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Секундная фосфоресценция синтетических HPHT-бриллиантов
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При комнатной температуре в воздухе исследовалась импульсная катодолюминесценция ограненных и

отшлифованных алмазов (бриллиантов), синтезированных методом high pressure high temperature (HPHT),
возбуждаемая импульсным электронным пучком. Спектры люминесценции всех бриллиантов содержат одну

неэлементарную полосу, максимум которой варьируется в диапазоне от 490 до 504 nm. После выключения

электронного пучка наблюдается секундная фосфоресценция с центром при 489 nm. Изучалась кинетика

затухания люминесценции на длинноволновом крыле полосы при 520 nm. Были получены пять характерных

времен, три из которых, τ1 = 0.18, τ2 = 2 и τ3 = 18ms, относятся к кинетике A-полосы, а два остальных,

τ4 = 190ms и τ5 = 4.5 s, связаны с излучением молекулы C2. Она образуется из междоузельных атомов

углерода под действием высоких давлений и температур при HPHT-синтезе алмазов и внедрением их в

пустоты с тетраэдрической и гексагональной симметрией.
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1. Введение

Люминесценция алмазов хорошо изучена, а также

определена природа большинства ее центров свече-

ния [1–3]. В частности, в спектрах рентгено- и катодо-

люминесценции (РЛ и КЛ) природных и синтетических

алмазов часто наблюдается широкая бесструктурная

A-полоса с максимумом, изменяющимся в диапазоне

400− 480 nm [3–6]. На возбуждении именно этой полосы

основан метод РЛ-сепарации алмазов [7]. Высвечивание
А-полосы имеет сложную кинетику — в ней проявля-

ется медленная (> 10ms) и быстрая (< 1ms) компо-

ненты [6,8,9]. В [9] показано, что в алмазах, синтезиро-

ванных способом high pressure high temperature (HPHT),
при фотовозбуждении с длиной волны 235 nm, а также

в КЛ наблюдается полоса фосфоресценции, входящая в

состав A-полосы, а положение ее максимума зависит от

кристаллической плоскости, с которой регистрируется

спектр. При комнатной температуре образцов максимум

полосы фосфоресценции с кристаллической плоскости

B {001} приходится на длину волны 484 nm, а с плоско-

сти C {111} — на 494 nm, причем полоса фосфоресцен-

ции с максимумом при более низкой энергии затухает

быстрее, чем с максимумом при более высокой энергии.

При возбуждении ультрафиолетовым излучением на-

блюдается люминесценция в более широком спектраль-

ном диапазоне [10–12]. В голубой области фотолю-

минесценции (ФЛ) наблюдается свечение N3-центра с

бесфононной линией 415.2 nm и временем затухания

40 ns, в желто-зеленой области — свечение семейства

центров S и H. Центр S1 дает две бесфононные линии

при 503.4 и 510.7 nm с временами затухания 3.2 и 10.4ms

соответственно. Центр S2 излучает три бесфононные

линии, две из которых, 477.8 и 489.1 nm, имеют оди-

наковое характерное время 3.5µs, а третья линия при

523.3 nm — 0.24ms. Центры H3 и H4 с бесфононными

линиями при 496.7 и 503.2 nm имеют времена 17−19 ns.

Также в спектрах ФЛ ряда образцов алмаза наряду с

указанными линиями фиксируется широкая полоса фос-

форесценции с максимумом в зеленой области спектра

при 523 nm [9,10]. В [10] эту полосу, хорошо выделяемую

при задержке регистрации спектра на 20µs относи-

тельно выключения возбуждения, в образцах природных

алмазов с глубоких горизонтов трубок
”
Мир“ и

”
Интер-

национальная“ связывают с наличием S2- и S3-дефектов.

Эта же полоса являлась доминирующей в спектрах ФЛ,

РЛ и КЛ микронных кристаллов алмаза, синтезирован-

ных HPHT-методом [11]. Авторы связывают ее с H3-

дефектами, причем спектральные характеристики этой

полосы фосфоресценции отличаются от характеристик

фосфоресценции в А-полосе.

В импульсной КЛ (ИКЛ) синтетических алмазов,

изготовленных HPHT-методом, наблюдается широкая

бесструктурная полоса люминесценции с максимумом,

смещающимся в пределах от 490 до 504 nm от образца

к образцу и имеющая при комнатной температуре слож-
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ную кинетику с несколькими временными компонента-

ми, один из которых составляет единицы секунд. Целью

настоящей работы является выяснение природы данной

люминесценции.

