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Электронно-ядерное взаимодействие вакансий бора

в гексагональном нитриде бора
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Проведено исследование взаимодействий спинового дефекта и ближайших ядер азота в гексагональном

нитриде бора методами электронного парамагнитного резонанса и двойного электронно-ядерного резонанса.

Определены константы сверхтонкого (Aiso = 59.5MHz, Add = 13.8MHz) и квадрупольного (Cq = 1.96МГц)
взаимодействий для ядер азота 14N первой координационной сферы. Полученные результаты важны для

понимания механизмов электронно-ядерных взаимодействий в hBN и разработки квантовых устройств на

основе спиновых дефектов в двумерных материалах.
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1. Введение

Особенностью исследуемых спиновых дефектов для
квантовых приложений является их возможность сохра-
нять квантовую когерентность при комнатной темпера-
туре (T = 297K), что было экспериментально подтвер-
ждено методами оптически детектируемого магнитного
резонанса. Вышеупомянутое преимущество кардинально
отличает изучаемую систему от традиционных сверх-
проводящих кубитов, требующих низких температур
(∼ 10mK), что представляет собой дополнительные
трудности при масштабировании и реализации кван-
товых алгоритмов. Время электронной спин-спиновой
релаксации T2 вакансии бора оценивается величиной
порядка нескольких микросекунд [1–4].
Отрицательно заряженная вакансия бора V−

B в кри-
сталле гексагонального нитрида бора (hBN) представ-
ляет собой точечный дефект по Френкелю с локаль-
ной симметрией D6h в окружении трех эквивалентных
атомов азота в плоскости слоя BN, возникающий при
удалении атома бора во время облучения высокоэнер-
гетическими частицами с последующим захватом элек-
трона из кристаллической решетки [5]. Спиновый дефект
V−

B представляет особую ценность для квантовых вычис-
лений благодаря уникальным спиновым и оптическим
свойствам. Важное условие применимости кубита —
возможность осуществления инициализации, считыва-
ния и манипулирования спиновыми состояниями. Ука-
занные операции могут быть реализованы посредством
комбинированного оптического, микроволнового и ра-
диочастотного воздействий для состояний вакансии бора
в hBN [6–8].
Однако к временам когерентности предъявляются бо-

лее строгие требования, так как этот параметр определя-

ет временной интервал для выполнения квантовых опе-

раций и хранения квантовой информации [9]. Длитель-
ное время когерентности ядерных спинов порядка мил-

лисекунд [10] критически важно для реализации кван-

товой памяти и электронно-ядерных регистров [11,12],
где ядерные спины выступают долгоживущими элемен-

тами памяти, а электронные спины обеспечивают канал

управления. Таким образом, возникает необходимость в

получении величин, характеризующих ядра и их взаимо-

действия с вакансией бора.

2. Детали эксперимента

В данной работе исследовался монокристалл гексаго-

нального нитрида бора размером 0.90×0.54×0.05 мм,

подвергнутый воздействию пучком электронов с энер-

гией 2MeV. Эксперименты методом электронного па-

рамагнитного резонанса (ЭПР) проводились на спек-

трометре Bruker Elexsys E680 в W-диапазоне (94GHz)
при оптическом возбуждении с использованием диодно-

го лазера (λ532 nm, P = 100mW). С целью получения

констант сверхтонкого и квадрупольного взаимодей-

ствий между спиновым дефектом и ядрами азота пер-

вой координационной сферы (рис. 1, а) использовалась

спектроскопия двойного электронно-ядерного резонанса

(ДЭЯР).

3. Результаты и их обсуждение

В спектре электронного парамагнитного резонанса

наблюдаются два перехода (рис. 1, b), соответствующие
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Рис. 1. a — кристаллическая решетка hBN, вакансия бора изображена в центре.Зеленым цветом показаны атомы бора, красным —

атомы азота первой координационной сферы; b — спектр ЭПР (черная линия) и моделирование (красная линия) для двух

ориентаций: ось кристалла c параллельна и перпендикулярна вектору магнитного поля B0 (W-диапазон, T = 25K). Приведено

моделирование угловой зависимости (сплошные красные линии); c — упрощенная схема энергетических уровней спинового

дефекта при оптическом накачке на длине волны 532 nm. ES — возбужденное состояние, MS — метастабильное состояние, GS —

основное состояние.

