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Динамика лазерных пучков в массиве углеродных нанотрубок

под действием механической нагрузки
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Изучается воздействие поля напряжений, формирующегося в массиве углеродных нанотрубок под
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1. Введение

Изучение особенностей взаимодействия высокоин-

тенсивного лазерного излучения с веществом пред-

ставляет собой важнейшее направление исследований

в нелинейной оптике. Как показывают современные

теоретические [1–3] и экспериментальные работы, та-

кие исследования способствуют как открытию новых

физических явлений, так и поиску перспективных ма-

териалов для эффективного управления характеристи-

ками лазерного излучения. Особый интерес в этом

контексте представляют углеродные нанотрубки (УНТ),
демонстрирующие уникальную способность поддержи-

вать стабильное распространение электромагнитных по-

лей [4].

Ключевым фактором управления характеристиками

лазерного излучения (такими как локализация, интен-

сивность [5], увеличение выходной мощности [6]) явля-

ется нелинейность среды. В качестве сред с нелиней-

ными свойствами могут выступать как традиционные

керровские среды [7] и плазма [8], обеспечивающие

управление поляризацией при взаимодействии с кон-

трольным пучком, так и современные материалы с ярко

выраженной нелинейностью — в частности, углеродные

нанотрубки.

Кроме того, на параметры электромагнитного из-

лучения можно влиять с помощью внешних полей.

Так в работах [9,10] показана возможность управления

предельно короткими оптическими импульсами в ани-

зотропных кристаллах при помощи магнитного и аку-

стического полей. Все перечисленные результаты были

получены на основе решения уравнений Максвелла

без использования приближения медленно меняющихся

амплитуд и фаз.

2. Теоретическая часть

В настоящем исследовании применяется указанное

приближение для вывода аналога нелинейного урав-

нения Шрёдингера, описывающего динамику лазерного

пучка в среде с УНТ под действием поля деформаций.

Рассмотрим распространение электромагнитного пуч-

ка сквозь диэлектрическую среду с углеродными на-

нотрубками. Волновой вектор направлен под прямым

углом к массиву УНТ. В работе используется предполо-

жение, что все нанотрубки ориентированы вдоль оси x ,

а также не учитываются неоднородности электромаг-

нитного поля вдоль их оси, поскольку показано, что

для рассматриваемых фемтосекундных импульсов это не

дает существенного вклада [11].
Зависимость энергии 1 от квазиимпульса для угле-

родных нанотрубок zig-zag типа описывается выражени-

ем [12]:

1(p, s) = ±γ0

√

1+4 cos(a p) cos(s π/m)+4 cos2(s π/m),

(1)
p — компонента квазиимпульса электрона вдоль оси

УНТ, s = 1, m — число, характеризующее квантование

импульса по периметру нанотрубки (m = 7), которое

определяется диаметром УНТ (≈ 0.55 nm), a = 1.5b/~,

b — расстояние между атомами углерода в графеновой

решетке, ~ — постоянная Планка, γ0 ≈ 2.7 eV — инте-

грал перекрытия. Знак
”
+“ соответствует зоне проводи-

мости, знак
”
−“ — валентной зоне.

Электрическое поле лазерного пучка и плотность

электрического тока, протекающего через попереч-

ное сечение УНТ имеют вид E =
(

E(y, z , t), 0, 0
)

и j =
(

j(y, z , t), 0, 0
)

. Уравнение для компоненты

векторного потенциала лазерного излучения вдоль

13∗ 2435



2436 Международная конференция ФизикА.СПб, 20−24 октября 2025 г.

оси УНТ —

ε

c2

∂2A

∂t2
=

∂2A

∂y2
+

∂2A

∂z 2
+

4π

c
j(A), (2)

Здесь c — скорость света в вакууме, ε — диэлек-

трическая проницаемость среды, в которой находятся

нанотрубки.

Далее учтем, что УНТ подвергаются деформациям

сжатия и растяжения, что приводит к возникновению по-

ля механических напряжений [13]. Это, в свою очередь,

вносит поправку в поле импульса:

A′ = d · u, (3)

где d — коэффициент пропорциональности, зависящий

от электронного параметра Грюнайзена (для углеродных

нанотрубок равен 2) [14], коэффициента Пуассона и γ0,

u — поле упругих деформаций.

В настоящей работе мы не приводим детального

расчета [15] зависимости векторного потенциала от поля

деформации (3), а лишь показываем ее общий вид.

Далее запишем выражение для x-компоненты плотно-

сти электрического тока:

j = 2e

m
∑

s=1

∞
∫

BZ

v(p, s) · F · d p, (4)

где v(p, s) = ∂1(p, s)/∂ p — скорость электронов, F —

функция распределения Ферми−Дирака, BZ — зона

Бриллюэна.

