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Магнеторезистивные характеристики гетероструктуры

SrIrO3/La2/3Sr1/3MnO3
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Исследована тонкопленочная гетероструктура SrIrO3/La2/3Sr1/3MnO3, эпитаксиально выращенная на

NdGaO3 подложке. На границе раздела между парамагнитным полуметаллом SrIrO3 с сильным спин-

орбитальным взаимодействием и спин-поляризованным ферромагнетиком La2/3Sr1/3MnO3 образуется пере-

ходной слой, для изучения которого исследовались отдельные пленки SrIrO3 и La2/3Sr1/3MnO3. Обсуждаются

температурные зависимости магнетосопротивления и холловское сопротивление при магнитных полях

H = 0−7 Т и температурах T = 2−300K.
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При эпитаксиальном росте оксидных пленок появля-

ется возможность создания границы раздела с функ-

циональными характеристиками, кардинально отличаю-

щимися от свойств контактирующих материалов, на-

пример, образование двумерного электронного газа в

гетероструктуре с границей раздела между изоляторами

LaAlO3/SrTiO3 [1]. В последнее время повышенный ин-

терес привлекают гетероструктуры, состоящие из маг-

нетиков и материалов, содержащие металлы с большим

атомным весом и, соответственно, с сильным спин-

орбитальным взаимодействием (СОВ). В работе [2] был
обнаружен аномальный эффект Холла в приграничном

слое парамагнитного иридата стронция SrIrO3 благо-

даря наведенному магнитному моменту от манганита

La2/3Sr1/3MnO3. Авторами [3] сообщалось о возникно-

вении дираковского отклика в SrIrO3 на контакте с анти-

ферромагнетиком SrCuO2. Высокая энергия СОВ SrIrO3

ESO ∼ 0.5 eV [4] способствует конвертации в электриче-

ский ток спинового тока, возникающего под действием

спиновой накачки при ферромагнитном резонансе. Так, у

гетероструктуры SrIrO3/La2/3Sr1/3MnO3 спиновый угол

Холла θSH , полученный из угловых зависимостей спи-

нового магнетосопротивления [5], оказался существенно

выше, чем у структур с пленкой Pt [6–8]. Учитывая пер-

спективность Ir-содержащих магнитных гетероструктур

для практических приложений спин-зависимых процес-

сов, возникает запрос в более подробной характеризации

гетероструктуры SrIrO3/La2/3Sr1/3MnO3 и образующих

ее пленок в широком интервале температур и магнит-

ных полей.

Литературные данные [9] на основе эффекта Холла

в SrIrO3 указывают на преимущественно электронный

тип проводимости, несмотря на смешанный тип но-

сителей. В пленках La2/3Sr1/3MnO3 эффект Холла и

магнетосопротивление в значительной степени зависят

от рассогласования кристаллической структуры пленки

и подложки [10]. Известны также работы по темпе-

ратурным зависимостям пленок SrIrO3 на различных

подложках [11,12], манганита La2/3Sr1/3MnO3 на под-

ложке SrTiO3 [13]. В данной работе будут приведе-

ны результаты измерений температурных зависимостей

электрического сопротивления, магнетосопротивления и

холловского отклика от пленок La2/3Sr1/3MnO3, SrIrO3

и гетероструктуры SrIrO3/La2/3Sr1/3MnO3 на подложке

NdGaO3 при охлаждении до температуры T = 2K и

магнитных полях до H = 7Т.

Эпитаксиальные тонкие пленки SrIrO3 и

La2/3Sr1/3MnO3 толщиной d = 10−50 nm выращивались

на монокристаллических подложках (110)NdGaO3

высокочастотным магнетронным распылением при

температуре подложки 770−800 ◦C в смеси газов аргона

и кислорода при общем давлении 0.3−0.5mbar [14,15].
Гетероструктуры SrIrO3/La2/3Sr1/3MnO3 изготовлялись

последовательным осаждением пленок La2/3Sr1/3MnO3

и SrIrO3 в камере без разрыва вакуума. После процесса

осаждения пленок следовало охлаждение: сначала

быстро в атмосфере напыления до 500 ◦С, а затем в

кислородной атмосфере со скоростью 10 ◦С/min.