2. Аппаратура и объекты исследования

Исследовалось 102 образца круглых (КР-57) бес-

цветных синтетических ограненных и отшлифован-

ных алмазов (бриллиантов) разного качества массой

0.028 − 0.380 ct, изготовленных HPHT-методом. ИКЛ

образцов возбуждалась и исследовалась на установке

КЛАВИ [13]. Образцы облучались в воздухе при комнат-

ной температуре электронным пучком длительностью

2 ns с плотностью тока 130A/cm2 при средней энергии

электронов 170 keV. Спектр ИКЛ регистрировался в

диапазоне 350 − 850 nm в режиме интегрирования по

времени:

I(λ) =
1

N

T2
∫

T1

i(λ, t)dt,

где i(λ, t) — текущая интенсивность свечения, T1 и T2 —

начало и конец регистрации, 1T = 50ms — экспозиция,

N = 40 — число импульсов, по которым проводилось

усреднение спектральной информации. Люминесценция

регистрировалась в воздухе при комнатной температуре

со всей облучаемой поверхности образца. Погрешность

измерения длины волны не превышала 0.5 nm.

Для изучения кинетики полос люминесценции поток

излучения от образца посредством многожильного све-

товода выводился на вход спектрометрического ком-

плекса производства ООО
”
ОКБ СПЕКТР“ (г. Санкт-

Петербург) на базе монохроматора МДР-41 и фотоумно-

жителя ФЭУ-100, сигнал с которого через коаксиальный

кабель длиной 1.5m с волновым сопротивлением 50�

подавался на входное сопротивление цифрового осцил-

лографа Keysight DSOX2014A. Кинетическая аппаратная

функция измерительной цепи имела вид спадающей

экспоненты с характерным временем τ = RC = 169 µs,

где R = 1M� — входное сопротивление осциллогра-

фа, C — электрическая емкость. В такой схеме из-

меряемое падение напряжения UR на сопротивлении

1M� представляет собой свертку фототока, вызванного

люминесценцией, и кинетической аппаратной функции.

Методика расчета кинетических параметров в данном

случае включает процедуру деконволюции свертки двух

сигналов [14]. Погрешность позицирования длины волны

при кинетических измерениях была не хуже ±0.3 nm

при ширине спектральной аппаратной функции систе-

мы 4 nm.

Спектры фотолюминесценции получены с помощью

спектрометра КРС Horiba LabRam HR800 Evolution

при возбуждении лазерным излучением с длиной волны

488 nm (Ar-лазер) в интервале длин волн 487−900 nm

при охлаждении образцов до 83K. Регистрация спек-

тров проводилась через монохроматор Черни–Тёрнера

с дифракционной решеткой 1800 gr/mm многоканаль-

ным кремниевым электрически охлаждаемым CCD-

детектором.

Спектры инфракрасного поглощения (ИК-спектры)
в области 600−4000 cm−1 регистрировались в режи-

ме
”
на отражение“ с помощью инфракрасного мик-

роскопа MultuScope, совмещённого со спектрометром

Spectrum One (Perkin Elmer). Усреднение проводилось

по 200 интерферограммам со спектральным разрешени-

ем 4 cm−1.

3. Результаты и их обсуждение

На рис. 1, a представлены типовые спектры ИКЛ

образцов синтетических HPHT-бриллиантов, зарегистри-

рованные во время действия электронного пучка. Люми-

несценция представляет собой широкие полосы, конту-

ры которых в шкале волновых чисел (cm−1) описыва-

ются кривой Гаусса. Для демонстрации были выбраны
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Рис. 1. a) Характерные спектры ИКЛ синтетических брил-

лиантов, соответствующие самой минимальной (кривая 1) и

максимальной (2) длинам волн максимумов полос люминес-

ценции, зафиксированным среди 102 образцов; b) распределе-

ние параметров полос (положение и ширина), полученных при

аппроксимации кривой Гаусса.
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спектры, соответствующие минимальной (490.0 nm, кри-

вая 1) и максимальной (504.0 nm, кривая 2) длинам волн

полос люминесценции среди всех зарегистрированных

спектров. Хаотичное распределение спектральных пара-

метров, таких как положение полосы и ее ширина, для

всех исследуемых образцов приведено на рис. 1, b, где

цифрами обозначены точки, соответствующие спектрам,

представленным на рис. 1, a.

После прекращения возбуждения у всех бриллиантов

наблюдалась интенсивная голубая фосфоресценция в

течение нескольких секунд. Для выделения структуры

и нахождения параметров фосфоресцирующей полосы

была проведена регистрация спектров у десяти про-

извольно взятых образцов с задержкой в 1, 3, 5 и

7 s после выключения электронного пучка. С помощью

аппроксимации кривой Гаусса спектральных полос были

определены положение, ширина и интенсивность. Длины

волн полос секундной фосфоресценции у всех образцов

сдвинулись в коротковолновую область на величину

от 5 до 10 nm, и сами полосы уширились на 2−5 nm

относительно полосы люминесценции этих же образцов,

но зарегистрированных во время действия электронного

пучка. При этом длина волны полосы фосфоресценции с

точностью 1 nm составила величину 489 nm. Было также

оценено время спада фосфоресценции путем проведения

огибающей в виде затухающей экспоненциальной функ-

ции по интенсивностям полос, измеренным в 1, 3, 5 и

7 s после выключения возбуждения. Характерное время

варьировалось от 2 до 5.5 s.

