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Предложен и экспериментально реализован новый универсальный метод синтеза упорядоченных

наноструктур из галогенидного перовскита CsPbBr3 с использованием техники наноимпринтинга. Метод

позволяет формировать протяженные по площади (до 25mm2) однородные области, содержащие два

типа перовскитных структур: упорядоченные массивы изолированных наночастиц и микрочешуйки с нано-

структурированной поверхностью. Исследование оптических свойств синтезированных образцов методом

микроспектроскопии фотолюминесценции выявило узкие резонансные пики излучения при 523 nm для

массива частиц и при 525 nm для чешуек (ширина спектральной линии на полувысоте составила 19 и

21 nm соответственно), при этом интенсивность фотолюминесценции от чешуек значительно выше, что

определяется общим объемом перовскитного материала.
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Применение материалов с уникальными оптическими

и электронными свойствами открывает новые возможно-

сти в разработке и исследованиях фотонных пассивных

и активных компонентов. К такому классу материалов

относятся галогенидные перовскиты, активно изучаемые

в последнее десятилетие [1]. Перовскитные материалы

находят применение во многих оптоэлектронных при-

ложениях, включая светодиоды [2,3], солнечные элемен-

ты [4], лазеры [5], фотодетекторы [6] и т. д. Во многом

это обусловлено их уникальными свойствами: относи-

тельно высокой подвижностью носителей заряда, длиной

свободного пробега, высоким поглощением и квантовым

выходом фотолюминесценции, возможностью регули-

ровки ширины запрещенной зоны в широком диапазоне

за счет варьирования состава [7–14]. Отметим также, что

перовскиты демонстрируют узкую спектральную линию

излучения и более широкую цветовую гамму по срав-

нению с органическими молекулами и неорганическими

квантовыми точками [15].

Синтез наноструктурированных и нанопаттернирован-

ных перовскитных материалов, включая упорядоченные

массивы нанокристаллов, является ключевым услови-

ем для управления их оптоэлектронными свойства-

ми [16,17]. Такая архитектура позволяет минимизиро-

вать потери на рассеяние и рекомбинацию носителей

заряда, увеличить эффективность вывода излучения из

активной области, что критически важно для создания

высокоэффективных и стабильных устройств нового

поколения, таких как светодиоды (PeLED), лазеры и

фотодетекторы. Существует несколько основных подхо-

дов для создания упорядоченных (паттернированных)

массивов перовскитных нанокристаллов [18]. Методы

”
сверху вниз“, такие как электронно-лучевая литогра-

фия, обеспечивают высокую точность позиционирова-

ния, но могут повреждать материал (в том числе

при химическом воздействии непосредственно резиста

и проявителей), а также являются дорогими и сложны-

ми в реализации. Отметим, что существующие методы

паттернирования перовскитов (например, электронно-

лучевая литография) часто приводят к деградации их

оптических свойств из-за химического и радиационного

повреждения. Подходы
”
снизу вверх“ на основе пори-

стых матриц не обеспечивают необходимой точности

позиционирования и контроля над морфологией. Более

популярны подходы
”
снизу вверх“, включающие исполь-

зование пористых шаблонов (например, анодный ок-

сид алюминия) и методы управляемой кристаллизации,

которые позволяют напрямую формировать плотные и

однородные массивы за счет самосборки и контролируе-

мой нуклеации в заданных областях. К последним можно

отнести методику наноимпринтинга [19,20], получившую

широкое распространение благодаря ряду преимуществ,

среди которых можно выделить высокое разрешение и

однородность, производительность и низкую стоимость,

а также относительно мягкие условия синтеза.
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Рис. 1. Схематичное изображение методики создания паттернированных перовскитных массивов.

В настоящей работе предлагается новый способ синте-

за упорядоченных наноструктурированных массивов пе-

ровскитных материалов. Представлены результаты для

CsPbBr3, являющегося стабильным при атмосферных

условиях [21]. Для этого используется методика нано-

импринтинга, основанная на физическом прессовании

(оттиске) для формирования наноразмерного рельефа.

Схема процесса синтеза образцов представлена

на рис. 1. На первом этапе формируется паттернирован-

ная полимерная матрица, рельеф которой служит нега-

тивом для последующего структурирования перовскита.