Структурные свойства тонкопленочных структур ис-

следовались методом рентгеновской дифракции с ис-

пользованием дифрактометра Rigaku Smart Lab с вра-

щающимся медным анодом. Из рентгенограмм следова-

ло [15], что межплоскостное расстояние по откликам

(001), (002), (003) и (004) вдоль c-направления от
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Рис. 1. Температурные зависимости сопротивления на квад-

рат (R�) отдельных пленок и гетероструктуры: SrIrO3 (1),
La2/3Sr1/3MnO3 (2), SrIrO3/La2/3Sr1/3MnO3 (3). Пунктиром (4)
показана аппроксимация степенной функцией ∝ T 5/2 темпе-

ратурной зависимости сопротивления пленки La2/3Sr1/3MnO3

длиной L = 0.65mm. Вставка — низкотемпературный участок

R(T) La2/3Sr1/3MnO3.

La2/3Sr1/3MnO3, напыленной на подложку из NdGaO3,

составляло 1cLSMO = 0.3905 ± 0.0005 nm, а для плен-

ки SrIrO3, осажденной in situ поверх La2/3Sr1/3MnO3,

1cSIO = 0.404± 0.001 nm. Из изображения среза ге-

тероструктуры на просвечивающем электронном мик-

роскопе Thermo Fisher Titan Themis Z, визуализи-

рующую границы раздела между пленками SrIrO3,

La2/3Sr1/3MnO3 и подложкой NdGaO3, следовало, что

рост пленок происходит с эпитаксиальным соотноше-

нием (001)SrIrO3//(001)La2/3Sr1/3MnO3//(110)NdGaO3,

[001]SrIrO3//[001]La2/3Sr1/3MnO3//[001]NdGaO3 .

Электрофизические характеристики пленок и гете-

роструктуры исследовались по 4-х-точечной схеме из-

мерений, при этом использовалась
”
холловская“ кре-

стовая геометрия с шириной W = 100µm и длиной

L = 0.65mm. Металлизированные контактные площадки

на гетероструктуре располагались поверх пленки SrIrO3.

Измерения напряжений отклика от эффекта Холла и

магнетосопротивления проводились при температуре

T = 2−300K в криостате со сверхпроводящим солено-

идом в магнитном поле H до ±7 по методике [16],
минимизирующей влияние термо-ЭДС с переключением

полярности задаваемого измерительного тока I c часто-

той переключения, задаваемой длительностью импульса

(обычно порядка 1.5 s). Напряжение отклика регистриро-
валось нановольтметром Keithley 2600B, а температура

на образце — датчиком Lake Shore Cernox.

На рис. 1 приведены температурные зависимости

сопротивления R�(T ) = R(T ) ·W/L при H = 0 пленок

SrIrO3 с dSIO = 35 nm, La2/3Sr1/3MnO3 с dLSMO = 40 nm

и гетероструктуры c dSIO/LSMO = 35 nm (dSIO = 10 nm,

dLSMO = 25 nm). Видно отличие R�(T ) для пленок

SrIrO3 и La2/3Sr1/3MnO3, шунтирующая роль которой

проявляется на R�(T ) гетероструктуры. В области от-

носительно высоких температур T = 50−250K зависи-

мость R�(T ) пленки La2/3Sr1/3MnO3 хорошо описы-

вается степенной функцией R(T ) ∝ T 5/2 как у ферро-

магнитных полуметаллов [17]. В области низких тем-

ператур T < 20K на R�(T ) La2/3Sr1/3MnO3 (вставка
на рис. 1) происходит перегиб R(T ) при Tmin = 9.5K,

интерпретируемый слабой локализаций в трехмерном

случае [18] с корневой зависимостью удельной про-

водимости 1σ = σ − σ0 ∼ a · (t)1/2, где σ0 = σ (T = 0),
t = T/Tmin, a — коэффициент пропорциональности.

