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Приведен немодельный алгоритм расчета диаграмм плавкости многокомпонентных квазипростых систем
из данных по диаграммам плавкости бинарных составляющих. Приведено доказательство принадлежности
всех нонвариантных точек квазипростых тройных систем одной моновариантной кривой и приведены систе-
мы уравнений для расчета этой кривой. Предложен термодинамический метод определения принадлежности
многокомпонентной системы к классу квазипростых систем исключительно из данных по координатам
бинарных эвтектик. Предложенный алгоритм применим к термодинамическому расчету любых фазовых
диаграмм в т. ч. систем, содержащих водорастворимые нанокластеры.
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1. Введение

Практически все многокомпонентные системы с уча-
стием углеродных нанокластеров наноструктурированы.
Это — фуллерены и их производные, графены и их
производные, модифицированные наноалмазы. Указан-
ные системы — квазипросты: с прямыми изотермами-
изобарами-изопотенциалами растворителя (воды). Фазо-
вые диаграммы с их участием описываются по представ-
ленному в настоящей работе термодинамическому алго-
ритму. К сожалению прямые экспериментальные данные
по фазовым равновесиям в подобных наносистемах не
встречаются в литературе. В настоящей работе приведен
пример расчета фазовой диаграммы квазипростой нано-
системы в сравнении с экспериментальными данными.

2. Свойства квазипростых систем

Квазипростой будем называть трех- и более ком-
понентную систему (n ≥ 3), если изотермы-изобары-
изопотенциалы компонента системы представляют со-
бой отрезки прямых (n = 3), сектора плоскостей (n = 4)
или гиперплоскостей (n ≥ 5) (изопотенциалы i-го ком-
понента — геометрическое место фигуративных точек
составов с постоянным значением химического потенци-
ала µi = (∂G/∂ni)T,P,n j 6=i

). Укажем, что практически все

системы, содержащие водорастворимые нанокластеры и
воду в качестве растворителя, в реальности квазипросты,
с прямыми изопотенциалами воды. Изучение особых
свойств подобного типа систем имеет практически сто-
летнюю историю [1–10]. При этом исторически авторы
подобных рассмотрений использовали двойную терми-
нологию.
А) При описании изотермо-изобарических диаграмм

растворимости системы с прямолинейными изопотен-
циалами растворителя (как правило воды — W) назы-
ваются

”
подчиняющимися правилу Здановского“ [1–8].

При этом изопотенциалы других компонентов всегда
криволинейны (например [7,8]).
Математически последнее означает для тройной си-

стемы:
m1

m0
1

∣

∣

∣

∣

µw

+
m2

m0
2

∣

∣

∣

∣

µw
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где mi и m0
i моляльности i-ого компонента в тройном

и бинарном растворе с одним значением химического
потенциала воды — µw или активности воды — aw ,
соответственно (µw = µ

(0)
W (T, P) + RT ln aw). В случае

n-компонентной системы уравнение изоактивной гипер-
плоскости имеет вид:
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В) Квазипростые системы также встречаются при
описании политермо-изобарических диаграмм плавкости
системы с прямолинейными изотермами ликвидуса (по-
следние — геометрическое место фигуративных точек
составов с постоянным значением T (l) — температур
появления первых кристаллов при охлаждении гомо-
генных расплавов). Если подобная прямолинейность
наблюдается в поле кристаллизации i-го компонента,
то изотерма ликвидуса является изотермой-изобарой-
изопотенциалой i-го компонента системы. По терми-
нологии школы А. Сторонкина [9–12] такие системы
называют

”
псевдо-идеальными“. Таким образом, при рас-

смотрении изотерм ликвидуса в поле кристаллизации
индивидуального компонента оба понятия А) и В) иден-
тичны. При этом (поскольку все компоненты расплава
равноправны) изотермы-изобары-изопотенциалы в полях
других j , k 6= i индивидуальных компонентов системы,
как правило, также прямолинейны. Математически по-
следнее означает для тройной системы:

X1
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где Xi и X0
i — мольные доли i-го компонента в тройной и

бинарной системе, соответственно с равным значением
изотерм ликвидуса — T (l). В случае n-компонентной
системы уравнение изоактивной гиперплоскости име-
ет вид:
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= 1. (4)

Вполне понятно, что выражения (1), (2) и (3), (4)
выражают одну и ту же линейную взаимосвязь между
числами молей всех компонентов жидкой фазы — ni .