В качестве мастер-шаблона для создания этого негатива

использовалась коммерчески доступная структурирован-

ная пластина GaN/сапфир (GLO AB NanoLund), пред-
ставляющая собой массив гексагонально-периодических

нанотрапеций нитрида галлия. Период массива нанотра-

пеций составил 1µm. Шаблон помещали на дно чашки

Петри, после чего на него наливали жидкий прекурсор

полидиметилсилоксана (ПДМС). Отверждение проводи-

ли в сушильном шкафу при температуре 80 ◦C в течение

30min до полной полимеризации эластомера. ПДМС

был выбран в качестве материала мастер-шаблона для

формирования массивов перовскитных наноструктур по

ряду причин, таких как высокая эластичность, простота

формования микро- и наноструктур и совместимость

с мягким наноимпринтингом. Модуль Юнга ПДМС

составляет от 0.5 до 3MPa [22], тогда как для перов-

скита CsPbBr3 значения модуля Юнга измеряются на

уровне 17−26GPa [23]. Такая разница величин позволяет

использовать ПДМС в качестве шаблона без риска

повреждения или деформации перовскитных структур.

Получившийся мастер-шаблон отделялся от подложки

с помощью скальпеля и хранился в эксикаторе при

небольшом избыточном давлении азота. Такой спо-

соб хранения необходим для минимизации загрязнения

мастер-шаблона. Отметим, что полученные описанным

способом шаблоны являются многоразовыми и пригод-

ны к использованию не менее 50 раз.

На следующем этапе проводили подготовку ростовых

подложек. В работе использовались различные типы

поверхностей, включая покровное стекло, сапфир и

кремниевые пластины (как без покрытия, так и с ме-

таллизированными слоями Ni, Pt и др.). Все испытанные

подложки продемонстрировали применимость для син-

теза паттернированного перовскита, что подтверждает

универсальность метода для диэлектрических и ме-

таллизированных поверхностей. Далее рассматривается

синтез на платиновой пленке, осажденной термическим

напылением на низкоомную кремниевую пластину. Вы-

бор этой подложки обусловлен ее применимостью для

электрооптических измерений, так как она обеспечивает

прямое формирование электрического контакта к перов-

скитному слою. Типичный размер получаемого в ходе

работы образца составил 10 × 10mm. Перед использо-

ванием поверхность ростовой подложки обрабатывалась

в ультразвуковой ванне последовательно в деионизиро-

ванной воде, ацетоне и изопропаноле по 10min. Далее

производилась сушка образца на плитке при 150 ◦C в те-

чение 10min. На финальном этапе подготовки подложки

проводилась ее активация поверхности в кислородной

плазме (40W, 10min, 0.3mbar). Далее на поверхность

подложки наносилось 5µl свежеприготовленного 0.2М

раствора солей CsPbBr3 в диметилсульфоксиде. Раствор

CsPbBr3 изготавливался в инертной атмосфере азота

путем растворения PbBr2 (c чистотой 99.9%, Lankhit)
и CsBr (c чистотой 99.9%, Lankhit) c молярной концен-

трацией 0.2mM/ml в безводном 99.8% диметилсульф-

оксиде (Sigma Aldrich) с последующим перемешиванием

со скоростью 300 rpm в течение 12 h при температу-

ре 60 ◦C. На финальном этапе синтеза перовскита при-

готовленный мастер-шаблон и подложку с прекурсором

механически сжимали (рис. 1) и нагревали до 60 ◦C

в течение 2 h. После завершения термообработки шаб-

лон отделяли от поверхности, на которой оставались

сформированные упорядоченные массивы наноструктур

CsPbBr3.

Морфология и топография поверхности синтезирован-

ных образцов были исследованы с помощью растровой

электронной микроскопии (РЭМ) (Zeiss Supra 25) и

атомно-силовой микроскопии (АСМ) (NT-MDT Ntegra).
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Рис. 2. Морфологические исследования полученных образцов. a — РЭМ-изображение поверхности подложки со сформирован-

ными паттернированными наноструктурами CsPbBr3 (наночастицы и чешуйка (флейк)); b — участок поверхности образца с

упорядоченным массивом наночастиц CsPbBr3; c−e — отвечающие различным областям изображения a топографии поверхности

(отмечены светлыми квадратами и цифрами на РЭМ-изображении), полученные с помощью АСМ, а также соответствующие

профили поверхности.

Для АСМ-измерений использовались зонды (CSG01,
NT-MDT).

На рис. 2 представлены типичные РЭМ- и АСМ-

изображения, которые демонстрируют формирование

двух типов наноструктур из CsPbBr3. Первый тип —

упорядоченные изолированные наночастицы, синтези-

рованные в полостях мастер-шаблона и воспроизводя-

щие его гексагональную периодичность (1µm). Размер
отдельных частиц составляет ∼ 400 nm в диаметре и

∼ 250 nm в высоту. Отклонение от среднего размера

для отдельных наночастиц составило не более 10%.