Экспериментальные зависимости R�(T ) удобно ап-

проксимировать функциями нормированного удельно-

го сопротивления 1ρ = (ρ − ρmin)/ρmin, где ρ = R� · d,

ρmin = ρ(Tmin).
На рис. 2 приведены экспериментальные

зависимости удельного сопротивления для

La2/3Sr1/3MnO3 и гетероструктуры при T < 20K и
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Рис. 2. Нормированные температурные зависимости

перепада удельного сопротивления 1ρ(t)/ρmin :

пленки La2/3Sr1/3MnO3 (a), гетероструктуры

SrIrO3/La2/3Sr1/3MnO3 (b). Штриховыми линиями показаны

аппроксимационные зависимости.
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Рис. 3. Экспериментальные температурные зависимости при

H = 0 удельных проводимостей пленок и гетерострукту-

ры: 1 — σ1(T ) dSIO = 35 nm, 2 — σ2(T ) dLSMO = 40 nm,

3 — σ3(T ) dSIO/LSMO = 35 nm. Штриховые линии: 4 —

σ4(T ) = σ1(T ) + σ2(T ), 5 — σ5(T ) = σ3(T ) − σ4(T ).

аппроксимации вида bρ(t)5/2 + (a(t)1/2 + σ0)
−1. В случае

пленки La2/3Sr1/3MnO3 ρmin = 1.9 · 10−4 � · cm,

Tmin = 9.6K; у гетероструктуры SrIrO3/La2/3Sr1/3MnO3

ρmin = 1.0 · 10−4 � · cm, Tmin = 8.7K. При этом

Rmin = 308.2� для La2/3Sr1/3MnO3 и у гетероструктуры

Rmin = 196.4� при одинаковой (в пределах

ошибки ±0.5 nm) толщине dSIO = dSIO/LSMO . Отметим,

относительная точность определения 1ρ/ρmin

составляла не менее 5 знаков. О слабой локализации в

тонких пленках манганита с перегибом R(T ) при низких

температурах T < 20K сообщалось в [13,19].

На рис. 3 приведены температурные зависимости

удельных проводимостей σi (T ) отдельных пленок и

гетероструктуры: i = 1 (SrIrO3), i = 2 (La2/3Sr1/3MnO3),
i = 3 (SrIrO3/La2/3Sr1/3MnO3). Как видно, тривиальное

суммирование σ4(T ) = σ1(T ) + σ2(T ) заметно отличает-

ся от σ3(T ) гетероструктуры. На рисунке приведена так-

же разностная кривая 5, соответствующая вкладу от пе-

реходного слоя σ5(T ) = σ3(T ) − σ4(T ). Об образовании

промежуточного слоя на границе SrIrO3/La2/3Sr1/3MnO3

сообщалось в работе [2], однако его резистивные пара-

метры не обсуждались.

Для измерения магнетосопротивления и холловского

отклика использовалась крестовая конфигурация. Зада-

вался продольный ток Ixx и снимались зависимости

напряжения от магнитного поля: поперечного Vxy(H)
и продольного Vxx(H). В случае гетероструктуры для

задания тока Ixx и измерения напряжений Vxx и Vxy ис-

пользовалась верхняя пленка SrIrO3 . Магнитное поле H

было направлено перпендикулярно плоскости пленок и

варьировалось от 0 до Hmax = 7T. За счет смены по-

лярности тока IH , задаваемого в соленоид, происходила

смена направления магнитного поля.

Заметим, холловские отклики в манганитах неодно-

значно зависят от температуры, в частности, в [10,20]
сообщалось, что в эксперименте наблюдается и смена

знака сопротивления Холла, и отклик от аномального

эффекта Холла. На рис. 4 приведены зависимости напря-

жения Холла и магнетосопротивления при T ∼ 10K, ко-

гда электропроводность La2/3Sr1/3MnO3 можно считать

металлической, а холловский отклик Vxy(H) демонстри-

рует рост с полем H и отрицательное магнетосопротив-

ление.

