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Новые полуорганические наноструктуры синтезированы путем введения молекул 2-метилбензимидазол-

перхлората (MBI−HClO4) в пористые боратные стекла с размерами пор ∼ 3 и ∼ 7 nm. Рентгенодифракцион-

ные исследования показали, что в наноструктурах присутствуют несколько фаз, имеющих кристаллическую

структуру MBI−HClO4, но несколько отличные параметры решетки. В некоторых фазах в результате

случайной ориентации пор стекол формируются кристаллиты размерами больше размеров пор. Для

полученных наноструктур измерены температурные и частотные зависимости емкости, tg δ и проводимости.

Приводятся результаты анализа диэлектрических свойств методами диэлектрической спектроскопии.
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В настоящее время большое внимание уделяется раз-

работке и изучению новых наноструктур (НС), которые
могут быть использованы в качестве функциональных

материалов в микроэлектронике, энергетике, биомеди-

цине и других областях [1,2]. Одним из перспективных

направлений для создания таких НС является использо-

вание пористых наноматриц, наноразмерные поры кото-

рых могут быть заполнены веществами, обладающими

различными свойствами — магнитными, сегнетоэлек-

трическими, пьезоэлектрическими, сверхпроводящими,

биоактивными и т. п. В качестве наноматриц могут

выступать боратные стекла, хризотил-асбест, мезопори-

стый кремний [3].
Ранее [4] нами были синтезированы НС, в которых в

качестве наполнителя пор боратных стекол, хризотил-

асбеста и мезопористого кремния использовался 2-ме-

тилбензимидазол (С8Н8N2, MBI), кристаллы которого

обладают сегнетоэлектрическими свойствами выше ком-

натной температуры (КТ) [5]. Молекулы MBI легко

проникают в поры стекол, нити хризотил-асбеста и, как

показали рентгенодифракционные (РД) исследования,

их вхождение сопровождается появлением фаз MBI с

близкими параметрами элементарной ячейки, но сильно

различающимися размерами кристаллитов. Кроме того,

введение MBI сопровождается сильными изменениями

оптических и диэлектрических свойств НС по сравне-

нию с незаполненными матрицами [4].
Недавно на основе комбинации MBI и перхлорной

кислоты (HClO4) нами был синтезирован новый кри-

сталл 2-метилбензимидазолперхлорат (MBI−HClO4) [6].
При КТ MBI−HClO4 кристаллизуется в пространствен-

ной группе (пр. гр.) P21/n (14), а при повышении

температуры T испытывает два фазовых перехода пер-

вого рода [6]: сначала в промежуточное состояние,

демонстрирующее свойства жидкого кристалла (ЖК),
при Tlc = 161.3 ◦C, а затем в жидкое состояние (ЖС)
при Tmelt = 168.4 ◦C. При охлаждении фазовые пере-

ходы происходят при более низких температурах. Как

показали диэлектрические и оптические исследования

кристаллов и пленок MBI−HClO4 [6,7], при переходе

в оптически изотропное ЖС проводимость увеличива-

ется по сравнению с КТ на 5−7 порядков, что сви-

детельствует [8,9] о том, что в этой фазе образуется

ионная жидкость (ИЖ). Проводимость MBI−HClO4 в

состоянии ЖК примерно на два порядка больше, чем

в низкотемпературном кристаллическом состоянии, что

говорит [10] о возможности образования в этой фазе

ионного жидкого кристалла (ИЖК). Представлялось

интересным синтезировать НС на основе MBI−HClO4

и посмотреть, каким образом гигантские изменения

проводимости MBI−HClO4 при фазовых переходах по-

влияют на диэлектрические свойства НС. Необходимым

условием для проведения таких работ было получение

доказательств присутствия в матрице нанокристаллов

(НК) фазы MBI−HClO4 и оценка размеров ее кристал-

литов. Как показали исследования НС на основе MBI,

это возможно при использовании РД-методов [6]. Целью

работы явилось приготовление НС в виде боратных

стекол, заполненных молекулами MBI−HClO4, изучение

их кристаллической структуры и проведение диэлек-

трических исследований в температурном диапазоне,

включающем состояние ИЖ.

