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Для предложенного ранее определения (обратной) температуры адиабатически изолированного тела в виде

производной логарифма плотности состояний канонического распределения по энергии системы найдена

связь температуры с минимальным периодом некоторого колебательного движения атомов в стационарном

режиме. Вместе с этим показано, что температура определяется энергией колебаний, равной разности полной

энергии тела и потенциальной энергии деформации. Деформация, с учетом ангармонизма, равна сумме

механической деформации во внешнем силовом поле и теплового расширения. При наличии диссипации

или адиабатическом деформировании тела его температура определяется приближенно периодом
”
почти“

колебательного движения в конфигурационном пространстве.
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1. Введение

Вопрос о понятии температуры и ее связи с механи-

кой возникает при анализе термоупругого эффекта, в ко-

тором наблюдается небольшое изменение температуры

тела при его адиабатическом механическом деформи-

ровании [1,2]. При этом использование статистической

механики в форме канонического распределения Гибб-

са вызывает сомнение, поскольку оно предсказывает

ненулевые флуктуации энергии, тогда как у изолиро-

ванной системы энергия постоянна [3]. Чисто механи-

ческое объяснение термоупругого эффекта, основанное

на теореме об адиабатическом инварианте [4], в случае

одного осциллятора, предложено в [5]. Здесь параметри-

ческое возбуждение рассматривается в гармоническом

приближении, а роль ангармонизма сводится к влиянию

механической нагрузки на параметры гармонических

колебаний. В первом приближении теории возмущений

по константам ангармонизма такого объяснения термо-

упругого эффекта достаточно. Однако, уже в следую-

щем порядке существенным в том же параметрическом

возбуждении будет эффект термического расширения.

Целью данной работы является последовательный учет

эффектов ангармонизма в термомеханических явлениях.

Для сложной механической системы с нелинейными

внутренними силами необходимо использовать стати-

стические методы с подходящим статистическим распре-

делением. Для изолированного тела нам нужно найти

замену каноническому распределению [3]. Мы оставим

в стороне отклонения от канонического распределения,

вызванные другими причинами. Например, в случае,

когда
”
термостат“ имеет конечные размеры [6], или

система является неэргодической [7]. Здесь есть так-

же возможности для математических обобщений [8].
В данной работе для изолированной системы будет

использовано микроканоническое распределение Гиббса.

Переход от канонического распределении к микрокано-

ническому осуществляется следующим образом. Стати-

стическая сумма канонического ансамбля Гиббса может

быть представлена в виде [9]:

Z(β) =

∞
∫

0

M(W ) exp(−βW )dW, (1)

где M(W ) — плотность состояний системы, β = 1/kBT .

Интеграл в (1) имеет вид преобразования Лапласа [10].
Тогда обратное преобразование Лапласа определяет

функцию плотности состояний [11]:

M(W ) =
1

2πi

+i∞
∫

−i∞

Z(β) exp(βW )dβ. (2)

Температуру изолированного тела здесь определим че-

рез среднее значение β для микроканонического распре-

деления:
1

kBT
=

∂ lnM(W )

∂W
. (3)

Очевидно, M(W ) совпадает со статистической суммой

для изолированной системы, определяемой аналогич-

но [9], но в рамках ковариантной квантовой механи-

ки [12]. Наконец, статистическую сумму канонического

ансамбля Гиббса находим как след статистического

оператора,

Z(β) = Tr ρ̂ (β) (4)
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где статистический оператор, в свою очередь, является
решением параболического уравнения [9]

−~
∂ρ̂

∂β
= Ĥ ρ̂ (5)

с начальным условием ρ̂ (0) = 1̂, где 1̂ — единичный
оператор, Ĥ — оператор Гамильтона рассматриваемой
системы.
При определении температуры изолированного тела

по формуле (3) возникает вопрос. Согласно (3), эта
температура зависит от полной энергии тела W . Однако,
при механическом нагружении тело приобретает стати-
ческую энергию упругой деформации, которая, очевид-
но, не связана напрямую с внутренним теплом и темпе-
ратурой тела. Если принять во внимание нелинейность
сил межатомного взаимодействия (ангармонизм) к меха-
нической деформации тела добавляется тепловая дефор-
мация [13,14]. В работе [15] высказано предположение,
что суммарная упругая энергия всех видов стационарной
деформации тела должна быть вычтена из его полной
энергии W , а остаток мы называем энергией колебаний
и напрямую связываем с температурой тела. В данной
работе получено обоснование этого предположения в
самом общем виде.