3. Обоснование оcновной формулы
немодельного расчета

Адаптируем термодинамическое описание квазипро-
стых систем, приведенное в работах [7,8] к ква-
зипростым диаграммам плавкости. Рассмотрим n-
компонентный расплав состава (Xmult , образованного
смешением n бинарных расплавов состава (Xbin

i , взятых
при одной температуре T , причем при смешении темпе-
ратура тройного раствора не изменилась. В [7,8] было
показано, что изменение потенциала Гиббса при об-
разовании квазипростого многокомпонентного расплава
(Gmix) определяется только энтропией идеального сме-
шения бинарных расплавов при заданной температуре
(рассматриваемых как квазикомпоненты многокомпо-
нентной системы):

Gmix/RT =

n
∑

i=2

Zi lnZi =

n
∑

i=2

Zi ln(ln amult
i − ln abin

i ), (5)

где amult
i , abin

i — активность i-го компонента в мно-
гокомпонентном и бинарном расплаве (1− i) той же

температуры, соответственно, Zi — аналог индекса Йе-
неке на диаграммах растворимости [7,8], и мы сохраняем
обозначение:

Zi =
Xmult

i

Xbin
i

,

n
∑

i=1

Zi = 1. (6)

Непосредственно из уравнений (5) следует, что:

lnXmult
i − lnXbin

i = ln amult
i − ln abin

i , (7)

которое и будем называть уравнением квазипростых
систем.
Рассмотрим теперь тройную систему (индекс

(ter = i − j − k)), а именно ветвь совместной
кристаллизации компонентов (i− j), исходящей
из бинарной нонвариантной точки — эвтектики
с координатами: (T eut

i j ; X eut
i = 1−X eut

j ). Применим
основное уравнение (7) к тройному расплаву состава
X ter

i при температуре T и эвтектическому бинарному
расплаву состава Xbin

i (здесь и везде далее, индекс
”
eut“

отвечает эвтектическим расплавам):

lnX ter
i − lnXbin

i = ln a ter
i − ln a ter

i ,

lnX eut
i − lnXbin

i = ln aeut
i − ln a ter

i . (8)

Применив рассуждение к обоим компонентам получаем:

lnX ter
i = lnX eut

i + ln a ter
i − ln aeut

i ,

lnX ter
j = lnX eut

j + ln a ter
j − ln aeut

j ,

X ter
k = 1− X ter

k − X ter
k . (9)

Воспользовавшись соотношением (8):

1H
f us
i /R(1/T

f us
i − 1/T ) = ln a i ,

сразу получаем систему уравнений для расчета монова-
риантной ветви кристаллизации компонентов (i− j):

lnX ter
i = lnX eut

i + 1H
f us
i /R(1/T eut

i j − 1/T ),

lnX ter
j = lnX eut

j + 1H
f us
j /R(1/Ti jeut − 1/T ). (10)

Система уравнений (10) обладает целым рядом оче-
видных преимуществ по сравнению с геометрическим
методом, в частности:
1. Не требует какого-либо модельного описания би-

нарных подсистем;
2. Что еще важнее, не требует экстраполяции ветвей

кристаллизации компонентов на суб-эвтектические тем-
пературы;
3. Позволяет рассчитывать все координаты тройной

эвтектики (отвечающих кристаллизации i − j − k):

(T eut
i jk ; X ter−eut

i , X ter−eut
j , X ter−eut

k = 1−X ter−eut
i −X ter−eut

j ).

4. Система (10) позволяет проверить, с какой точно-
стью она является квазипростой, т. е. насколько прямо-
линейны в ней изотермы−изобары−изопотенциалы?
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4. Термодинамический алгоритм
расчета диаграмм
квазипростых систем

Чтобы построить диаграмму плавкости тройной си-
стемы i − j − k достаточно разрешить 3 пары систем
уравнений типа (10) для 3-х ветвей совместной кристал-
лизации пар компонентов
(i− j):

lnX ter
i = lnX eut

i + 1H
f us
i /R(1/T eut

i j − 1/T ), (11.1)

lnX ter
j = lnX eut

j + 1H
f us
j /R(1/T eut

i j − 1/T ), (11.2)