НС изготавливались помещением образцов боратных

стекол с диаметрами пор ∼ 3 и ∼ 7 nm в расплав кри-
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сталлов MBI−HClO4. Стекла с такими размерами пор

использовались нами ранее при создании НС на основе

MBI [4]. Представляло интерес получить такие НС

на основе MBI−HClO4. Сами кристаллы MBI−HClO4

выращивались методом медленного охлаждения водного

раствора предварительно очищенных кристаллов MBI и

перхлорной кислоты. Для заполнения пор молекулами

MBI−HClO4 не требуется применять внешнее давление,

поскольку они заходят из жидкости в поры боратных

стекол из-за осмотического давления. После извлече-

ния образцов из расплава плоскопараллельные грани

заполненных боратных стекол тщательно очищались

механически. Как показали эксперименты со взвешива-

нием образцов до и после синтеза, степень заполнения

составляла ∼ 70, 80 и 90% для образцов с диаметрами

пор ∼ 3 и ∼ 7 nm, обозначенных далее как S3nm-70,

S3nm-80 и S7nm-90.

РД-измерения образцов проведены методом сканиро-

вания θ−2θ на рентгеновском дифрактометре D2 Phaser

(Bruker AXS, Карлсруэ, Германия), сконструирован-

ном в вертикальной схеме Брэгга−Брентано θ/θ и

оснащенном линейным полупроводниковым детектором

LYNXEYE (Bruker AXS) для регистрации РД-сигнала.

Использовалось Cu-Kα-излучение рентгеновской труб-

ки с медным анодом, отфильтрованное Ni-фильтром,

поглощающим Cu-Kα-излучение. Температура в каме-

ре образца во время измерений составляла 314 ± 2K.

Для определения угловых поправок к полученным РД-

картинам дополнительно проводились измерения об-

разцов, утопленных вровень с поверхностью порошка

NaCl, углы Брэгга рефлексов которого откалиброваны

с помощью порошкового РД-стандарта Si640f (NIST,
Гейтерсберг, Мэриленд, США). Для предварительного

анализа с целью получения оптимальных стартовых зна-

чений параметров в методе Ритвельда использовались

программы Celsiz (для вычисления параметров элемен-

тарной ячейки по углам Брэгга, скорректированным

на угловые поправки, и индексам Миллера рефлексов)
и SizeCr (для оценки среднего размера кристаллитов D и

абсолютной величины средней микродеформации εs ме-

тодами Вильямсона−Холла (WHP, Williamson-Hall plot)
и

”
Размер кристаллита−микродеформация“ (SSP, size-

strain plot) с учетом типа рефлексов). Полученные в

результате предварительного анализа данные использо-

вались в качестве стартовых для анализа РД-картин ме-

тодом Ритвельда программой TOPAS (версия 5, Bruker

AXS) с целью получения точных значений этих величин.

Все необходимые описания программ и методов можно

найти в [4].

Для проведения диэлектрических исследований на

очищенные плоскопараллельные грани заполненных бо-

ратных стекол наносились электроды из тонкой алю-

миниевой фольги. На образцах проводились измерения

емкости C и tg δ в диапазоне частот f = 25−106 Hz и

температурном интервале 295−460K с помощью LCR-

метров MIT 9216A (Protek Instrument Co., Ltd., Кенгидо,

Республика Корея) и E7-20 (МНИПИ, Минск, Беларусь).
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Рис. 1. SSP для фаз Ph1 и Ph2 образца S3nm-70. θB —

половина угла Брэгга рефлекса 2θB после применения уг-

ловых поправок и d — межплоскостное расстояние в nm,

отвечающее углу Брэгга 2θB; FWHMcorr — FWHM рефлекса с

учетом инструментального уширения, согласно процедуре для

наблюдаемого pV-типа рефлексов; λ = 0.1590598 nm — длина

волны излучения Cu-Kα1 после корректировки вклада Cu-Kα2;

остальные обозначения объяснены в табл. 1. Проведены ап-

проксимирующие прямые Y = A + B · X , где выражения для X

и Y приведены на осяx абсцисс и ординат соответственно. Для

обеих фаз A < 0, что означает отсутствие микродеформации

(εs = 0).

