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Электрофизические свойства гибридных графен-нанотрубных
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Представлены результаты исследования влияния структурных особенностей на электрофизические свой-

ства гибридных тонкопленочных графен-нанотрубных структур. Объектом исследования являются квази-

2D-пленки, образованные двухслойным графеном и хиральными одностенными углеродными нанотрубками

(ОУНТ) суб- и нанометрового диаметров. В качестве структурных особенностей рассматриваются индексы

хиральности и диаметр нанотрубки, тип укладки слоев графена, взаимное расположение нанотрубок и

графена в составе гибрида графен-ОУНТ. Электрофизические свойства оцениваются по рассчитанным

значениям электропроводности и вольт-амперным характеристикам.
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1. Введение

Углеродные наноматериалы являются предметом мно-

гих теоретических и экспериментальных исследова-

ний благодаря большому разнообразию аллотропных

форм углерода, предопределяющему богатый спектр их

свойств [1]. Среди аллотропных модификаций углерода

пристальное внимание исследователей и разработчиков

в настоящее время привлекают графен и нанотрубки [2].
Объединение графена и углеродных нанотрубок (УНТ) в
гибридную структуру стимулировало появление нового

класса углеродных наноматериалов, наделенных мно-

гообещающими свойствами [3–6]. Синергетический эф-

фект от интеграции двумерного графена и одномерных

нанотрубок позволяет улучшить механические, элек-

трохимические, электрические и оптические свойства

графен-нанотрубных гибридов по сравнению с изоли-

рованными углеродными компонентами [7–10]. В свя-

зи с этим гибридные углеродные структуры находят

применение в различных электронных, оптоэлектронных

и энергонакопительных устройствах, таких как супер-

конденсаторы, логические инверторы, оптоэлектронная

память, фотодетекторы, электролюминесцентные излу-

чатели света [11,12].
Выделяют три топологических типа гибридной струк-

туры графен–УНТ [10]: 1) УНТ, размещенные горизон-

тально по отношению к графеновой плоскости; 2) УНТ,

размещенные вертикально по отношению к графеновой

плоскости; 3) УНТ, обернутые графеном. Первые два то-

пологических типа являются более распространенными

по сравнению с третьим и выступают объектом иссле-

дований во многих научных статьях [4,5]. Современные
технологий синтеза графена и УНТ позволяют получать

нанотрубки различной хиральности и диаметра, графен

в виде монослоя и слоистой структуры с различными

типами укладки слоев, а также реализовывать разные

варианты взаимного расположения графена и УНТ в

составе гибрида и способы их соединения [4,5,11]. Сле-
довательно, можно говорить о потенциальном геомет-

рическом и топологическом многообразии структурных

конфигураций графен-нанотрубных гибридов. В связи

с этим, важная роль отводится исследованиям, вы-

полняемым методами атомистического моделирования,

которые позволяют прогнозировать, какие типы струк-

турных конфигураций гибрида графен-УНТ демонстри-

руют наиболее выгодные физико-химические свойства.

При конструировании электронных наноустройств на

основе графен-нанотрубных гибридов важно понимать

роль особенностей их атомного строения в транспор-

те электронов через устройство. Различные исследо-

вательские группы работают над решением данного

вопроса, используя методы атомистического моделиро-

вания [12–14]. В опубликованных работах объектами

исследования являются графен-нанотрубные гибриды с

нанотрубками armchair или zigzag и с однослойным

графеном. В то же время, ряд ключевых особенно-

стей строения синтезируемых графена и нанотрубок не

учитывались авторами при построении атомистических

моделей графен-нанотрубных структур. В частности,

большинство получаемых в ходе синтеза ОУНТ явля-

ются хиральными трубками диаметром 0.7−1.3 nm. Так-
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же экспериментально показано, что бислойный графен

характеризуется более высокой стабильностью по срав-

нению с монослойным [15]. Объектом исследования в

данной работе являются квази-2D-пленки, образованные

бислойным графеном и хиральными ОУНТ суб- и нано-

метрового диаметров. Целью настоящего исследования

является выявление закономерностей влияния структур-

ных особенностей на электрофизические свойства ги-

бридных тонкопленочных структур бислойный графен-

ОУНТ. Под структурными особенностями понимаются

индексы хиральности и диаметр нанотрубки, тип уклад-

ки слоев графена, взаимное расположение нанотрубок и

графена в составе гибрида.