(i−k):

lnX ter
i = lnX eut

i + 1H
f us
i /R(1/T eut

ik − 1/T ), (11.3)

lnX ter
k = lnX eut

k + 1H
f us

k /R(1/T eut
ik − 1/T ), (11.4)

( j−k):

lnX ter
j = lnX eut

j + 1H
f us
j /R(1/T eut

jk − 1/T ), (11.5)

lnX ter
k = lnX eut

k + 1H
f us

k /R(1/T eut
jk − 1/T ). (11.6)

Вариант расчета термодинамическим методом диа-
граммы плавкости системы Na2CO3−NaF−NaCl пред-
ставлен ниже на рис. 1.
Как видно из рис. 1, данные термодинамического

расчета убедительно согласуются с имеющимися экспе-
риментальными данными. Термодинамический метод не
требует большого числа экспериментальных данных по
диаграммам плавкости бинарных подсистем для более
или менее точной экстраполяции (требует только коор-
динаты бинарных эвтектик). Единственным достаточно
строгим условием применимости термодинамического
метода расчета является требование

”
квазипростоты“,

т. е. прямолинейности изотерм ликвидуса.
Если рассматривать все диаграммы плавкости много-

компонентных систем, различной физической природы
и компонентности (n ≥ 3), имеющиеся в литературе
(в том числе, взаимные, с твердыми растворами, бинар-
ными и тройными соединениями и т. д.) — см., например
справочники [14–17], то доля квазипростых систем, по
нашим оценкам, составляет 3−5%.
Для демонстрации возможности термодинамического

метода расчета на примере диаграммы плавкости ква-
зипростой тройной системы NaF−BaF2−CaF2 с общим
анионом, на рис. 2 приведены результаты расчета и
экспериментальные данные [13,18].
Результаты термодинамического расчета хорошо со-

гласуются с экспериментальными данными, несмот-
ря на то, что в одной из бинарных подсистем
BaF2−CaF2 реализуется ряд эвтектических кубических
твердых растворов с широкой областью несмешиваемо-
сти: CaXBa1−XF2.
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Рис. 1. Диаграмма плавкости тройной системы
Na2CO3−NaF−NaCl (линии и полые круги — термоди-
намический расчет, красный круги — расчетные эвтектики,
синие круги экспериментальные данные [13−15]), E — тройная
эвтектика, красными цифрами представлены температуры
ликвидуса.
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Рис. 2. Диаграмма плавкости тройной системы
NaF−BaF2−CaF2 (линии и полые круги — термодинамический
расчет, красный круги — расчетные эвтектики, синие круги
экспериментальные данные [13,18]), E — тройная эвтектика,
красными цифрами представлены температуры ликвидуса.

Указанный алгоритм применим к термодинамическо-
му расчету любых фазовых диаграмм: диаграмм плав-
кости, диаграмм растворимости и диаграмм фазовых
равновесий жидкость−пар, в т. ч. систем, содержащих
водорастворимые нанокластеры. В качестве примера
на рис. 3 представлена диаграмма растворимости в трой-
ной системе, содержащая 2 водорастворимых аддукта
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Рис. 3. Диаграмма растворимости в тройной системе
C60(C6H15N2O2)2−C60(C4H8NO3)2−H2O при 298K: черные
кружки и линии — расчет диаграммы растворимости, красные
круги экспериментальные данные авторов, синие линии и
точки — изопотенциалы воды, синий пунктир — они же
в метастабильной пересыщенной области, значения логариф-
ма активности воды (lnaW) представлены синими цифрами,
E — тройная эвтоника.

легкого фуллерена C60 с аминокислотами:

C60(C6H15N2O2)2 − C60(C4H8NO3)2 −H2O при 298K.

Из рис. 3 видно хорошее согласие результатов расчета
с экспериментом.

5. Заключение

В работе приведен немодельный алгоритм расчета
диаграмм плавкости многокомпонентных квазипростых
систем (с прямолинейными изотермами ликвидуса в
полях кристаллизации компонентов) из данных по диа-
граммам плавкости бинарных подсистем, их состав-
ляющих. Применение алгоритма продемонстрировано
на примере диаграмм плавкости тройных квазипростых
солевых систем с общим катионом и общим анионом.
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