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Экспериментально изучено формирование рельефа поверхности на меди после воздействия наносекундных

лазерных импульсов при допороговой интенсивности, в конденсированном состоянии. В облученных

зонах около границ зерен сформирована система микровыступов/впадин, имеющая деформационный

характер. Молекулярно-динамическое моделирование показало, что анизотропия теплового расширения

разноориентированных зерен при циклическом нагреве до предплавильной температуры — основная

причина развития рельефа, так как возникающие в приповерхностном слое, термонапряжения, превышают

предел текучести материала. Зарегистрировано накопление дефектов с ростом плотности энергии и числа

импульсов. Результаты важны для понимания механизмов деградации металлооптики при термоциклическом

импульсном нагружении.
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1. Введение

Явление оптического пробоя на поверхности метал-

лов при воздействии лазерного излучения давно изу-

чено [1–3]. Оптический пробой и сопровождающееся

появление лазерного кратера на поверхности материала

обычно рассматривается как классический пороговый

процесс. Для практического применения лазеров в тех-

нологии материалов этот подход вполне достаточен.

Поэтому процессы, предшествующие пробою, происхо-

дящие при предплавильных температурах в металле,

исследованы заметно слабее. Можно лишь упомянуть

теоретические исследования Ф. Мирзоева, например ра-

бота [4]. К сожалению, целенаправленные эксперимен-

тальные работы этого направления пока отсутствуют.

Иногда встречались разрозненные работы, не нашедшие

теоретического объяснения, например [5–8].
В работах [9,10] была проведена серия эксперимен-

тальных исследований оптической стойкости медных

зеркал к воздействию излучения импульсного СО2 ла-

зера (длительность импульса 1.7 ns) в вакууме. На их

поверхности, обнаружены следы повреждения, позд-

нее названные laser-induced periodic surface structures

(LIPSS). В работе [11] проведен теоретический ана-

лиз этих результатов. По мнению В.С. Макина произо-

шло
”
возбуждение и диссипация энергии поверхност-

ной электромагнитной волны падающим излучением в

системе вакуум−плазменный слой−металл“. Интерес к

усталостным процессам в металлооптике обострился в

связи с проблемами эксплуатации в ИТЕР зеркал из

нержавеющей стали [12].
Однако в последние годы появилась серия ра-

бот [13–16], где экспериментально исследовались ре-

зультаты лазерного воздействия на металлы, происходя-

щие при предплавильных температурах и предшествую-

щие пробою, то есть при максимально допустимых луче-

вых нагрузках. Изучались механизмы деградации поли-

рованной поверхности образцов меди толщиной 10mm
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Рис. 1. а — 3D профилограмма лазерного пятна после воздействия 15 импульсов УФ лазера; на фото с РЭМ; b — отмеченное

прямоугольником изображение области выреза ламелей.

при воздействии частотно-импульсного лазерного излу-

чения (длина волны λ = 355 nm, длительность τ = 10 ns,

частота повторения 10Hz) в доабляционном режиме.

Установлено, что при воздействии излучения (плотность
энергии порядка Wp = 0.1−1.0 J/cm2) на полированной

поверхности меди и ряда ее сплавов в области лазерного

пятна возникает необратимый микровыступ на поверх-

ности. Это происходит без изменения фазового состава

материала, в конденсированном состоянии. Явление на-

звано оптикопластическим эффектом. В данной работе

проведено углубленное экспериментальное и теорети-

ческое исследование этого процесса на полированных

образцах бескислородной меди методами современного

материаловедения.

2. Методика эксперимента

Благодаря использованию сочетания методов оптиче-

ской профилометрии, конфокальной сканирующей ла-

зерной и растровой электронной микроскопии (РЭМ),
а также просвечивающей электронной микроскопии,

выявлена природа создаваемой структуры. Первичное

исследование поверхности материала производилось на

оптическом профилометре Zygo NewView 7300. Даль-

нейшее изучение микроструктуры приповерхностного

слоя производилось в тонких фольгах (ламелях) на про-

свечивающем электронном микроскопе (TEM) Tecnai

Osiris (ускоряющее напряжение 200 kV). Ламели, разме-
ром примерно 8×7µm, вырезались перпендикулярно к

поверхности образца ионным утонением сфокусирован-

ным пучком. Процесс проводился в колонне растрового

электронно-ионного микроскопа FEI Scios (ЦКП ФНИЦ

”
Кристаллография и фотоника“). Методика изготовле-

ния ламелей подробно описана в работе [17].