2. Методика расчетов

Для проведения расчетов использовался метод функ-

ционала плотности в приближении сильной связи с са-

мосогласованным вычислением заряда (SCC-DFTB) [16],
реализованный в программном пакете DFTB+ [17]. Ван-
дер-ваальсовый характер взаимодействия между бислой-

ным графеном и нанотрубкой в составе супер-ячейки

графен-нанотрубного гибрида учитывался в рамках схе-

мы коррекции дисперсии Леннарда-Джонса [18]. Элек-
тропроводность исследуемых структур рассчитывалась в

рамках формализма Ландауэра–Буттикера [19] по фор-

муле вида

G = 2e
2/h

∞
∫

−∞

T (E)FT (E − EF)dE, (1)

где T (E) — усредненная функция пропускания элек-

тронов, EF — уровень Ферми электродов, e
2/h —

квант проводимости, FT — функция теплового уширения

энергетических уровней, определяемая как

FT =
1

4kBT
sech2

(

E − EF

2kBT

)

, (2)

где kB — постоянная Больцмана, T — температура.

Функция пропускания электронов T (E) определяется

выражением вида

T (E) = Tr
(

ŴS(E)GA
C(E)ŴD(E)GR

C(E)
)

, (3)

где G
A
C(E) и G

R
C(E) — опережающая и запаздывающая

матрицы Грина, описывающие взаимодействие модели-

руемой системы с электродами, а ŴS(E) и ŴD(E) —

матрицы уширения энергетических уровней электродов

истока и стока. Расчеты электропроводных характери-

стик выполнялись при температуре 300K.

3. Выбранные конфигурации

Исследования проводились для двух структурных

конфигураций графен-нанотрубной пленки, образован-

ной бислойным графеном с порядком чередования сло-

ев AB и хиральными ОУНТ. На рис. 1 показаны супер-

ячейки рассматриваемых конфигураций, полученных в
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Рис. 1. Супер-ячейки квази-2D-пленок: a — бислойный

графен-ОУНТ (12,6) и b — бислойный графен-ОУНТ (8,4).

результате оптимизации атомной структуры, которая

осуществлялась достижением глобального минимума

полной энергии. Первая конфигурация (модель V1)
образована бислойным графеном с величиной сдвига

верхнего слоя относительно нижнего ∼ 0.1 nm и метал-

лической ОУНТ (12,6) диаметром ∼ 1.2 nm (рис. 1, a).
Вторая конфигурация (модель V2) образована бис-

лойным графеном с величиной сдвига верхнего слоя

относительно нижнего ∼ 0.3 nm и полупроводниковой

ОУНТ (8,4) диаметром ∼ 0.8 nm (рис. 1, b). Выбранные
нанотрубки (12,6) и (8,4) являются одними из наибо-

лее часто синтезируемых ОУНТ с высокой чистотой

(больше 90%) [20]. Кроме того, выбраны нанотрубки

разного типа проводимости, чтобы показать, как тип

проводимости ОУНТ влияет на электрофизические свой-

ства гибридной графен-нанотрубной пленки. В обеих

конфигурациях графеновый бислой располагался над

ОУНТ, однако в случае модели V2 слои графена распо-

лагались под углом к поверхности нанотрубки. Следует

подчеркнуть, что такое наклонное расположение слоев

является результатом оптимизации геометрических па-

раметров супер-ячейки. Равновесное расстояние между

бислойным графеном и ОУНТ составляет 0.33 nm для

модели V1 и 0.28 nm для модели V2, тогда как между

слоями графена — 0.36 nm для V1 и 0.32 nm для V2.

Из рис. 1 также можно увидеть, что при формирова-

нии гибридной углеродной структуры фрагменты бис-

лойного графена и ОУНТ деформировались. Степень

деформации нанотрубки, оцениваемая по соотношению

между радиусами в направлении осей X и Z, составила

1.2 для модели V1 и 1.1 для модели V2. Построенные

супер-ячейки прошли проверку на термодинамическую
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Рис. 2. Расширенные фрагменты квази-2D-пленок: a — бислойный графен-ОУНТ (12,6) и b — бислойный графен-ОУНТ (8,4),
полученные в результате трансляции супер-ячеек вдоль осей X и Y .

устойчивость, которая оценивалась по величине энергии

связи Eb . Для супер-ячейки модели V1 Eb составля-

ет ∼ −0.14 eV/atom, для супер-ячейки модели V2 Eb

составляет ∼ −0.18 eV/atom. Отрицательные значения

энергии связи свидетельствуют о том, что исследуемые

структуры являются стабильными по энергии.

На рис. 2 представлены расширенные фрагменты

графен-нанотрубных пленок, полученные в результате

трансляции супер-ячеек вдоль осей X и Y . Хорошо

видно, что в модели V2 графен представлен в виде слоев

конечной ширины (3 гексагона) в направлении armchair

(ось Y ), но бесконечно протяженных в направлении

zigzag (ось X) гексагональной решетки подобно графено-

вым нанолентам типа zigzag. В модели V1 графен имеет

бесконечно протяженные слои в направлениях zigzag и

armchair.