Для дальнейшего изучения данного центра люминес-

ценции регистрировались кинетические кривые, но не

в максимуме полосы, а на ее длинноволновом крыле

при 520 nm, где вероятнее может быть зафиксирована

кинетика не только A-полосы, но и перекрывающихся

с ней центров. Осциллограммы регистрировались на

развертках 10, 100 и 500ms на клетку. Их деконволюция

приведена на рис. 2 для всех разверток. Все кинетиче-

ские кривые имеют однотипный вид.

Обработка этих сигналов показала, что они аппрокси-

мируются суммой трех экспоненциальных функций для

каждой развертки:

I = I1 exp

(

−
t

τ1

)

+ I2 exp

(

−
t

τ2

)

+ I3 exp

(

−
t

τ3

)

для развертки 10ms,

I = I4 exp

(

−
t

τ2

)

+ I5 exp

(

−
t

τ3

)

+ I6 exp

(

−
t

τ4

)

для развертки 100ms,

I = I7 exp

(

−
t

τ3

)

+ I8 exp

(

−
t

τ4

)

+ I9 exp

(

−
t

τ5

)

для развертки 500ms.

В общей сложности у бриллиантов наблюдается

5 характерных времен, средние значения которых при-

ведены в таблице; здесь же указана соответствующая

развертка и статистический вес, вносимый в интеграль-

ную интенсивность полосы каждой экспоненциальной

функцией.

Видно, что больший статистический вес соответствует

меньшему определяемому времени для каждой раз-

вертки.

Регистрация кинетики в разных временных диапа-

зонах и дальнейшее использование методики обработ-

ки временных кривых [14] позволили зарегистрировать

три компонента A-полосы: τ1 (0.18ms), τ2 (2.0ms) и

τ3 (18ms), каждый из которых имеет большой статисти-

ческий вес при развертках осциллографа 10ms, 100ms

и 500ms.

Не у всех образцов удавалось зарегистрировать харак-

терное время τ4, а статистический вес экспоненциальной

функции, в которую входит параметр τ5, является незна-

чительным. При этом параметр τ5 имеет такую же вели-

чину, которая была получена при регистрации спектра

через 1, 3, 5 и 7 s после выключения возбуждения по

кривым, огибающим максимумы полос фосфоресценции.

Регистрация спектров фотолюминесценции при воз-

буждении Ar-лазером с длиной волны 488 nm показала

однотипные спектры (рис. 3). Регистрируемый диапазон

захватывает два порядка комбинационного рассеяния,

которое на рисунке обозначено в виде заштрихован-

ных областей. В спектрах наблюдаются слабые линии

при 537, 575, 585 и 637 nm, связанные с азотно-

вакансионными дефектами (∗N3V
−), (NV0), (N3V

0) и

(NV−) соответственно [1]. У некоторых образцов в

ближней инфракрасной области проявляется дублет при

883−884 nm (рис. 3, кривая 2), соответствующий нике-

левому центру ∗NiV+ [1], образующемуся в условиях

HPHT-синтеза. Других особенностей не проявлялось.

В спектрах же ИК-поглощения, наоборот, от образца

к образцу присутствовали разнообразные линии (рис. 4).
Помимо решеточного поглощения в спектрах проявля-

ются линии, характерные для A-, B1- и C-дефектов,

которые связаны с наличием примеси азота в образ-

цах [1]; линии, показывающие присутствие в образцах

примеси бора (B); а также структурированная система

Y-дефектов, которая наблюдается в алмазах, имеющих

зоны, насыщенные различными включениями [1,15].
Таким образом, фосфоресценция не связана с при-

месным составом, и ее стабильность в разных образцах

бриллиантов (положение при 489 nm) указывает на то,

что этот центр образуется за счет образования одина-

кового собственного дефекта кристаллической решетки

для всех фосфоресцирующих образцов.

В решетке алмаза имеются две высокосимметрич-

ные междоузельные позиции: тетраэдрическая и гекса-

гональная. С помощью методов численного моделирова-

ния [15] проводились расчеты электронных, колебатель-

ных, структурных характеристик междоузельных атомов

углерода, которые показали, что полная энергия алмаза

с нейтральным атомом углерода в гексагональной пози-

ции значительно меньше, чем в тетраэдрической [15,16].
В работах [15,17] говорится, что большинство данных

Физика твердого тела, 2025, том 67, вып. 12
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Рис. 2. Кинетические зависимости, зарегистрированные на развертках осциллографа a) 10, b) 100 и c) 500ms, и их аппроксимации

(красные кривые).