3. Результаты эксперимента
и обсуждение

На рис. 1, a приведена 3D профилограмма лазерно-

го пятна, возникшего на поверхности меди (размером
180µm) после воздействия плоско поляризованного из-

лучения 15 лазерных импульсов (длина волны 355 nm,

длительность 10 ns, частота повторения 10Hz, плотность

энергии импульса 0.6 J/cm2; параметры лазера и методи-

ка воздействия соответствовали работам [13–16]).

На рис. 1, b показано место выреза ламелей из ис-

следуемого образца. Детальный анализ микрострукту-

ры ламелей, полученный с помощью просвечивающей

электронной микроскопии (см. рис. 2), показал, что в

локальных областях вблизи границ зерен формирует-

ся характерная система выступов и впадин. Разница

высот достигает до 500 nm. При этом в тонком при-

поверхностном слое (∼ 2µm), прогреваемом за вре-

мя импульса до предплавильной температуры, вблизи

границ зерен обнаружены следы развития необратимой

пластической деформации. Это наноразмерные двойни-

ковые образования, дислокации и малоугловые дисло-

кационные границы. За время между импульсами по-

верхность полностью остывает и происходит фиксация

необратимых изменений. При росте числа импульсов,

как и плотности их энергии, зафиксировано накопление

дефектов.

Показанная на рис. 2 конфигурация возникших де-

фектных структур демонстрирует активную роль дисло-

кационного механизма в процессе релаксации остаточ-

ных внутренних напряжений, возникающих на поверхно-

сти меди при импульсном лазерном термоциклировании

в доплавильном режиме.
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Рис. 2. Микроструктура образца в области с выступом: a — светлое поле; b — двойниковая структура вблизи выступа. Ориентация

зерен в оси зоны [011] ГЦК и микродифракционная картина в данной области образца. Картина микродифракции включает как

зерно матрицы, так и двойниковые пластины, толщиной несколько нанометров.

Был проведен расчет деформаций и напряжений в

кубическом монокристалле, на примере меди, при его

наносекундном нагреве на 1000K с использованием

линейной теории упругости. Показано, что для всех

ориентаций кристалла возникающие напряжения превос-

ходит статический предел текучести меди, не превыша-

ющий Y ≈ 0.5GPa, то есть пластические деформации

должны неизбежно возникнуть при рассмотренных выше

условиях эксперимента.

Более того, в рамках линейной теории упругости, про-

веденный анализ применим и при меньших перепадах

температур. Так как диапазон рассчитанных напряжений

примерно в 4 раза превышает предел текучести, то сле-

дует ожидать появления пластических деформаций уже

при нагреве на 250K. Однако при быстром нагре-

ве меди лазерным импульсом длительностью 1−10 ns

экспериментальный темп деформации оценивается как

∼ 106−107 s−1. В этом случае, динамический предел

текучести, при темпах превышающих 105 s−1, стано-

вится существенно превышающим статическую величи-

ну [18,19].

4. Молекулярно-динамическое
моделирование

Для наглядной иллюстрации пластической деформа-

ции поликристаллов при термоциклировании проведено

молекулярно-динамическое (МД) моделирование образ-

цов меди, резко различающихся размерами: модельный

бикристалл меди с ориентацией зерен, соответствующей

экспериментальным данным, представленным на риc. 2,

и поликристалл со случайной разориентацией зерен.

Метод позволил оценить атомистические особенности

деформации различных зерен меди при быстром на-

греве/остывании и высоких скоростях деформации, что

крайне затруднительно сделать аналитически.

Для первого МД моделирования использована

элементарная ячейка кристалла меди, размером

64×6.6×26nm. Ось z ориентирована вдоль

направления 〈111〉, ось y — вдоль направления

〈211〉 и ось x — вдоль направления 〈011〉.
Центры формируемых зерен расположены в точках

0.5×0.5×0.25 и 0.5×0.5×0.75 (в единицах размера

образца). Молекулярно-динамическое моделирование

с использованием программы lammps [20] включало

релаксацию атомов до минимума энергии, отжиг

при 300K и моделирование циклов нагрева-охлаждения,

имитирующего воздействие лазерного импульса (1200K,
1.4 ns), что привело к формированию деформационных

двойников и перепада высот поверхности на 1 nm

(рис. 3). Дополнительные циклы термоциклирования

(300−1200K) не усилили рельеф из-за малых размеров

кристаллитов и ограниченного времени моделирования,

несопоставимого с реальными экспериментами, где

диффузия снимает напряжения за более длительные

периоды.