Рентгенофазовый анализ РД-картин образцов пока-

зал, что все наблюдаемые рефлексы с хорошо раз-

решаемыми профилями можно отнести к фазам Ph1

и Ph2, имеющим структуру MBI−HClO4, но несколь-

ко различные параметры элементарной ячейки. Судя

по величине полной ширины на половине максимума

FWHM наблюдаемых рефлексов, кристаллиты этих фаз

заметно различаются (фаза Ph1 имеет большие разме-

ры кристаллитов, чем фаза Ph2). Исходя из критерия

FWHM/B int = 0.70(7)−0.81(11), где B int — это инте-

гральная ширина рефлекса, рефлексы обеих фаз отнесе-

ны к псевдофойгтовскому (pV) типу. В качестве примера

на рис. 1 приведен график, построенный методом SSP

для образца S3nm-70. В табл. 1 и 2 приведены данные,

полученные программой Celsiz и методами WHP и SSP

для всех образцов; здесь и далее в круглых скобках по-

сле приводимых величин даются их оценочные стандарт-

ные отклонения (о.с.о.). При расчете WHP и SSP исполь-

зовались значения коэффициентов уравнений Шеррера

и Вильсона−Стокса KScherrer = 0.94 и Kstrain = 4 соот-

ветственно. Поскольку коэффициент детерминации Rcod

в SSP, в отличие от WHP, больше 90%, метод SSP дает

надежные результаты, подтверждая результаты WHP.

Для уточнения параметров фаз Ph1 и Ph2 ме-

тодом Ритвельда использовалась структурная модель

MBI−HClO4 из [6]. Уточнялись параметры элементар-

ной ячейки и изотропные температурные факторы B iso

Физика твердого тела, 2025, том 67, вып. 12
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Рис. 2. Результаты анализа РД-картин образцов (a) S3nm-70 и (b) S7nm-90 методом Ритвельда. Угловые позиции (углы Брэгга),
отвечающие уточненным параметрам элементарной ячейки (табл. 3), показаны вертикальными черточками под РД-картинами.

Вставки в увеличенном масштабе показывают угловые диапазоны РД-картин, в которых наблюдается большинство рефлексов с

хорошо различимым профилем. Указаны индексы Миллера hkl избранных рефлексов.

атомов, общие для атомов одного сорта, координаты

атомов не уточнялись. Полагалось, что B iso атомов

фазы Ph1 (и Ph3 которая обсуждается далее) такие же,

как и у фазы Ph2, к которой относится большинство

наблюдаемых рефлексов. В качестве добавки к фону в

виде полинома Чебышева седьмого порядка с дополни-

тельной гиперболической функцией для 2θ < 11◦ уточ-

нялись параметры двух аморфных гало от пористого

стекла, задаваемых асимметричными функциями Пирсо-

на VII (SPVII) с центрами при углах 2θ, составляющих

приблизительно 22.35◦ и 78.56◦ . Как и в [4] для MBI в

боратных стеклах, в ходе финальных циклов уточнения

в модели двух фаз было предположено наличие третьей

фазы (фазы Ph3) с малыми размерами кристаллитов,

примерно равными диаметру пор, рефлексы которой

явно не разрешаются на РД-картинах образцов на фоне

большого аморфного гало от стекла. Поскольку из-

за малой интенсивности рефлексов и большого фона

Физика твердого тела, 2025, том 67, вып. 12
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Таблица 1. Параметры моноклинной элементарной ячейки

a, b, c, β и ее объем Vcell для кристаллических фаз MBI−HClO4

по результатам определения программой Celsiz

Фаза a , �A b, �A c, �A β, ◦ Vcell , �A
3

образец S3nm-70

Ph1 −
a

−
a

−
a

−
a

−
a

Ph2 7.866(19) 9.966(15) 12.703(32) 95.42(6) 991.8(3.8)

образец S3nm-80

Ph1 7.903(50) 10.053(40) 12.710(48) 95.95(24) 1004.4(8.4)

Ph2 7.908(9) 9.956(8) 12.646(8) 95.57(9) 990.9(1.5)

образец S3nm-90

Ph1 −
a

−
a

−
a

−
a

−
a

Ph2 7.859(23) 9.926(35) 12.741(39) 95.44(18) 989.4(5.5)

Пр име ч а н и е. a значение не может быть найдено, т. к. наблюдается

только три рефлекса.