Из рис. 4, a видно, что напряжения Vxy для всех

трех образцов линейно зависят от поля H и сопротив-

ление Холла RH = Vxydi/µ0H при упрощенной оценке

эффективной концентрации носителей neff = 1/eRH (µ0
и e — физические постоянные) при T = 10K получаем

для La2/3Sr1/3MnO3 дырочную neff = 1.6 · 1022 cm−3, а

для SrIrO3 и SrIrO3/La2/3Sr1/3MnO3 электронную neff:

1.4 · 1021 cm−3 и 1.25 · 1022 cm−3 соответственно. За-
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Рис. 4. Зависимости напряжения Холла (a) и магнетосопро-

тивления (b) SrIrO3, La2/3Sr1/3MnO3 и SrIrO3/La2/3Sr1/3MnO3

при T = 10K. Амплитуда знакопеременного измерительного

тока Ixx = 100 µA.
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метим, учет по отдельности параметров подвижности

(µe, µh) и концентрации (ne, nh) электронов и дырок в

тонких пленках SrIrO3 на подложке SrTiO3 проводился

в [9]. Для La2/3Sr1/3MnO3 пленок в [10] сообщалось об

отношении подвижностей µe/µh ∼ 0.3, что указывало на

отличие эффективных масс электронов и дырок в данных

материалах.

На рис. 4, b приведены зависимости нормированно-

го на R(0) перепада сопротивления 1R = R(H) − R(0)
от магнитного поля H . Видно, что пленка SrIrO3

имеет отрицательное магнетосопротивление на всем

интервале полей H . Отрицательное магнетосопротив-

ление у пленки La2/3Sr1/3MnO3 и гетероструктуры

SrIrO3/La2/3Sr1/3MnO3 имеет место при H > 1T, одна-

ко на интервале полей H = 0−1T дважды происхо-

дит смена знака 1R(H)/R(0) на La2/3Sr1/3MnO3 и на

SrIrO3/La2/3Sr1/3MnO3. Отметим повторяемость — на

рис. 4, b приведены хорошо совпадающие двойные треки

регистрации магнетосопротивления. О схожей смене

знака магнетосопротивления сообщалось в [21] для

ферромагнитной сверхрешетки SrRuO3/La2/3Sr1/3MnO3.

Возникновение положительного знака магнетосопротив-

ления авторы [21] связывают со слабой антилокали-

зацией из-за СОВ, проявляющейся при варьировании

толщин ферромагнетиков в сверхрешетке и магнитной

анизотропии из-за слоев SrRuO3 в сверхрешетке, вы-

ращенной на SrTiO3. В нашем случае, положительный

знак 1R(H)/R(0) на интервале H = 1.1−5.5 kOe на

La2/3Sr1/3MnO3 пленке, выращенной на NdGaO3 под-

ложке, трудно связать со слабой антилокализацией, а по-

крытие La2/3Sr1/3MnO3 пленкой SrIrO3 с сильным СОВ,

напротив, только лишь уменьшило перепад 1R(H)/R(0)
примерно в 1.5 раз. Почти такое же отношение 1.57

получаем для величин Rmin у La2/3Sr1/3MnO3 пленки и

гетероструктуры.

Таким образом, получены температурные зависимости

при T = 2−300K электропроводимости тонких пленок

SrIrO3, La2/3Sr1/3MnO3 и гетероструктуры SrIrO3 на под-

ложке NdGaO3. Из холловских измерений при T = 10K

и H < 7T обнаружено, что SrIrO3 демонстрирует элек-

тронный тип проводимости и отрицательное магнетосо-

противление. У пленки ферромагнитного полуметалла

La2/3Sr1/3MnO3 при тех же экспериментальных усло-

виях проводимость дырочная, а магнетосопротивление

при H < 1T дважды меняет знак с отрицательного

на положительное и обратно, то же происходит и у

гетероструктуры SrIrO3/La2/3Sr1/3MnO3. При T < 15K

на La2/3Sr1/3MnO3 и SrIrO3/La2/3Sr1/3MnO3 обнаружи-

вается перепад сопротивления с минимумом T ∼ 10K,

описываемый слабой локализацией в трехмерном при-

ближении.
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