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Проведен вейвлет-анализ временных зависимостей амплитуд сигналов акустической эмиссии для гете-

рогенных материалов при их механическом нагружении, а также магнитуд землетрясений в Италии в

1990−2000 годах. Показано, что появлению крупных событий и разрушению материалов предшествует

увеличение выделения энергии на различных масштабных уровнях. Сделан вывод о том, что это увеличение

может служить прогностическим признаком разрушения материала.
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1. Введение

Проблема предотвращения разрушения техногенных

конструкций и прогнозирование природных и техноген-

ных катастроф остается весьма актуальной в настоя-

щее время. Для решения этих задач часто использует-

ся мониторинг состояния материалов (structural health
monitoring SHM) [1], который позволяет идентифици-

ровать и локализовать появляющиеся в материалах

повреждения. Одним из методов широко применяемым

для такого типа мониторинга является метод акусти-

ческой эмиссии (АЭ) [2,3 и ссылки в них]. Вейвлет-

преобразование широко применяется к анализу сигна-

лов акустической эмиссии в основном в том случае,

когда известны их волновые формы (см. обзоры [4,5]).
Однако получение информации о волновых формах АЭ

сигналов по ряду причин крайне затруднено. Во-первых,

на вид волновой формы оказывает существенное влия-

ние конструкция пьезопреобразователя, а также система

крепления датчика к образцу. Во-вторых, датчик по-

разному реагирует на приходящую волну в зависимости

от угла ее падения. Поэтому источник по типу (трещина

определенного размера) может быть один и тот же, а

волновая форма, которая будет записана аппаратурой —

разная. В-третьих, один и тот же датчик дает различные

волновые формы от одинаковых источников, но располо-

женных в разных частях образца из-за пространственной

дисперсии и различного затухания частотных состав-

ляющих АЭ сигнала (существенное влияние окажет

путь прохождения волны по образцу с точки зрения

гетерогенности материала). Кроме того, на волновую

форму влияет также искажение сигнала за счет его

отражения от внешних и внутренних поверхностей (де-
фектов, границ зерен) и т. д. Поэтому чаще всего дан-

ные АЭ представляют собой набор амплитуд и времен

акустических сигналов, а иногда содержат координаты

их источников. Настоящая работа посвящена именно

изучению временных рядов амплитуд сигналов АЭ.

Основные трудности анализа временных рядов аку-

стической эмиссии связаны с тем, что этот процесс

при разрушении материалов не является стационарным,

поэтому стандартные статистические методы, такие как

расчет моментов распределений, корреляционных функ-

ций и спектральный анализ для них неприменимы [6].
Действительно, средние величины (математическое ожи-
дание, дисперсия, ковариация) для нестационарных ря-

дов непостоянны. Это приводит к тому, что теоремы

о состоятельности и асимптотической нормальности

выборочных оценок и их дисперсий не выполняются.

Для различных выборок одинаковой длины функции

распределения разные. При увеличении размера выборок

точность оценок не возрастает. Поэтому в настоящей ра-

боте для изучения нестационарных рядов АЭ применяет-

ся вейвлет-анализ. В отличие от Фурье-преобразования,

где в качестве базисных функций преобразования ис-

пользуются функции вида exp(ix) = cos x + i sin x , явля-

ющиеся композицией синусоидальных волн с различ-

ными частотами, и делокализованные в пространстве,

для вейвлет-преобразования используются существенно

локализованные солитонообразные функции. В качестве

такой функции нами выбиралась широко применяемая

функция вида
”
сомбреро“, сконструированная из второй

производной функции Гаусса:

ψ(x) =
∂2

∂x2
exp

(

−
x2

2

)

. (1)

Использование локализованных базисных функций

приводит к тому, что метод вейвлет-преобразований

сохраняет хорошее разрешение на разных временных

масштабах, поэтому его часто называют математиче-

ским микроскопом [7].
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Рис. 1. Кривые нагружения (черные линии) и энергии сигналов акустической эмиссии (красные точки) для рассматриваемых

экспериментов: a — образец AE42; b — AE43, c — Westerly U_Y; d — Berea obr4_5800N; e — Berea obr2 6000; f —

Westerly 1П 18 kN; g — сейсмический сигнал в Италии в 1990−2000 годах.

Известно, что так называемая дисперсия вейвлет-

коэффициентов, определяемая формулой (2), может об-
ладать прогностическими свойствами для катастрофиче-

ских событий [8–10].

σ (i) =

[

1

N − 1

N
∑

k=1

(

w(i, k) − 〈w(i, k)〉
)2

]1/2

. (2)

Здесь i — масштабный коэффициент вейвлет-преобразо-

вания w, k — пространственный коэффициент (задает
положение вейвлета во времени). Второе слагаемое
в (2), представляет собой среднее значение по времени

от вейвлет-преобразования, и, как нетрудно показать,

равно нулю, в силу того что анализирующий вейвлет

имеет по определению нулевое среднее значение. В си-
лу этого, выражение (2) представляет собой просто

дискретный аналог корня из глобального спектра энер-

гии (3), который и будет использоваться в дальнейшем

в настоящей работе.