Таблица 2. Результаты предварительного РД-исследования

образцов методами профильного анализа: усредненная вели-

чина критерия типа рефлексов FWHM/B int, средний размер

кристаллитов D и абсолютное среднее значение микроде-

формации εs по результатам WHP и SSP, а также параметр

детерминации Rcod графиков WHP и SSP

Фаза FWHM/B int

WHP SSP

D, nm Rcod, % D, nm Rcod, %

образец S3nm-70

Ph1 0.76(8) 186(16)a 31.51 186(16)a 99.54

Ph2 0.74(3) 96(22)a 13.46 96(22)a 96.19

образец S3nm-80

Ph1 0.80(10) 59(6)a 16.05 59(6)a 96.22

Ph2 0.70(7) 31(8)a 67.53 31(8)a 96.64

образец S3nm-90

Ph1 0.76(14) 55(11)a 81.97 55(11)a 95.89

Ph2 0.81(11) 24(4)b 3.44 24(2)b 91.58

Пр име ч а н и е 1. a оба метода, WHP и SSP, дали εs = 0.

Пр им е ч а н и е 2. b оба метода, WHP и SSP, дали εs = 0.24(17)%.

изменения весового профильного фактора согласия Rwp

при введении фазы Ph3 были малы (уменьшение лишь

на ∼ 0.2−0.4%), отслеживание велось по весовому

профильному фактору согласия cRwp (с вычитанием

фона), который гораздо более чувствителен. Учет пре-

имущественной ориентации в модели Марч−Долласа

вдоль двух направлений, различных для разных фаз

и образцов, приводил к падению cRwp на ∼ 70% для

образца S3nm-70 с достаточно сильными рефлексами и

на ∼ 5 и ∼ 13.3% соответственно для образцов S3nm-

80 и S7nm-90 со слабыми рефлексами. Дополнительное

применение модели сферических гармоник восьмого

порядка для остальных направлений дало падение cRwp

на ∼ 0.5, ∼ 1.5 и ∼ 8% для образцов S3nm-70, S3nm-80

и S7nm-90 соответственно. Введение фазы Ph3 для этих

образцов привело к уменьшению cRwp соответствен-

но на ∼ 4.6, ∼ 14.3 и ∼ 2.8%, что достаточно вели-

ко, чтобы подтвердить предположение о наличии этой

фазы. Финальные результаты уточнения представлены

в табл. 3 и 4 и на рис. 2 (для образцов S3nm-70

и S7nm-90 в качестве примера). Использовались те же

значения коэффициентов KScherrer и Kstrain, что и при

расчете WHP и SSP. Все о.с.о. параметров, полученные

при уточнении, скорректированы на занижение из-за

сериальных корреляций путем умножения на коэффици-

ент me.s .d. , посчитанный программой RietEsd (см. ссылки
в [4]). Как видно из табл. 4, наибольшее количество

кристаллитов MBI−HClO4 имеет размер D, близкий

к диаметру пор (93.1, 85.3 и 62.4wt.% фазы Ph3 для

образцов S3nm-70, S3nm-80 и S7nm-90 соответственно).
В образцах S3nm-70, S3nm-80 и S7nm-90 кристаллиты

фазы Ph1 с наибольшими размерами D, равными соот-

ветственно ∼ 235, 68 и 53 nm показывают наименьшее

содержание 2.1−3.2wt.%. Содержание фазы Ph2 с про-

межуточными значениями D, равными ∼ 94, 40 и 24 nm

в этих образцах составляет 4.8, 12.1 и 34.4wt.% соот-

ветственно. В фазе Ph2 образца S7nm-90 подтверждено

наличие микродеформаций (εs ≈ 0.33%), предположен-
ное по результатам профильного анализа. Величины