С учетом разложения дисперсионного соотношения в

ряд Фурье и в рамках бесстолкновительного приближе-

ния, уравнение (4) преобразуется к следующей форме:

j = −en0γ0a

∞
∑

q=1

m
∑

s=1

bs ,q sin

(

qa(eA + A′)

c

)

, (5)

здесь n0 определяет концентрацию электронов,

bs ,q = −q
αs ,q

γ0

∫ π

−π
cos(qr) exp

(

−∑∞

q=1

αs,q cos(qr)
kBT

)

dr

∫ π

−π
exp

(

−∑∞

q=1
αs,q cos(qr)

kBT

)

dr

,

(6)
kB ≈ 1.38 J/K, T — температура,

αs ,q =
a

π

∞
∫

BZ

cos(p · a · q)1(p, s)d p. (7)

С учетом приведенных формул (5)−(7), волновое

уравнение (2), описывающее динамику лазерного излу-

чения в среде с углеродными нанотрубками при наличии

деформационного поля, может быть записано в виде:

ea

c

(

∂2A

∂y2
+

∂2A

∂z 2

)

− eaε

c3

∂2A

∂t2

− ω2
0

∞
∑

q=1

m
∑

s=1

bs ,q sin

(

qa

c
(eA + A′)

)

= 0,

ω0 = 2ea
√
πn0γ0 (8)

или, с учетом синуса суммы,

ea

c

(

∂2A

∂y2
+

∂2A

∂z 2

)

− eaε

c3

∂2A

∂t2

− ω2
0

∞
∑

q=1

m
∑

s=1

[

b1
s ,q sin

(

qae

c
A

)

+ b2
s ,q cos

(

qae

c
A

)]

= 0,

b1
s ,q = bs ,q cos

(

qa

c
A′

)

, b2
s ,q = bs ,q sin

(

qae

c
A′

)

. (9)

Представим обезразмеренную компоненту векторного

потенциала в виде

Ã =
ea

c
A = Ã0(y, z ) cos(ωt − kz − ϕ), (10)

Ã0(y, z ) — огибающая x-компоненты векторного потен-

циала, k = ω
√
ε/c — модуль волнового вектора, ϕ —

начальная фаза.

На основе метода медленно меняющихся амплитуд

и фаз [16] можно получить уравнение на интенсивность

электромагнитного пучка |8|2 = |Ã0(y, z )|2, с учетом

представления sin(µ cos η) и cos(µ cos η) при помощи

функций Бесселя первого рода и усреднения по пери-

оду 2π/ω:

∂28

∂ζ 2
+ 2iκ

∂8

∂τ
− 8

∞
∑

q=1

m
∑

s=1

(

qb1
s ,q

∞
∑

r=0

(−1)′q2r+1|8|2r

22r r !(r + 1)!

)

− 8

∞
∑

q=1

m
∑

s=1

(

b2
s ,q

∞
∑

r=0

(−1)′q2r |8|2r

22r r !r !

×
(

1− q2|8|2
2(r + 1)(r + 2)

))

= 0 (11)

(ζ , τ ) представляют собой безразмерные координаты,

κ — безразмерный волновой вектор, bs ,q определяются

в ходе вычисления скорости электронов проводимости в

углеродных нанотрубках. Поскольку эти коэффициенты

достаточно быстро убывают с ростом q, ограничимся в

сумме по qтолько десятью слагаемыми.

Для решения уравнения (11) применяется конечно-

разностная схема Бессе [17] второго порядка точности,

с начальными условиями в форме гауссова пучка:

8(ζ , 0) = 80 · exp
(

ζ 2

L2

)

. (12)

Здесь 80 — начальная интенсивность, зависящая от

частоты и амплитуды электрического поля пучка, L —

ширина пучка.
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Рис. 1. Зависимость интенсивности лазерного пучка от коор-

динат ζ и τ .
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Рис. 2. Зависимость интенсивности лазерного пучка от коор-

динаты ζ при τ = 15: кривая 1 — без учета деформации, 2 —

с учетом деформации.

3. Результаты

На рис. 1 представлено распределение интенсивности

поля в массиве УНТ (7,0) при следующих параметрах:

T = 77K, ε = 4, n0 = 2 · 1018 cm−3,

γ0 = 2.7 eV, ω0 ≈ 1014 s−1.

Наблюдается существенное расплывание пучка с те-

чением времени, что приводит к снижению амплитуды

на величину около 35% от первоначальной. Наши ис-

следования показали, что степень уширения зависит от

частоты и начальной амплитуды электрического поля

лазерного луча. А именно, лазерные лучи большей

амплитуды менее подвержены дифракции, аналогичное

поведение наблюдается и при увеличении частоты ω.

Так, для ω = 2 · 1014 s−1 абсолютное изменение ширины

пучка по отношению к первоначальной (∼ 6 · 10−4 cm)
составляет 6.6 · 10−4 cm, для ω = 1015 s−1 — 2 · 10−5 cm.

На рис. 2 приведены зависимости интенсивности пуч-

ка от пространственной координаты при наличии/от-

сутствии поля деформаций.

4. Заключение

Из приведенных зависимостей можно сделать вывод,

что наличие деформации углеродных нанотрубок (рас-
сматривались величины до 10%) оказывает слабое воз-

действие на параметры лазерного пучка и проявляется в

уменьшении интенсивности не более чем на 1.5%.

Таким образом, на основе построенной модели, опи-

сывающей динамику лазерного пучка в среде с УНТ,

находящихся под действием поля деформаций, выяв-

лено, что сжатие/растяжение углеродных нанотрубок

не приводит к существенным изменениям пучка. Это

позволяет использовать УНТ в оптических приложени-

ях, где возможна механическая нагрузка, например, в

волноводных системах.
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