хорошо

известной модели Андерсона [12]. Расчеты выполнялись

с использованием значений сродства электронов 4.05 eV

для c-Si и 3.09 eV для a -Si:H [13].

1EV = (Eg1 − Eg2) − 1EC , (1)

где Eg1 = 1.72 eV и Eg2 = 1.12 eV — ширина запрещен-

ной зоны a -Si:H и c-Si соответственно при комнатной

температуре [13]. Для оценки ширины запрещенной

зоны тонких слоев аморфного кремния a -Si:H были

использованы сведения из работы [14].

При понижении температуры значения Eg1 и Eg2

изменяются таким образом, что их разность Eg1 − Eg2

растет [15,16], а следовательно, увеличивается и разрыв

валентных зон 1EV (T ) (1). В случае подложки n-типа

1EV = 0.45 eV при комнатной температуре. По мере

снижения T растет высота потенциального барьера

1EV (T ) > 0.45 eV для неосновных носителей заряда на

границе гетероперехода a -Si:H/(n)c-Si. При T < 40 ◦C за

счет интенсивной аккумуляции дырок в потенциальной

яме у левой поверхности подложки n-типа доля дырок,

проникающих из c-Si в a -Si:H, заметно снижается. Такое

ухудшение условий для транспорта неосновных носи-

телей заряда сквозь потенциальный барьер и вызывает

появление S-образности на ВАХ HJT СЭ с кристалличе-

скими кремниевыми подложками n-типа.

В случае подложки p-типа на границе гетероперехода

Si:H/(p)c-Si неосновные носители заряда — электро-

ны — преодолевают относительно низкий потенциаль-

ный барьер, высота которого составляет всего 0.15 eV

при комнатной температуре. Даже при низких темпе-

ратурах он не создает существенных препятствий для

транспортировки носителей заряда из подложки в слой

аморфного кремния, так как аккумуляция электронов

оказывается малозаметной. Поэтому на ВАХ HJT СЭ

с кристаллическими кремниевыми подложками p-типа

S-образность не наблюдается.

Таким образом, нами показано, что причина

S-образности световой ВАХ в HJT СЭ связана с осо-

бенностями энергетических зонных диаграмм полупро-

водниковых структур, выполненных на кремниевых под-

ложках разного типа проводимости.
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