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Выращивание твердого раствора GaInAsSbBi на подложке GaSb(100),

разориентированной на 6
◦ к плоскости (111)A
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Приведены результаты выращивания твердых растворов GaInAsSbBi методом импульсного лазерного

напыления на подложке GaSb(100), разориентированной на 6◦ к плоскости (111)A. Результаты структурного

анализа методами рентгеновской дифракции, просвечивающей, электронной и атомно-силовой микроскопии

показывают, что основным механизмом роста является рост по Фольмеру−Веберу. Пленки имеют поли-

кристаллическую структуру. В объеме пленки присутствуют дефекты упаковки, двойники и дислокации.

Методом энергодисперсионного микроанализа состав пленок определяется как Ga0.75In0.25As0.87Sb0.1Bi0.03.
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Для выращивания полупроводниковых тонких пленок

все большую популярность приобретает метод импульс-

ного лазерного напыления (pulsed laser deposition) [1–6].
Основными преимуществами импульсного лазерного на-

пыления (ИЛН) перед другими методами физического

осаждения является возможность контроля стехиомет-

рии пленок [7,8], снижение температуры подложки для

выращивания тонких пленок III−V [9], дискретное по-

ступление потока вещества от мишени к подложке в

промежутках времени между лазерными импульсами.

На сегодняшний момент главным недостатком метода

является присутствие капель на ростовой поверхности.

К моменту написания публикации было известно о

двух случаях выращивания GaInAsSbBi на подложке

GaSb в 2022 году: молекулярно-лучевая эпитаксия [10]
и ИЛН [11]. В данном исследовании будут представле-

ны обобщенные результаты по выращиванию твердого

раствора GaInAsSbBi на разориентированной подложке

GaSb методом ИЛН. Актуальность выращивания полу-

проводниковых пленок на подложках GaSb обусловлена

тем, что они имеют параметр решетки, близкий к

другим соединениям групп III−V, а узкая запрещенная

зона позволяет создавать на них гетероструктуры в

среднем инфракрасном диапазоне. В выращивании твер-

дотельных гетероструктур разориентированные подлож-

ки используются для улучшения структурного качества

эпитаксиальных слоев [12,13]. Актуальность введения Bi

в твердые растворы групп III−V обусловлена тем, что

в 2007 году был открыт эффект антипересечения ва-

лентной зоны при добавлении металлоидов в GaAs [14],
а затем в 2013 году была теоретически предсказана

возможность преодоления нескольких фундаментальных

недостатков светоизлучающих устройств ближнего и

среднего инфракрасного диапазона, обусловленных оже-

рекомбинацией и спин-орбитальным расщеплением в

валентной зоне [15]. В этом же исследовании было

показано, что соединения с Bi и Sb имеют наиболь-

шую энергию спин-орбитального расщепления, которая

смещает профиль валентной зоны внутрь запрещенной

зоны, уменьшая ее. Из-за большого физического размера

атома висмута, его соединения получили применение

в новом классе сильно рассогласованных полупро-

водниковых сплавов (highly mismatched semiconductor

alloys) [16]. Указанные выше факты показывают вы-

сокую практическую актуальность разработки такого

класса полупроводниковых материалов. В этой связи

целью работы являлось выращивание твердого раство-

ра GaInAsSbBi на разориентированной подложке GaSb

методом ИЛН и исследование его морфологии и струк-

турных свойств.

Образцы были выращены методом ИЛН [11]. В каче-

стве подложки использовались пластины GaSb(Te)(100),
разориентированные на 6◦ к плоскости (111)А
(GaSb (100) 6◦ (111)А). В работе [11] мы уже получали

поликристаллические пленки GaInAsSbBi, поэтому в

данном эксперименте мы решили снизить температуру

роста до 300 ◦C с целью изменить поверхностную диф-

фузию ростовых элементов. На основании полученных

в [11] результатов распыление осуществляли из мишени

с xBi = 10 at.%. Остальные ростовые параметры (давле-
ние, лазерный флюенс, время осаждения) не отличались

от указанных в [11]. Исследование структурных свойств

и морфологии проводилось методами просвечивающей

электронной микроскопии (ПЭМ), сканирующей элек-
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Рис. 1. Морфология поверхности пленки GaInAsSbBi на подложке GaSb(100), разориентированной на 6◦ к плоскости (111)A:
a) — СЭМ-изображение; b) — 2D-АСМ-изображение, 1×1 µm2 .

тронной микроскопии (СЭМ) и атомно-силовой микро-

скопии (АСМ), а также рентгеновской дифракции (РД).
Элементный анализ выполнялся методом энергодиспер-

сионной рентгеновской спектроскопии.

Результаты исследования морфологии поверхности

методами СЭМ и АСМ приведены на рис. 1. На изоб-

ражениях видна характерная для выращенных пленок

шероховатость поверхности и наличие редких капель

на ней, которые пока еще присущи методу ИЛН и

обусловлены несколькими факторами: наличием у вис-

мута сильного поверхностно-активного эффекта [17],
сегрегацией In, сложными процессами поверхностной

диффузии, а также низкой температурой плавления Ga.