тонкой структуре вакансии бора со спином S = 1. Про-
веденное моделирование угловой зависимости спектров
позволило определить параметры спинового гамильто-
ниана. Значение g-фактора составило 2.004. Расщепле-
ние в нулевом магнитном поле описывается выражением
2D/gµB с величиной D = 3.55GHz [6].
Особый интерес представляет изменение фазы сигна-

ла высокополевого перехода в спектре ЭПР на 180◦,
что свидетельствует об отклонении населенностей спи-
новых подуровней от распределения Больцмана. Дан-
ный эффект обусловлен лазерной накачкой и может
быть интерпретирован в рамках приведенной модели
энергетических уровней (рис. 1, c) и соответствующих
оптических переходов.
Спектроскопические особенности исследуемой систе-

мы обусловлены совокупностью пяти вкладов: электрон-
ное Зеемановское, расщепление в нулевом магнитном
поле, ядерное Зеемановское, сверхтонкое и квадруполь-
ное взаимодействия. Спиновый гамильтониан в случае
параллельной ориентации может быть записан в следу-
ющем виде:

Ĥ = gµBB0Sz + D

(

S2
z −

S(S + 1)

3

)

− γ~B0Iz

+

3
∑

i=1

(

Axx Sx Ix(i) + Ayy Sy Iy(i) + Az z Sz Iz (i)

+
Cq

4I(2I − 1)

(

3I2z (i) − I(I + 1) + η(I2x(i) − I2y(i))
)

)

,

где суммирование ведется по ядрам азота.

Для переходов 0 ↔ +1 и 0 ↔ −1 были получе-

ны спектры ДЭЯР от ядер 14N (I = 1, 99.6%) пер-

вой координационной сферы (рис. 2). В результате

моделирования были установлены главные значения

тензора сверхтонкого взаимодействия: Axx = 46.5MHz,

Ayy = 45.0MHz, Az z = 87.0MHz, что соответствует изо-

тропной составляющей Aiso = 59.5MHz и анизотроп-

ному вкладу Add = 13.8MHz. Константа квадрупольной

связи составила Cq = 1.96MHz, параметр асимметрии

η = −0.07. Анализ спектральных особенностей потре-

бовал применения теории возмущений второго порядка,

что позволило объяснить наблюдаемые сдвиги сигналов

ДЭЯР относительно ядерной частоты Лармора.

В перпендикулярной ориентации для низкополевого

перехода вблизи ларморовской частоты были обнару-

жены резонансные пики (рис. 3). Проведенное моде-

лирование позволило идентифицировать происхождение

сигналов, соответствующих переходам, связанным со

взаимодействиями ядер первой координационной сферы

и вакансии бора.

Проведенный анализ многокомпонентных спектров

ДЭЯР позволил детально охарактеризовать радиоча-

стотные переходы, связанные с ядрами 14N в первой

координационной сфере вакансии бора в hBN. Уста-

новлена зависимость положения резонансных линий

от пространственной ориентации (θ, ϕ) между вакан-

сией бора и ближайшими ядрами азота. Применение

возбуждающих импульсов открывает возможность се-

лективного управления спинами для конкретных ядер
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Рис. 2. Спектр ДЭЯР азота 14N для двух электронных переходов: MS = 0 ↔ +1 в магнитном поле B0 = 3223.1mT и MS = 0 ↔ −1

в магнитном поле B0 = 3480.5mT: a — параллельная ориентация, низкополевой переход; b — параллельная ориентация,

высокополевой переход; c — перпендикулярная ориентация, ϕ = 7.5◦, T = 50K; d — ϕ = 18◦, T = 25K, где ϕ — угол отклонения

в плоскости оборванной связи. f L — Ларморовская частота азота 14N, Cq — константа квадрупольной связи.
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Рис. 3. Спектр ДЭЯР азота 14N вблизи ларморовской частоты

для перехода MS = 0 ↔ +1 (ϕ = 7.5◦, T = 25K).

14N, в частности, подавления в случае необходимости

нежелательных ядерных взаимодействий в системе че-

рез селективное насыщение конкретных переходов [4].
Анализ констант сверхтонкого взаимодействия показал,

что изотропная составляющая значительно превышает

анизотропный вклад, что свидетельствует о высокой

степени локализации спиновой плотности на атомах

азота. Особый интерес представляет возможность созда-

ния гибридных квантовых систем, где электронный спин

выступает в качестве управляющего кубита, а ядерные

спины 14N выполняют функцию квантовой памяти. Такой

подход, реализуемый в двумерном материале, открывает

новые возможности для разработки масштабируемых

квантовых устройств [13].

4. Заключение

Проведенные исследования методом ДЭЯР-спектро-

скопии позволили детально изучить взаимодействие

спинового дефекта и ядерной подсистемы. Полученные

результаты открывают перспективы для создания мас-

штабируемых квантовых устройств на основе гибридных

электронно-ядерных систем, спиновый дефект и ядра в

hBN могут служить платформой для реализации мно-

гокубитных логических операций и квантовой памяти с

увеличенным временем когерентности. Дальнейшие ис-

следования могут быть направлены на оптимизацию ме-
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тодов управления спиновыми состояниями и интеграцию

данных систем в практические квантовые приложения.
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