Статистические веса экспоненциальных функций с соответствующими характерными временами на разных развертках

Временная развертка
τ1 = 0.18ms τ2 = 2.0ms τ3 = 18ms τ4 = 190ms τ5 = 4.5 s

на клетку, ms

10 0.81 0.13 0.06 − −

100 − 0.72 0.20 0.08 −

500 − − 0.75 0.17 0.08

по междоузельным атомам углерода для моделей микро-

структуры центров получено с помощью электронного

парамагнитного резонанса (активные центры R1, R2,

O3). В работе [18] рассматривается проявление междо-

узельного атома углерода в инфракрасных спектрах при-

родных алмазов (линии при 1530, 1570 cm−1), которые в
наших спектрах не наблюдались. С междоузельным де-

фектом связывают и поглощение на 1.685 и 1.859 eV [15].
Но до сих пор считается, что эти дефекты мало изучены.

Нет прямых, однозначно интерпретируемых эксперимен-

тальных результатов, касающихся свойств собственных

междоузельных атомов. И это в первую очередь связано

с тем, что междоузельный атом углерода имеет высокую

подвижность в алмазе даже при комнатной температу-

ре [15,17].

В настоящей работе исследуются HPHT-образцы, ко-

торые выращивались в условиях высоких давлений и

температуры, где обязательно происходит образование

междоузельных собственных дефектов. Двигаясь по кри-

сталлу, атомы углерода взаимодействуют друг с другом,

что приводит к формированию в структуре алмаза моле-

кулы С2. Согласно теории молекулярных орбиталей, две

атомные углеродные (px ) орбитали с одинаковой энерги-

ей и одинаковой тетраэдрической симметрией образуют
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Рис. 5. Схема образования излучающего центра, связанного с

секундной фосфоресценцией.

молекулу C2 (tetr.) со связывающей σ b
x и разрыхляющей

σ ab
x молекулярными орбиталями. То же самое про-

исходит с углеродными px -орбиталями гексагональной

симметрии, которые энергетически расположены ниже.

Происходит образование дефекта C2 (hexag.) со своими

σ b
x - и σ ab

x -орбиталями (рис. 5). Разрешенный переход

по орбитальному квантовому числу со связывающей

орбитали σ b
x в состояния с разрыхляющими орбиталями

πab
y или πab

z происходит с излучением люминесценции с

длиной волны 489 nm.

Однако этот процесс растянут по времени в среднем

на 4.5 s — это время безызлучательной передачи энергии

с σ b
x (tetr.) на σ b

x (hexag.), так как образованные мо-

лекулы C2 позиционно разнесены друг от друга. После

высвечивания молекула C2 распадается с образованием

подвижных атомов углерода.

Время τ4 (190ms), как было указано выше, регистри-

ровалось не у всех образцов. Мы предполагаем, что

широкую полосу импульсной катодолюминесценции в

т. ч. формируют линии излучения C2, соответствующие

системе Свана [18]. В этой системе для свободной моле-

кулы длина волны самого интенсивного колебательного

перехода (0− 0) составляет 516.5 nm. Кинетические из-

мерения проводились на длине волны 520 nm. Учитывая

дисперсию прибора и то, что молекула C2 в кристалле

является подвижной и возможно смещение положения

линии, вполне вероятно, что в измеряемый диапазон в

каких-то случаях попадает это излучение, а в каких-то

оно не наблюдается. Согласно [18] электронный переход

запрещен по правилам отбора, что, в свою очередь,

определяет длительное время жизни верхнего уровня.

4. Заключение

В спектре ИКЛ бриллиантов, синтезированных HPHT-

методом, наблюдается полоса, изменяющая свое положе-

ние в диапазоне 490 − 504 nm. После выключения воз-

буждения во всех исследованных 102 образцах фиксиру-

ется секундная фосфоресценция, длина волны которой

приходится на 489 nm. Кинетика всей полосы является

сложной. На разных развертках осциллографа были

зарегистрированы пять характерных времен, три из них

соответствуют кинетике A-полосы (0.18, 2 и 18ms). Два
других времени связаны с образованием собственных

дефектов, представляющих собой междоузельные актив-

ные атомы углерода, способные взаимодействовать друг

с другом с образованием молекулы C2. Структурное

разделение таких дефектов происходит из-за наличия

двух высокосимметричных междоузельных позиций, тет-

раэдрической и гексагональной, между которыми проис-

ходит безызлучательная передача энергии в течение 4.5 s

с последующим излучением при 489 nm. Кроме того,

полосу ИКЛ образуют линии излучения молекулярного

углерода из системы Свана с характерным временем

жизни электронного уровня 190ms.
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