Затем было проведено крупномасштабное МД мо-

делирование (существенно большего масштаба). Уве-

личенный образец из 16 продольных вдоль оси z зе-

рен с шестигранной ячеистой структурой и с разме-

рами Lz = 100.1 nm по оси z , Ly = 40.7 nm по оси y

и Lx = 46 nm по оси x , содержал до 2 · 107 атомов.

Граничные условия по оси x и y были периодические,

Физика твердого тела, 2025, том 67, вып. 12
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Рис. 3. Вырез приповерхностного слоя модельного образца

меди, состоящего из двух зерен. Зеленым цветом обозначены

атомы, имеющие локальное окружение как в ГЦК структуре,

красным — ГПУ структуре (что соответствует атомам, при-

надлежащим деформационным двойникам), белым — атомы

на поверхности образца. Анализ структуры проводился в про-

грамме OVITO [21]

y
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Рис. 4. Изменение первоначальной карандашной конфигура-

ции зерен меди в результате воздействия 5-ти циклов нагрева

лазерным импульсом до температуры T ≈ 1300K в течение

примерно 1.2 ns и последующего естественного охлаждения

до комнатной. A — в начале, B — после 3 цикла, C — после

5 цикла.

по оси z — свободные. Первоначально в одном зерне

содержался примерно 1 миллион атомов. Ориентация

кристаллических зерен была произвольной, как и вза-

имные ориентации соседних зерен. С целью лучшего

согласия с экспериментальной температурой плавления

и поверхностным натяжением (энергией) была разрабо-

тана обновленная версия потенциала Жаховского [22].
Было смоделировано 5 импульсов, то есть образец

5 раз проходил цикл однородного нагрева до предпла-

вильной температуры T ≈ 1300K за время примерно

1.2 ns с последующим остыванием до комнатной темпе-

ратуры (рис. 4).
Проведенное молекулярно-динамическое моделирова-

ние показало, что основным фактором появления и

развития микровыступа на поверхности образца меди

является анизотропия теплового расширения различно

ориентированных зерен (кристаллитов) металла при

циклическом нагреве до предплавильных температур

и последующего охлаждения до исходного состояния.

Теоретический анализ показал, что термомеханические

напряжения, возникающие в нагретом слое, превышают

предел текучести материала.

5. Заключение

Циклические импульсные термомеханические нагруз-

ки часто встречаются в различных областях промыш-

ленности. Понимание особенностей этих процессов

крайне важно, как для фундаментальной науки, так

для практического использования. Полученные резуль-

таты прояснили процессы, происходящие в металле

вблизи температуры плавления. Они позволят углубить

фундаментальное понимание физических особенностей

деградации структуры металлов при усталостных про-

цессах, возникающих при экстремальных термоцикли-

ческих нагрузках. В частности, эти результаты могут

быть использованы, при разработке методов повышения

эксплуатационной стойкости металлооптики.
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В части осуществления экспериментальных работ по

лазерному воздействию и профилометрии образцов ра-

бота выполнена в рамках гранта РНФ № 24-19-00727

(Т.В.М., Ю.В.Х., В.Е.Р.). В части исследования тон-

кой структуры приповерхностного слоя меди методами

просвечивающей электронной микроскопии и компью-

терного моделирования бикристалла меди работа вы-

полнена по теме государственного задания FFSG-2024-

0018, № государственной регистрации 124020700089-3

(Ю.Р.К., И.В.Н., С.С.М.). В части математического моде-

лирования работа выполнена по теме государственного

задания ИТФ (Н.А.И., Ю.А.Х., Ю.В.П.): FFWR-2024-

0013 № государственной регистрации 124041900014-8.

В части молекулярно-динамического моделирования тер-

морегулирования поликристаллического образца меди

работа выполнена по теме государственного задания
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