E(a) =

∫

w(a, b)2db. (3)

Энергия (3) зависит от масштаба a , на котором

исследуется процесс. Наряду с (3) также использовалось

среднее значение по масштабам от этой величины.

Следует отметить, что речь идет не о пространственных

масштабах, а скорее о частотном диапазоне. В то же вре-

мя, высокоэнергетические события обычно захватывают

большие пространственные масштабы и сопровождают-

ся более низкочастотными волнами. Применялось непре-

рывное вейвлет-преобразование из библиотеки pywt для

Python [11].

2. Экспериментальные данные

В настоящей работе обрабатывались данные, получен-

ные в следующих экспериментах: AE42 и AE43 [12],
Westerly U_Y. Berea obr4_5800N Berea obr2 6000,

Westerly обр 1П [13–15], а также данные о сейсмической

активности в Италии в 1990−2000 годах в прямоуголь-

нике с координатами 36.663-46.89 N; 5.625-18.589 E из

каталога NEIC Геослужбы США.

Временные зависимости амплитуд (энергий) и внеш-

ней осевой нагрузки приведены на рис. 1.

В экспериментах, промаркированных AE42 и AE43

на установке, позволяющей управлять деформацией (по-
дробнее описано в работе [12]), подвергали нагружению
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Рис. 1 (продолжение).

цилиндрические образцы (h = 190.5mm, d = 76.2mm)
гранита Westerly (AE42) и гранита Harcourt (AE43).
Образцы деформировали в условиях постоянного все-
стороннего сжатия (давление 50± 0.2MPa) и одноос-
ного осевого нагружения. Для регистрации сигналов
AE, генерируемых в процессе нагружения, к образцу
крепили систему из шести пьезопреобразователей (ре-
зонансная частота 0.6MHz). В результате проведения
эксперимента была получена база данных, в которой
каждый сигнал AE характеризовался временем излуче-
ния, тремя координатами гипоцентра и амплитудой A,
приведенной к референс-сфере радиусом R f = 10mm.

Приведенная амплитуда является энергетической харак-
теристикой сигнала. Особенность этих экспериментов
состояла в том, что осевая нагрузка изменялась таким
образом, чтобы активность AE сигналов с амплитудой
выше пороговой не превышала заранее установленного
уровня.
Квазистатические испытания образцов гранита

Westerly (эксперименты, промаркированные
Westerly U_Y и Westerly 1П 18 kN) проводились в

условиях одноосного сжатия с постоянной скоростью
перемещения пуансонов 10 µm/min. Для мониторинга
акустической эмиссии был использован аппаратурный
комплекс Amsy-5 Vallen System. Два широкополосных
пьезопреобразователя акустической эмиссии AE105A

с полосой 450−1150 kHz крепились к торцам образца.
В процессе эксперимента формировалась база данных, в

которой записаны параметры отдельных сигналов АЭ —
время излучения, координата источника и энергия. При
лавинообразном нарастании активности акустической
эмиссии (более ста импульсов АЭ в секунду) процесс
деформирования был остановлен. Использованный
критерий остановки процесса деформирования в
совокупности с низкой скоростью деформирования
позволил с одной стороны сформировать магистральную
трещину, а с другой — сохранить целостность
образца. В эксперименте Westerly U_Y продолжали

регистрацию АЭ после разгрузки, в эксперименте
Westerly 1П 18 kN регистрация АЭ была прекращена
вскоре после остановки нагружения. Более подробно
эти эксперименты описаны в работах [13,14].
Программа нагружения образцов песчаника Berea

(эксперименты, промаркированные Berea obr4_5800N и
Berea obr2 6000) состояла из двух этапов. На первом эта-
пе образец подвергался квазистатическому одноосному
сжатию со скоростью нагружения (смещения нагружаю-

щих плит) 5µm/min. Сжатие осуществлялось до усилия,
равного 0.9 от Fmax (Fmax — разрушающая нагрузка,
определенная в предварительных экспериментах). Затем
образец выдерживался при постоянной деформации до
тех пор, пока активность АЭ не спадала до нуля. При

Физика твердого тела, 2025, том 67, вып. 12
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Нумерация образцов

Название
AE42 AE43

Westerly Berea Berea Westerly 1П
Italyэксперимента U_Y obr4_5800N obr2 6000 18 kN

№ эксперимента 1 2 3 4 5 6 7

Число сигналов 43983 36823 7815 30546 18056 3023 6835
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Рис. 2. Временные зависимости средней по масштабам глобальной энергии вейвлет- преобразования Em и энергии нижнего уровня

E(1) ≡ E1: a−f — эксперименты 1−6; g — зависимость энергии низшего масштабного уровня для землетрясений в Италии; h —

средняя энергия Em и средняя энергия событий в скользящем окне из 512 единиц Ea . Вертикальными линиями и числами отмечены

характерные временные точки (см. текст).

