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C использованием ряда статистических методов (графиков нормальной вероятности, гистограмм функции

плотности вероятности и серии стандартных тестов на нормальность) проведен анализ соответствия

распределения прочности σ интерфейса полистирол–полиэтилентерефталат на начальных стадиях самоза-

лечивания нормальному распределению. Контактирование образцов ПС и ПЭТФ с застеклованным объемом

проводилось при температуре 74 ◦C, которая является нижним температурным пределом возникновения σ

между этими термодинамически несовместимыми полимерами. Обсуждаются выявленные особенности

соблюдения нулевой гипотезы о нормальности и дисперсия данных в зависимости от длительности контакта.
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1. Введение

Принципиально важным аспектом контактного взаи-

модействия между высокомолекулярными твердыми те-

лами является возникновение адгезионной прочности σ .

Действительно, проявление этого физического феномена

возможно лишь в том случае, если сегменты поли-

мерных цепей одного образца могут диффундировать

через интерфейс и образовывать новые межмолекуляр-

ные связи Ван-дер-Ваальса с молекулярными группами

сегментов цепей другого образца [1,2]. В результате в

сверхтонком межфазном наноразмерном слое увеличи-

вается концентрация таких связей, приходящихся на еди-

ницу площади контакта, и, как следствие, формируется

механически устойчивое адгезионное соединение (АС).
При отсутствии взаимной диффузии межповерхностное

взаимодействие обеспечивается исключительно слабыми

дисперсионными силами между электрически нейтраль-

ными молекулярными группами, действия которых явно

недостаточно для удержания полимерных образцов в

механически устойчивом контакте.

Естественно, реализация подобного сценария разви-

тия событий на молекулярном уровне возможна лишь на

расстеклованных поверхностях, когда крупномасштаб-

ное ротационно-трансляционное перемещение сегмен-

тов является активированным [1,2]. Другими словами, за-

рождение σ подразумевает активацию этой моды моле-

кулярного движения. Причем даже если объем полимера

находится в стеклообразном состоянии, сегментальный

массоперенос через интерфейс также возможен. Однако

для этого приповерхностный слой образца толщиной

порядка диаметра статистически свернутого клубка цепи

(несколько нм) должен находиться в высокоэластиче-

ском состоянии, которое должно сохраняться и на интер-

фейсе. Данный эффект наблюдается при температурах T ,

намного более низких (даже на 100K), чем температура

стеклования Tg объема полимера (T bulk
g ), если данная T

превышает Tg приповерхностного слоя (T surface
g ) [3–9].

Большинство пар химически разнородных полимеров

являются термодинамически несовместимыми [10]. По-

этому интерфейсы именно таких полимеров представ-

ляют собой наибольший интерес. К их числу относит-

ся интерфейс полистирол (ПС)−полиэтилентерефталат

(ПЭТФ). При контакте ПС и ПЭТФ происходит вза-

имное отталкивание молекулярных групп различно-

го химического строения, что, на первый взгляд, не

позволяет сформировать механически устойчивое АС

ПС−ПЭТФ. Тем не менее, в силу минимизации общей

поверхностной энергии системы за счет двукратного

уменьшения общей площади ее свободной поверхности

(четыре поверхности двух образцов до контакта и две

поверхности после приведения образцов в контакт)
адгезия реализуется благодаря активированию процесса

самозалечивания интерфейса. Его движущей силой яв-

ляется термодинамически выгодное устранение разрыва

сплошности среды в зоне контакта за счет взаимной

сегментальной диффузии [1]. Кроме того, существова-

ние ПЭТФ как в аморфном, так и в частично кри-

сталлическом состоянии представляет собой интерес

с точки зрения влияния фактора кристалличности на

характер статистического поведения на интерфейсах

аморфный ПС−кристаллический ПЭТФ и аморфный

ПС−аморфный ПЭТФ.

Одним из наиболее широко используемых подходов

для анализа степени завершенности самозалечивания
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Результаты тестов на нормальность для распределений адгезионной прочности интерфейса ПС−ПЭТФ

t, min Тип теста
Статистика Параметр Параметр

теста нормальности p p ≥ 0.05∗

30 Колмогорова–Смирнова 0.15256 1 +
240 0.13563 1 +

30 Шапиро–Уилка 0.9311 0.45875 +
240 0.95378 0.71325 +

30 Лиллиефорса 0.15256 0.2 +
240 0.13563 0.2 +

30 Андерсона–Дарлинга 0.33489 0.43108 +
240 0.2098 0.80635 +

K-квадрата Д’Агостино:

30 Обобщенный 3.42281 0.18061 +
30 Асимметрия пика 1.32722 0.18444 +
30 Яркость пика 1.28891 0.19743 +

240 Обобщенный 0.43868 0.80305 +
240 Асимметрия пика 0.43939 0.66038 +
240 Яркость пика −0.4956 0.62018 +

Пр име ч а н и е .
”
+“ в последнем столбце означает, что гипотеза о нормальности не может быть отвергнута.