размера кристаллитов фаз Ph1 и Ph2, полученные при

уточнении методом Ритвельда, удовлетворительно со-

Таблица 3. Параметры моноклинной элементарной ячейки

a, b, c, β и ее объем Vcell для кристаллических фаз MBI−HClO4

по результатам уточнения методом Ритвельда

Фаза a , �A b, �A c, �A β, ◦ Vcell , �A
3

образец S3nm-70

Ph1 7.8894(7) 10.0831(2) 12.6926(7) 95.50(1) 1005.0(1)

Ph2 7.891(3) 9.965(18) 12.683(9) 95.46(3) 992.8(2.0)

Ph3 7.964(13) 9.856(16) 12.665(19) 95.72(11) 989.2(2.7)

образец S3nm-80

Ph1 7.900(5) 10.061(5) 12.707(20) 95.89(8) 1004.6(1.8)

Ph2 7.907(3) 9.962(10) 12.658(8) 95.55(3) 992.4(1.2)

Ph3 7.967(15) 9.857(56) 12.691(20) 95.12(26) 992.7(6.2)

образец S3nm-90

Ph1 7.905(2) 10.084(3) 12.796(18) 95.45(3) 1015.4(1.5)

Ph2 7.868(4) 9.978(2) 12.744(4) 95.55(3) 995.8(6)

Ph3 7.882(9) 9.865(30) 12.752(46) 95.62(27) 986.8(4.8)
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Таблица 4. Результаты анализа РД картин от образцов методом Ритвельда: средний размер D кристаллитов и абсолютное

среднее значение микродеформации εs по результатам уточнения методом Ритвельда, факторы согласия — фактор Брэгга RB,

весовой профильный Rwp, профильный R p и их аналоги после вычитания фона, cRwp и cR p,
a а также коэффициент me.s .d. для

коррекции оценочных стандартных отклонений (о.с.о.) уточняемых параметров.

Фаза Wt , wt.% D, nm εs , % RB, % Rwp, % R p, % cRwp, % cR p, % me.s .d.

образец S3nm-70

Ph1 2.13(3) 235(1) 0b 0.652 1.753 1.164 18.740 24.136 1.929

Ph2 4.76(4) 94(11) 0b 0.306

Ph3 93.11(8) 2.7(1) 0b 0.123

образец S3nm-80

Ph1 2.6(1) 68(11) 0b 0.166 1.179 0.909 21.231 24.549 1.522

Ph2 12.1(3) 40.0(2.3) 0b 0.174

Ph3 85.3(3) 2.8(1) 0b 0.101

образец S3nm-90

Ph1 3.2(1) 53.2(3.5) 0b 0.206 1.252 0.967 20.906 25.524 1.558

Ph2 34.4(5) 23.7(3) 0.326(6)c 0.096

Ph3 62.4(5) 6.0(2) 0b 0.152

Пр име ч а н и е 1. a вычислялись программой RietEsd, так как программа TOPAS дает некорректные значения cRwp и cR p при использовании

гиперболической добавки к фону, см. [4].
П р им е ч а н и е 2. b фиксировалось εs = 0, исходя из результатов предварительного исследования.

Пр им е ч а н и е 3. c εs (%) = 2e0 · 100%, где e0 — параметр микродеформации, получаемый программой TOPAS при уточнении, см. [4].

X-ray (θ –2θ)

1

2

3

Рис. 3. Схематическая иллюстрация формирования кристал-

литов MBI−HClO4 разной ориентации и разного размера в

случайно ориентированных порах боратного стекла. Указаны

падающие на поверхность образца и дифрагирующие рентге-

новские лучи в случае θ−2θ сканирования. Цифрами 1, 2 и 3

показаны разные типы ориентации пор.