этом напряжение на образце экспоненциально спадало
со временем. Регистрация акустической эмиссии в про-

цессе нагружения осуществлялась с помощью системы
Amsy-5 Vallen (Германия). Два пьезопреобразователя

AE105A (рабочий частотный диапазон 450−1150 kHz)
крепились в специальных полых цилиндрических пли-

тах, с помощью которых непосредственно осуществля-
лось нагружение образца. Детально постановка экспери-

мента описана в работе [15]. В дальнейшем будем обо-
значать эти эксперименты номерами согласно таблице.

В таблицу также включены размеры базы данных для
каждого образца.
В экспериментах 3−6 было выполнено исследование

дефектной структуры (системы микротрещин) в объеме
методом рентгеновской микротомографии с помощью

томографа SkyScan 1172 (Bruker, Belgium). Установле-
но, что во всех образцах сформировалась магистраль-

ная трещина, при этом образцы сохранили целост-
ность [13,15].

3. Основные результаты

Банки данных по акустической эмиссии и сейсмиче-
скому сигналу разбивались на скользящие окна разме-

ром 512−2048 событий в зависимости от числа сигналов

в базе данных. В каждом окне рассчитывался непре-

рывный вейвлет-спектр и его энергетические характе-

ристики. Временной отсчет приписывался последнему

событию в окне. Следует отметить, что при таком

подходе независимой переменной является номер собы-

тия, а временная шкала представляет собой функцию

(вообще говоря нелинейную) от этого номера. Также

нужно отметить, что с увеличением масштаба зашум-

ление величины E(a), рассчитанной по дискретному

аналогу формулы (3) выражению (4), и усредненной

по масштабам энергии Em = mean(E(a)) увеличивалось.

Поэтому наряду со средними значениями Em исполь-

зовалась величина E(1) на самом низшем масштабном

уровне.

E(1) ≡ E1 =
1

N

N
∑

j=1

w(1, j)2. (4)

Зависимости от времени средней энергии Em и энер-

гии E(1) для изучаемых экспериментов приведены на

рис. 2. Общим свойством всех рассмотренных экспе-

риментов является увеличение рассматриваемых энер-

гетических характеристик перед разрушением образца

или крупного энергетического события. На рис. 2, a, b

вертикальными линиями с цифрами отмечен момент

Физика твердого тела, 2025, том 67, вып. 12
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Рис. 2 (продолжение).
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времени, в который величина корреляционной фрак-

тальной размерности, рассчитанной ранее [16], суще-

ственно уменьшается. Это уменьшение, как видно из

рис. 2, происходит раньше, чем величина Em успевает

существенно подрасти. На рис. 2, c−f вертикальными

линиями с цифрами отмечены времена максимальных

энергетических событий, произошедших в рассматри-

ваемый отрезок времени. Видно, что каждому из них

предшествует существенное увеличение величин Em и

E(1). На рис. 2, g максимумы значений E(1) совпадают

во времени с временами крупных землетрясений в реги-

оне. В то же время простое оконное среднее значение

энергии Ea и среднее по масштабам Em на рис. 2, h

таким свойством не обладает. Можно также отметить,

что основному максимуму на рис. 2, с−f предшествуют

явно выбивающиеся из тренда предварительные макси-

мумы, временные отсчеты которых также приведены

на рисунке. Их появление может быть связано с тем,

что тенденция к макроразрушению появляется раньше

формирования основного максимума, но далее процесс

не развивается, так как приток энергии, необходимый

для продолжения этого процесса недостаточен. Для

описания энергетического баланса в этом случае может

быть использована описанная ниже модель.

4. Обсуждение результатов

Увеличение средней по масштабам энергии Em, равно

как и ее составляющих E(a) перед высокоэнергети-

ческим событием свидетельствует о подготовке круп-

номасштабного разрушения на различных масштабных

уровнях (следует напомнить, что здесь речь не идет на-

прямую о пространственных масштабах, а о частотном
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Рис. 3. Временные зависимости простых оконных средних

значений энергии, усредненного глобального спектра энергии

и энергии первого масштабного уровня для эксперимента

AE42.