интерфейсов полимер–полимер является установление

закономерностей кинетики эволюции среднеарифмети-

ческого значения σ (σav) от времени контакта t . Однако

для лучшего понимания механизмов самозалечивания и

разрушения таких интерфейсов весьма информативным

является и выявление статистических закономерностей

распределения σ [11–15]. В данном контексте интерфейс

ПС−ПЭТФ изучался только в рамках модели Вейбул-

ла [11,16]. Однако анализ соответствия распределения σ

наиболее часто используемому нормальному распреде-

лению [17–19] для этого интерфейса, в особенности в

условиях возникновения σ , не проводился.

Таким образом, целью настоящей работы является вы-

яснение соответствия статистического распределения σ

для аморфного интерфейса ПС−ПЭТФ при возникнове-

нии σ нормальному распределению.

2. Экспериментальная часть

В качестве модельных объектов исследования были

выбраны высокомолекулярные ПС и ПЭТФ со средне-

массовой молекулярной массой 230 kg/mol и 15 kg/mol,

соответственно. Образцы ПС и ПЭТФ (аморфные плен-

ки толщиной 0.1mm) были получены методами экстру-

зии и прессования расплава, соответственно. Значения

T bulk
g ПС и ПЭТФ, измеренные методом дифференци-

альной сканирующей калориметрии, составляли 103 и

81 ◦C соответственно. Формирование АС ПС−ПЭТФ

проводилось при T = 74 ◦C — наиболее низкой T ,

при которой наблюдалась адгезия ПС и ПЭТФ — в

условиях кратковременного (t = 30min) и длительного

(t = 4 h) контактирования. Площадь контакта составля-

ла 5× 5mm. Механические испытания сформированных

АС проводились на универсальной разрывной машине

Instron-5565 при комнатной температуре и скорости

растяжения 10mm/min. Количество параллельных из-

мерений при каждом t составляло n = 10. В рамках

использованного статистического алгоритма программы

Origin, при n = 10 были рассчитаны значения параметра

вероятности p для всех стандартных тестов на нормаль-

ность. Расчет свидетельствует о достаточности n = 10

для корректного определения p.

3. Результаты и их обсуждение

На рис. 1 приведены значения σ в порядке ее

возрастания для серии из n измерений для интер-

n

0.08

0
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σ
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Рис. 1. Зависимости адгезионной прочности в порядке воз-

растания от порядкового номера измерения для интерфейса

ПС−ПЭТФ после самозалечивания при T = 74 ◦ в течение

30min (1) и 4 h (2).
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Рис. 2. Графики нормальной вероятности, по которым про-

ведены базовые (сплошные) линии, сгенерированные програм-

мой Origin, для интерфейса ПС−ПЭТФ после самозалечивания

при T = 74 ◦ в течение 30min (a) и 4 h (b). Пунктирны-

ми линиями показаны результаты анализа сгенерированных

зависимостей методом наименьших квадратов, позволяющие

определить величину R2.

фейсов ПС−ПЭТФ, сформированных при T = 74 ◦C в

течение t = 30min и t = 4 h. Видно, что адгезионная

прочность исследуемого интерфейса варьируется от 0.03

до 0.07MPa при t = 30min и от 0.04 до 0.09MPa

при t = 4 h. Другими словами, увеличение t на один

десятичный порядок приводит к ощутимому увеличению

значения σ . Такое поведение представляется законо-

мерным с учетом интенсификации процесса взаимной

диффузии сегментов при увеличении t — одного из клю-

чевых, наряду с T , факторов, влияющих на процесс са-

мозалечивания интерфейсов полимер–полимер [1–4,6,8].
Несмотря на то, что измеренные значения прочности

представляются весьма низкими, они превышают ниж-

ний прочностной уровень σ = 0.02MPa начала форми-

рования механически устойчивой адгезионной связи [20],

подтверждая диффузионный механизм сцепления ПС и

ПЭТФ при исследованных условиях.