гласуются с результатами профильного анализа (сравни
табл. 1, 2 и 3, 4).
РД-методы в режиме сканирования θ−2θ дают инфор-

мацию о среднем размере кристаллитов D в направле-

нии, перпендикулярном поверхности, на которую падают

рентгеновские лучи. В пористых стеклах реализуется

случайное расположение пор, в результате чего неко-
торые участки пор идут перпендикулярно или почти

перпендикулярно поверхности стекла или под углом

относительно нее, в то время как другие располага-
ются параллельно ей (соответственно участки 1, 2 и 3

на рис. 3). Вероятно, фаза Ph1 с наибольшим детектиру-
емым размером кристаллитов формируется на перпен-

дикулярных участках 1, фаза Ph2 с промежуточными

значениями D — на наклонных участках 2, а фаза Ph3
с размером D, приблизительно равным диаметру пор —

на параллельных участках 3. Возможно, какая-то часть

фазы Ph2 также образуется и на участках 1, а часть
фазы Ph3 — и на участках 1 и 2.

На рис. 4, a, b показаны температурные зависимости

емкости C и tg δ в боратном стекле c диаметром
пор ∼ 3 nm, заполненном MBI−HClO4, на частотах f

от 120Hz до 100 kHz. Рост температуры приводит к зна-
чительному увеличению емкости. На частоте f = 120Hz

емкость структуры увеличивается от C ≈ 20 pF при КТ

до 10 nF при 430K. С увеличением частоты эти измене-
ния уменьшаются. На температурных зависимостях tg δ

в этом температурном диапазоне наблюдаются макси-

мумы, которые сдвигаются в сторону более высоких
температур при увеличении частоты, что характерно

для термоактивационного механизма диэлектрических

потерь. Как известно, величины C и C · tg δ пропор-
циональны, соответственно, мнимой и действительной

частям диэлектрической проницаемости. Их температур-
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Рис. 4. Боратное стекло c диаметром пор 3 nm, заполненных MBI−HClO4 (образец S3nm-70) (a, b). Температурные зависимости

емкости C (a) и tg δ (b) на частотах f = 120Hz, 1 kHz, 10 kHz и 100 kHz и (c, d) частотные зависимости емкости C (c) и

проводимости G (d) при напряжении постоянного электрического поля U = 0, 2 и 3V.

ные (рис. 4, a, b) и частотные (рис. 4, c, d) зависимости

для исследуемой НС показывают поведение, характер-

ное для диэлектрической релаксации.

Увеличение емкости и проводимости на несколько

порядков на низких частотах при переходе кристал-

ла в состояние ИЖ связано с образованием двойных

электрических слоев (ДЭС) на поверхностях электро-

дов, контактирующих с ИЖ. Для изучения свойств

ДЭС и ИЖ применяются методы диэлектрической и

импедансной спектроскопии. На рис. 4, c представлены

частотные зависимости емкости C композитной НС

при приложении постоянного электрического поля U

различной величины. Постоянное поле уменьшает вели-

чину C особенно сильно на низких частотах в диапазоне

напряжений U = 0−2V. При дальнейшем увеличении

напряжения (U > 2V) значительных изменений емкости

не наблюдается. Частотные зависимости проводимо-

сти G имеют сложный характер (рис. 4, d). В частности,

при f > 104 Hz наблюдается сильная частотная зависи-

мость G, а при значениях f в диапазоне 102−104 Hz —

слабая частотная зависимость G, что указывает на

значительный вклад проводимости по постоянному току.

При f < 102 Hz наблюдается уменьшение G, связанное

с образованием ДЭС. Приложение электрического поля

примерно на порядок уменьшает G и усиливает влияние

ДЭС на G.

Таким образом, проведенное РД-исследование показа-

ло, что после выдерживания пористых боратных стекол

в расплаве MBI−HClO4 в порах стекол с диаметра-

ми ∼ 3 и 7 nm кристаллизуются фазы с одной и той же

структурой MBI−HClO4, но с разными, хотя и близки-

ми, параметрами элементарной ячейки. Из-за случайно-

го расположения пор относительно поверхности стекол

кристаллиты разных фаз характеризуются размерами от

сравнимого с диаметрами пор до значительно превыша-

ющих их. Как следует из результатов диэлектрических

измерений, значительное увеличение емкости и прово-

димости на низких частотах свидетельствует о переходе
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НК в состояние ИЖ или ИЖК. Переходы сильно размы-

ты, что свидетельствует о сильном разбросе температур

переходов в НК.
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