По результатам сканирования поверхности (рис. 1)
можно заключить, что рост пленки GaInAsSbBi происхо-

дил по механизму Фольмера−Вебера, т. е. по механизму

островкового роста. На АСМ-изображении (рис. 1, b) на

поверхности пленки можно наблюдать выход дефектов

упаковки. Элементный анализ методом энергодисперси-

онного микроанализа показал, что все элементы мишени

(Ga, In, As, Sb, Bi) присутствуют в пленке. Состав пле-

нок определяется как Ga0.75In0.25As0.87Sb0.1Bi0.03. В ра-

боте [11] мы сообщали о достижении концентрации

6 at.%Bi в пленке GaInAsSbBi, однако повторить этот

результат в последующих экспериментах нам не удалось

при неизменной ростовой конфигурации оборудования.

Исследования кристаллической структуры пленок

GaInAsSbBi методами РД и ПЭМ представлены на рис. 2

и 3, соответственно.

На рис. 2 показан характерный спектр РД пленок

GaInAsSbBi, выращенных на подложке GaSb(100), разо-
риентированной на 6◦ к плоскости (111)A. Форма спек-

тров РД соответствует поликристаллической структуре

материала. Об этом свидетельствуют большие полуши-

рины пиков и высокий базовый фон. Полученный спектр
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Рис. 2. Дифрактограмма гетероструктуры GaInAsSbBi/

GaSb(100) 6◦ (111)A.

РД является интегральным и обусловлен как присут-

ствием пиков подложки GaSb, так и вероятным присут-

ствием фазовых включений. Для индицирования пиков

РД на рис. 2 символами показаны положения разрешен-

ных правилом отбора кристаллографических плоскостей

для подложки GaSb(100) [18] и подложки GaSb(100),

разориентированной на 6◦ к плоскости (111)A. Идеаль-

ная решетка соединений III−V является гранецентри-

рованной кубической решеткой, поэтому разрешенными

считались плоскости со всеми четными или всеми нечет-

ными индексами Миллера. Положение основных пиков

отражения от пленки смещено относительно пиков для

обоих типов GaSb, что указывает на различие составов

пленки и подложки и их параметров решетки. Путем

сопоставления угловых положений пиков РД (рис. 2)
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Рис. 3. ПЭМ-изображения гетероструктуры GaInAsSbBi/GaSb(100) 6◦ (111)A: а — темнопольное; b — светлопольное.

гетероструктуры GaInAsSbBi/GaSb с идеальным объем-

ным GaSb можно заключить, что основная фаза плен-

ки GaInAsSbBi соответствует группе симметрии F 4̄3m.

На основе анализа карточек базы данных ICCD PDF [18]
было установлено, что наиболее интенсивные и широкие

пики на кривой РД с максимумами 2θ = 30.34361,

41.35565, 56.50828 образованы фазами InGaAs, InSbBi,

InAsSb, GaAsBi, GaSbBi, GaAsSb с кристаллографиче-

скими плоскостями (111), (220), (311).
Для более детального структурного анализа гетеро-

структуры GaInAsSbBi/GaSb были исследованы методом

ПЭМ (рис. 3).
На ПЭМ-изображениях (рис. 3, а, b) видны фазовые

включения и структурные дефекты (дефекты упаковки,

двойники, дислокации) в объеме пленки GaInAsSbBi.

Границы зерен перпендикулярны плоскости гетерогра-

ницы. Размер зерен сравним с толщиной пленки. Ха-

рактерная толщина пленок достигает ∼ 80 nm и срав-

нима с приведенной в работе [11]. На поверхности

пленки видна текстура, которая подтверждается ре-

зультатами АСМ (рис. 1, b). На основе результатов

ПЭМ, РД и АСМ можно заключить, что рост пленки

Ga0.75In0.25As0.87Sb0.1Bi0.03 на рассогласованной подлож-

ке GaSb(100) 6◦ (111)A происходит по механизму Фоль-

мера−Вебера.

Таким образом, методом ИЛН выращены тонкие

пленки Ga0.75In0.25As0.87Sb0.1Bi0.03 на рассогласованной

подложке GaSb(100) 6◦ (111)A. Показано, что пленки

обладают поликристаллической структурой и содержат

фазовые включения. Рост происходит по механизму

Фольмера−Вебера. Снижение температуры роста на

разориентированных подложках GaSb(100) 6◦ (111)A
приводит к улучшению морфологии поверхности, однако

не позволяет полностью избавиться от поликристаллич-

ности пленок GaInAsSbBi при неизменной технологи-

ческой оснастке, описанной в работе [11]. Полученные

выше результаты показывают, что усиление контроля

роста в методе ИЛН позволит улучшить кристалличе-

ские свойства твердых растворов GaInAsSbBi на разо-

риентированных подложках GaSb и реализовать эпитак-

сиальное выращивание сильно рассогласованных полу-

проводниковых сплавов на основе соединений III−V,

легированных висмутом.
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