Проведем статистический анализ данных рис. 1 с по-

мощью графиков нормальной вероятности (рис. 2, а, b),
гистограмм Гаусса (рис. 3, а, b), и тестов на нормаль-

ность (см. таблицу). Как следует из сопоставления

данных рис. 2, а и b, оба экспериментальных графика

удовлетворительно аппроксимируются линейными зави-

симостями, близкими к графикам нормального распре-

деления с достаточно высокими значениями коэффици-

ента детерминации R2. Однако аппроксимация данных

нормальным распределением для t = 4 h с R2 = 0.983

(рис. 2, b) представляется более корректной, чем для

t = 30min с R2 = 0.958 (рис. 2, а). С другой стороны,

анализ этих же данных с помощью гистограмм функ-

ции плотности вероятности PDF(σ ) показывает, что

аппроксимация с помощью стандартной функции Гаусса

для t = 30min (рис. 3, а) является более корректной

(R2 = 0.597) по сравнению с весьма условной аппрок-

симацией для t = 4 h (рис. 3, b) с низким значением

R2 = 0.159.
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Рис. 3. Гистограммы Гаусса для интерфейса ПС−ПЭТФ после

самозалечивания при T = 74 ◦ в течение 30min (a) и 4 h (b).
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Проанализируем экспериментальные данные при ис-

пользовании третьего подхода — тестов на нормаль-

ность [17–19] (см. таблицу). Как видно, все проведенные

тесты свидетельствуют о справедливости нулевой гипо-

тезы H0, причем даже минимальное значение параметра

нормальности p = 0.17 существенно превышает уровень

значимости p = 0.05 — минимальное общепринятое

значение p, начиная с которого H0 является справед-

ливой. Из таблицы также следует, что значения p для

t = 4 h или равны соответствующим значениям p для

t = 30min (тесты Колмогорова–Смирнова и Лиллие-

форса), или заметно их превышают (тесты Шапиро–
Уилка, Андерсона–Дарлинга и K-квадрата Д’Агостино).
Таким образом, все три использованных метода изу-

чения соответствия распределения адгезионной проч-

ности на ранних стадиях самозалечивания интерфейса

ПС−ПЭТФ нормальному распределению показали свою

пригодность. Однако два метода (графики нормальной

вероятности и тесты на нормальность) выявили более

корректное распределение для длительного контактиро-

вания (t = 4 h), а один (гистограммы Гаусса) — для

кратковременного (t = 30min).
Аналогичный, достаточно сложный характер стати-

стического поведения на интерфейсах полимер–полимер
на начальных стадиях самозалечивания подтверждаются

данными работ [12–15]. В частности, отмечалась

возможность отсутствия прямой корреляции между

результатами тестов на нормальность и формой гисто-

грамм Гаусса для распределений σ . Так, в большинстве

случаев при соблюдении H0 гистограмма Гаусса не име-

ла форму колоколообразной кривой. Также отметим, что

в связи с завышенными значениями p, определенными

в тесте Колмогорова–Смирнова, использование данного

теста для анализа адгезионной прочности интерфейсов

полимер–полимер представляется нецелесообразным, в

особенности учитывая тот факт, что для интерфейсов

ПС−ПС, ПС−поли(2,6-диметил-1,4-фениленоксид),
полиметилметакрилат–полиметилметакрилат [12–15]
значения p во всех случаях превышали критический

уровень значимости p = 0.05.

Сопоставим в рамках предложенного нами

подхода [13] безразмерные параметры дисперсии

значений σ , определенные из графиков нормальной

вероятности (стандартное отклонение, нормированное

по σav , SD/σav), со значениями обратной величины

модуля Вейбулла 1/m, используя значения m из

работы [11]. Использование значений SD= 0.01105MPa,

σav = 0.04322MPa (рис. 2, а), m = 4.69 [11] при

t = 30min и SD= 0.0153MPa, σav = 0.05982MPa

(рис. 2, b), m = 4.53 [15] при t = 4 h дает

SD/σav = 0.2557, 1/m = 0.2132 при t = 30min, и

SD/σav = 0.2558, 1/m = 0.2208 при t = 4 h. Отношение

SD/σav к 1/m, составляющее 1.20 и 1.16 при t = 30min и

t = 4 h соответственно является близким к единице, что

свидетельствует о статистической идентичности SD/σav

и 1/m, несмотря на различие базисных принципов,

лежащих в основе этих методов анализа.

Заключение

Впервые проведен детальный статистический анализ

распределения адгезионной прочности при температуре

ее интердиффузионного возникновения на несовмести-

мом интерфейсе ПС−ПЭТФ в рамках нормального

распределения. Во всех использованных стандартных

тестах на нормальность установлена справедливость ну-

левой гипотезы. С привлечением классических графиков

нормальной вероятности и гистограмм Гаусса выявлен

сложный характер статистического поведения σ в зави-

симости от длительности контакта. Это требует проведе-

ния дальнейших исследований по самозалечиванию ин-

терфейса ПС−ПЭТФ в более широких интервалах t и T ,

которые в настоящее время завершаются. Подтверждена

статистическая идентичность параметров дисперсии σ в

моделях Вейбулла и Гаусса.
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