диапазоне). Таким образом, значительные увеличения

этих величин могут служить прогностическим призна-

ком предстоящего высокоэнергетического события. Ка-

залось бы, что простое оконное среднее также могло

служить предвестником разрушения (рис. 3), но как

следует из сравнения кривых на рис. 2, g и рис. 2, h, оно в

меньшей степени обладает этим свойством. Так, времена

максимумов зависимости величины E(1) совпадают с

временами крупных землетрясений, а времена максиму-

мов Ea нет. Из этого следует, что частотно-временная

локализация вейвлет-преобразования обладает улучшен-

ными прогностическими свойствами высокоэнергетиче-

ских событий, и события на низших временных масшта-

бах (высокочастотные) играют существенную роль для

прогноза разрушения.

5. Модель энергетического баланса
для описания акустической эмиссии
в гетерогенном материале

Рассматриваемая неавтономная нелинейная модель

изменения во времени энергии АЭ имеет следующий

вид:

dE

dt
= αE

(

1−
E

Emax

)

− βE〈E〉[t−τ1,t−τ1/2]

+ γ〈E〉[t−τ2,t−τ2/2]

(

1−
〈E〉[t−τ2,t−τ2/2]

Emax

)

+ v0 · t. (5)

Первый член этого уравнения отражает логистическое

накопление выделения энергии АЭ (быстрый начальный

рост и дальнейшее замедление за счет исчерпания сла-

бых мест — исходных концентраторов напряжения). Это
исчерпание слабых мест приводит также к релаксации

внутренних напряжений с характерным временем τ1 и

уменьшению вероятности новых разрывов, что описы-

вается вторым членом уравнения. Учет усреднения за

прошедший интервал означает память системы к про-

изошедшим ранее разрывам. События, произошедшие

”
недавно“, около момента времени t, привели к релак-

сации напряжений и невозможности, вследствие этого

новых акустических событий в этой области. Поэтому

наиболее сильное подавление текущей активности про-

исходит от событий, произошедших в середине периода

”
затишья“ τ1. Так как материал обычно находится под

действием внешних напряжений, то энергия в него

продолжает поступать, происходит новое перераспре-

деление внутренних напряжений, и возникают новые

концентраторы (обычно на более крупных масштабах —

макротрещины). Поэтому энерговыделение АЭ вновь

увеличивается, что и описывает третий член уравнения.

Время релаксации τ2 > τ1, так как предполагается, что

разрушение перешло на более высокие масштабные

уровни. Круглая скобка в предпоследнем члене означает

ограничение того, что новые очаги активируются толь-

ко, если система еще не достигла критической повре-

жденности. Последний член v0 · t обеспечивает приток
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Рис. 4. Зависимость от времени энерговыделения АЭ, полу-

ченная как решение уравнения (5).

энергии из нагружающего устройства в предположении

линейно зависящей от времени внешней силы.

Численное решение уравнения (5) приведено на рис. 4

для нулевого начального условия E0 = 0 и следую-

щих значений параметров: α = 0.15, β = 0.08, γ = 0.4,

τ1 = 15, τ2 = 40, Emax = 10, v0 = 0.01.

Видно, что решение на рис. 4 действительно описыва-

ет предварительный максимум, наблюдаемый в экспери-

ментах на рис. 2, c−f. Однако нужно отметить, что в за-

висимости от значений параметров, входящих в (5), этих
максимумов может быть несколько или не быть вообще.

Поэтому, несмотря на то, что модель представляется

разумной, она имеет чисто описательный характер и не

может быть использована для выявления прогностиче-

ских свойств разрушения материала. В создании моде-

ли принимала участие нейросеть DEEPSEEK. Следует

отметить, что введение асимметричных запаздывающих

интервалов позволяет перейти от простой регистрации

АЭ к моделированию внутренней динамики поврежде-

ний в материале, что является более мощным инстру-

ментом для диагностики и прогнозирования. Такого рода

модели могут быть использованы также для описания

форшоков и афтершоков в земной коре.

6. Заключение

Таким образом, выявлено, что перед разрушением

материалов или крупных акустических (сейсмических)
событий происходит накопление энергии на различных

временных масштабах, что может служить прогности-

ческим признаком этих событий. Применение данного

прогностического признака имеет преимущество перед

фрактальными признаками, такими как параметр зако-

на Гутенберга–Рихтера (b-value), корреляционная фрак-

тальная размерность (d-value), изменение ширины муль-

тифрактального спектра, так как его расчет не требует

применения регрессии для расчета параметров и связан-

ных с ней трудностей автоматического выбора диапазона

масштабов, на которых эта регрессия производится.

В то же время изменение d-value происходит раньше

во времени. (рис. 2, a, b). Отмечено, что даже события

на низших временных масштабах (высокочастотные)
играют существенную роль для прогноза разрушения.

Также отмечено, что основному максимуму энергии

в ряде случаев предшествуют явно выбивающиеся из

тренда предварительные максимумы, и построена опи-

сывающая их кинетическая модель энерговыделения АЭ.
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