2. Период колебаний и температура
изолированной механической
системы

Конкретизируем вид функции Гамильтона системы во
внешнем силовом поле:

H =
1

2
m−1

lk pl pk + V (q) − Fkqk , (6)

где mlk — положительно определенная, симметричная
матрица масс. Предполагаем, что

∑

k

Fk = 0, (7)

а также считаем центр масс покоящимся. Для простоты
рассматриваем одноосное силовое поле, в противном
случае необходимы дополнительные условия равнове-
сия. Представим матрицу плотности ρ(q, q′; β) в виде
функционального интеграла Фейнмана [9]:

ρ(q, q′; β) =

∫

Dq exp

{

−
~β
∫

0

dβ

[

1

2
mlk q̇l q̇k + V−Fkqk

]}

.

(8)
Здесь действие в показателе экспоненты представлено
в евклидовой форме. Полагая q′ = q получаем плот-
ность вероятности ρ(q, q; β) того, что система будет
обнаружена в окрестности точки q конфигурационного
пространства, а

Z(β) =

∫

dNqρ(q, q; β) (9)

равно статистической сумме канонического распределе-
ния. Это выражение следует подставить в формулу (2)
для функции плотности состояний.

Для нахождения плотности состояний M(W ) восполь-

зуемся методом перевала [16]. При этом, формируя

общий показатель экспоненты под знаком интеграла (2),
мы добавим классическому действию слагаемое — βW .

Оценке подлежат сразу три интеграла: интеграл по β

в формуле (2), N — кратный интеграл по совпада-

ющим координатам (9) (N — число степеней свобо-

ды системы) и функциональный интеграл (8). Сначала
оценим последние два интеграла. Необходимо найти

экстремум евклидова действия в показателе экспоненты

в (8) (с добавкой βW ) при дополнительных условиях,

что траектории являются замкнутыми, qk(0) = qk(β),
а также гладкими: q̇k(0) = q̇k(β). Последнее вытекает

из условия экстремума для интеграла (9): производные
действия по координатам совпадающих граничных точек

qk(0) = qk(β) равны нулю. Метод перевала для оценки

последних двух интегралов дает экспоненциальное вы-

ражение

Z(β) = exp{−9},
где

9 = S̃ − 1

2
ln det

δ2 S̃[q̃]

δqk(β)δql(β)
(10)

— свободная энергия системы. Здесь q̃k(β) — замкнутая

классическая траектория системы в конфигурационном

пространстве,

S̃ =

~β
∫

0

dβ

[

1

2
mlk ˜̇qk ˜̇ql + V − Fk q̃k −W

]

(11)

— действие на классической траектории, а

δ2S̃[q̃]/δqk(β)δql(β) — вариационная производная

действия второго порядка, вычисленная на классической

траектории (однопетлевое приближение).
Чтобы понять о какой замкнутой классической тра-

ектории здесь может идти речь, ограничимся вначале

квазиклассическим приближением (~ → 0), когда вто-

рым слагаемым в (10) можно пренебречь. Подчеркнем,

что замкнутая классическая траектория должна быть

нетривиальной (отличной от точки минимума потенци-

ала) при заданной ненулевой энергии системы. Тогда

метод перевала дает для оценки интеграла (2) условие

экстремума по параметру β :

HE −W = 0, (12)

где

HE = −1

2
m−1

lk pl pk + V (q) − Fkqk (13)

— евклидова функция Гамильтона системы, которое, с

учетом pk = mlk q̇l дает искомое экстремальное значе-

ние β :

~β0 =

∮
√

mlkdqldqk
√

2(V − Fkqk −W )
, (14)

где интегрирование ведется по экстремальной замкнутой

траектории системы в конфигурационном пространстве.
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Но в евклидовом представлении такой траектории, по-

мимо тривиальной траектории, не существует. Однако,

здесь мы учитываем [11], что интегрирование в (2)
ведется по мнимым значениям β, так что величина

i~β0 =

∮
√

mlkdqldqk
√

2(W −V + Fkqk)
, (15)