Наличие выраженной огранки может указывать на их

высокую кристалличность. Второй тип получаемых об-

разцов представлял собой чешуйки (флейки) с лате-

ральным размером от 1 до 50 µm и толщиной до 1µm.

Поверхность чешуек также обладает периодическим

паттерном (периодом ∼ 1µm), но с более развитым ре-

льефом, где высота отдельных элементов относительно

чешуйки достигает ∼ 500 nm. Обратим также внимание

на то, что диаметр единичного элемента на флейке

составляет ∼ 1000 nm. По всей видимости, формирова-

ние протяженных флейков происходит из-за неплотного

прилегания мастер-шаблона к ростовой поверхности, а

также при избытке раствора прекурсора. Отметим, что

предложенная методика позволяет создавать однородные

наноструктурированные перовскитные покрытия разме-

ром до 5× 5mm.

Оптические свойства синтезированных образцов ис-

следовались методом фотолюминесцентной (ФЛ) спек-

троскопии. Спектры ФЛ всех упомянутых типов перов-

скитных образцов регистрировались при длине волны

возбуждения 365 nm (I-линия ртутной УФ-лампы). Флу-
оресцентные изображения образцов были получены с

помощью микроскопа Axio Imager A2m (Carl Zeiss) с

объективами 100× EC Epiplan-NEOFLUAR (Carl Zeiss).
Спектры ФЛ записывали с использованием оптоволокон-

ного спектрометра QE Pro (Ocean Optics), сопряженного
с указанным микроскопом в режиме флуоресценции.

Диаметр области детектирования (область сбора излу-

чения) составлял 2µm. На рис. 3 представлены спек-

Письма в ЖТФ, 2026, том 52, вып. 6
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Рис. 3. Спектры фотолюминесценции от двух типов полученных образцов CsPbBr3: 1 — от массива индивидуальных

наночастиц, 2 — от флейка. На вставках — фотографии, полученные с помощью оптического микроскопа при подсветке

образцов ультрафиолетовым излучением с длиной волны 365 nm. Выделение цветом под кривыми использовано для увеличения

контрастности рисунка.

тры ФЛ, регистрировавшиеся для участков, содержащих

массив изолированных наночастиц CsPbBr3 и отдельную

чешуйку. В обоих случаях наблюдается четкий пик ФЛ

при 523 и 525 nm (ширина на полувысоте составила

19 и 21 nm соответственно) для массива изолированных

частиц и чешуйки соответственно, причем интенсив-

ность ФЛ от чешуйки в несколько раз превышает сиг-

нал от массива наночастиц. Объяснение этого состоит

в разности объема возбуждаемого перовскита (кроме
наночастиц вклад в сигнал ФЛ дает чешуйка).

В настоящей работе успешно продемонстрирована

эффективность метода мягкого наноимпринтинга для со-

здания упорядоченных массивов наноструктур CsPbBr3.

Ключевым преимуществом предложенного подхода яв-

ляются его простота и универсальность, что важно для

интеграции в оптоэлектронные устройства. Отметим,

что результаты спектроскопии и исследования морфоло-

гии показывают стабильность структуры как минимум в

течение трех месяцев при атмосферных условиях.

Установлено, что в процессе синтеза формируются

два типа морфологически различных структур.

1. Упорядоченные массивы изолированных наноча-

стиц. Полученный массив перовскитных частиц является

хорошей моделью для изучения коллективных эффектов,

таких как супер- и гиперлюминесценция, формирование

поляритонных состояний в периодической системе, а

также для создания нанолазеров с низким порогом

накачки. Упорядоченность в данном случае критически

важна для управления модами излучения.

2. Микрочешуйки с собственной периодической

наноструктурой. Эти объекты представляют собой ги-

брид объемного кристалла и фотонного кристалла. Пе-

риодический рельеф на их поверхности может работать

как дифракционная решетка или фотонный кристалл,

эффективно выводящий излучение из активной среды.

Таким образом, данные структуры перспективны для

применения в светодиодах (PeLED) с повышенной эф-

фективностью экстракции света.

Несмотря на морфологические различия, оба типа

структур демонстрируют высокую кристалличность и

характерные узкие пики ФЛ в зеленой области спектра

(523−525 nm). При этом более интенсивное излучение

наблюдается у чешуек.

Таким образом, разработанная методика представляет

собой воспроизводимый, масштабируемый и экономиче-

ски эффективный путь для формирования упорядочен-
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ных массивов наночастиц из галогенидных перовскитов

и позволяет контролируемо создавать высококачествен-

ные паттернированные слои для приложений в нано-

фотонике и оптоэлектронике.
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