4. Результаты и обсуждение

На рис. 3 представлены вольт-амперные характеристи-

ки (ВАХ) для моделей V1 и V2 графен-нанотрубных

пленок, рассчитанные при токопереносе вдоль нанотру-

бок. Из рисунка видно, что модель V1 характеризуется

бо́льшими значениями тока по сравнению с моделью V2

при одних и тех же значениях напряжений. Наибольшая

разница в значениях токов между моделями наблюда-

ется в интервале напряжений до 1V. В частности, при

напряжении 0.4 V она достигает 50 раз, при напряже-

нии 0.6 V — 70 раз. Величина электропроводности G со-

ставляет 43.4µS для модели V1 и 3.8µS для модели V2.

Для анализа полученных результатов для каждой из

моделей были построены графики функции пропускания

T (E), которая характеризует вероятность прохождения

электронов через потенциальный барьер (рис. 4). На

графики, помимо изображений функций T (E) графен-

нанотрубных пленок, также нанесены функции T (E)
фрагментов бислойного графена и нанотрубки, входя-

щих в состав супер-ячеек рассматриваемых структурных

конфигураций. Из рис. 4, a видно, что профиль функции

T (E) пленки бислойный графен-ОУНТ (12,6) повторяет
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Рис. 3. Вольт-амперные характеристики квази-2D-пленок бис-

лойный графен-ОУНТ (12,6) (модель V1) и бислойный графен-

ОУНТ (8,4) (модель V2) при токопереносе вдоль нанотрубок

(ось Y ).

контуры профиля T (E) бислойного графена, однако

сам график сдвинут по оси ординат на 2 единицы за

счет влияния металлической нанотрубки (12,6), кото-

рая имеет постоянную функцию T (E), равную двум,

в рассматриваемом интервале энергий вблизи уровня

Ферми (−4.68 eV). В случае пленки бислойный графен-

ОУНТ (8,4) (рис. 4, b) профиль T (E) вблизи уровня

Ферми (−4.86 eV) полностью повторяет профиль T (E)
полупроводниковой нанотрубки (8,4), которая характе-

ризуется наличием транспортной щели, размер которой

(0.7 eV) полностью совпадает с размером транспортной

щели пленки графен-ОУНТ (8,4). Вклад бислойного

графена в данном случае не существенен, поскольку,

как отмечалось выше, в состав супер-ячейки модели V2

Физика твердого тела, 2025, том 67, вып. 12
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Рис. 4. Графики функции пропускания электронов T (E) квази-2D-пленок: a — бислойный графен-ОУНТ (12,6); b — бислойный

графен-ОУНТ (8,4), а также фрагментов бислойного графена и нанотрубки, входящих в состав их супер-ячеек. Вертикальными

пунктирными линиями показаны уровни Ферми пленок графен-ОУНТ (черный цвет), бислойного графена (синий) и нанотрубок

(красный).

входят фрагменты графена виде нанолент типа zigzag,

проводящие ток в направлении zigzag (перпендикулярно
нанотрубкам) гексагональной решетки.

5. Заключение

Таким образом, наряду с проводящими свойствами

бислойного графена и ОУНТ, определяемыми их струк-

турными особенностями (тип укладки слоев в бислой-

ном графене и величина сдвига между слоями, тип про-

водимости и диаметр ОУНТ), важную роль в формиро-

вании электрофизических свойств графен-нанотрубных

пленок играет взаимное расположение бислойного гра-

фена и нанотрубок в составе гибридной архитектуры.

Наклонное расположение листов графена по отношению

к поверхности ОУНТ (8,4), достигаемое при величине

сдвига между слоями графена ∼ 0.3 nm в составе супер-

ячейки бислойный графен-ОУНТ (8,4), а также полу-

проводниковый тип проводимости ОУНТ (8,4) обусло-

вили меньшую величину тока модели V2 (в 50 раз

при 0.4V, в 6 раз при 0.8 V, в 2.5 раза при 1V) по

сравнению с моделью V1. Выявленные закономерности

топологического управления электропроводностью от-

крывают новые возможности при проектировании на-

ноэлектронных устройств на основе гибридных угле-

родных пленок. В частности, такие пленки могут быть

использованы в нанотранзисторах и в наномасштаб-

ных логических элементах. Подбирая соответствующим

образом структурные особенности графен-нанотрубных

гибридных пленок, можно управлять токовыми характе-

ристиками устройств на их основе.
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