имеет осмысленное значение в динамике с ненулевой

энергией и с вещественным временем. Это действи-

тельно так, поскольку (15) равно времени движения по

некоторой замкнутой траектории в конфигурационном

пространстве системы. Мы будем исходить из того, что

рассматриваемая изолированная система консервативна

и несингулярна, ее траектория в конфигурационном

(и фазовом) пространстве, при заданной энергии W ,

целиком лежит в ограниченной области конфигурацион-

ного пространства. Это значит, что траектория со време-

нем попадет в сколь угодно малую окрестность началь-

ной точки. Если воспользоваться теорией устойчивости

решений обыкновенных дифференциальных уравнений

Ляпунова [17], можно ожидать, что малая вариация

начальных данных приведет к пересечению траектории с

начальной точкой. Значит, периодические решения в рас-

сматриваемой механической задаче существуют. Коли

так, повторение указанного движения имеет большие пе-

риоды n~β0. Нас интересует наименьший период колеба-

ний системы при заданной энергии W . Получив решение

задачи экстремума в области механического движения

системы с вещественным временем, следует вернуться

в евклидову область статистической механики. Для того

чтобы статистическая сумма канонического распределе-

ния имела смысл и была вещественной, в формуле (1)
следует произвести замену W → −iW (см. [11]). Такую
же замену произведем в формулах (2) и (3). После этого

получим также математически осмысленное выражение

для температуры:

1

kBT
= iβ0 =

1

~

∮
√

mlkdqldqk
√

2(W −V + Fkqk)
. (16)

Однако мы не можем принять T0 в качестве температуры

тела без учета второго слагаемого в (10). Его смысл

проясняется в гармоническом приближении или, иначе,

модели Эйнштейна твердого тела как ансамбля гармони-

ческих осцилляторов. В этом приближении детерминант

сводится к произведению [9]:

N
∏

k=1

(

sh
~ωkβ

2

)2

, (17)

где ωk — частоты осцилляторов (фононов) в ансамбле,

и равен Z−2
N (β), где Z(N)(β) — статистическая сумма

канонического ансамбля осцилляторов. Отсюда мы мо-

жем найти плотность состояний M(W ) и температуру

ансамбля по формулам (2) и (3), как это сделано

в [12]. Заметим, что в гармоническом приближении

также существует периодическое движение с наимень-

шим периодом — это коллективное колебание, соответ-

ствующее оптическому фонону наибольшей частоты ωk .

При этом потенциальная энергия гармонических коле-

баний и, соответственно, частоты фононов не зависят

от коллективного фонового движения. Поэтому все

построения в [12] остаются в силе, а квазиклассический

вклад в температуру (16) мы исключим выбором ее

начала отсчета. Возвращаясь к общему выражению для

свободной энергии (10), получаем следующее условие

экстремума для оценки интеграла (2):

d9

dβ
= W, (18)

которое является обыкновенным дифференциальным

уравнением с основной переменной β . Именно это

уравнение необходимо использовать для учета ангар-

монизма. Теперь коллективное колебательное движение

атомов в меру ангармонизма модулирует потенциаль-

ную энергию и частоты фононов. Как мы уже знаем,

решение уравнения (18) относительно β следует искать

в виде β0 (16) на периодической траектории систе-

мы с минимальным периодом. Однако, для физически

осмысленного определения температуры, из найденно-

го решения T0 = 1/kBβ0 следует вычесть предельное

значение температуры при W → 0. Тем самым, при

минимальной энергии температура, как и следует, будет

равна нулю. На заключительном этапе в формулах (2)
и (3) снова делаем замену W → −iW . Таким образом,

мы получим определение температуры изолированной

системы с учетом ангармонизма. Полученный результат

показывает, что температура эффективно определяется

именно энергией колебаний

W −V
(

〈qk〉
)

+ Fk〈qk〉,

где, с учетом ангармонизма, 〈qk〉 равно сумме механиче-

ской и тепловой деформаций. При этом потенциальная

энергия внешних сил Fk〈qk〉 также включена в баланс

энергии.

3. Заключение

Мы рассмотрели идеализированный случай изолиро-

ванного тела. В реальных телах всегда имеется дисси-

пация, связанная с пластической деформацией, и потеря

энергии, например, за счет теплового излучения. В та-

ком случае можно говорить о
”
почти“ периодических

циклах в атомной динамике тела, и соответственно,

о приближенном определении температуры. К этому

следует прибавить и адиабатический характер механи-

ческого деформирования, который означает не только

тепловую изоляцию тела, но и медленное изменение

нагрузки со временем, допускающее установление почти

периодического режима внутренней динамики атомов.

Баланс энергии при адиабатическом механическом де-

формировании рассмотрен в [18].
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