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Работа посвящена интерпретации результатов исследования пленки гибридного металлоорганического

перовскита типа метиламмоний-Pb-галоген3 , модифицированного наноалмазами детонационного синтеза.

Наиболее ярким из этих результатов является способность пленок частично восстанавливать свою

дифференциальную проводимость G после значительного спада, наблюдавшегося в ходе экспериментов по

прошествии времени порядка нескольких и до десятков суток. Интерпретация основана на моделировании

достаточно сложной структуры полей, создаваемых функциональными группами на периферии наноалмазных

частиц и достигающих значений порядка межатомных полей.

Ключевые слова: галогенидные перовскиты, наноалмазы, детонационный синтез, дифференциальная

проводимость, квантовохимическое моделирование.

DOI: 10.61011/FTT.2025.12.62420.324-25

1. Введение

В [1] нами был установлен ряд необычных свойств

пленок гибридных металлоорганических перовскитов

(hybrid perovskites — HP), наблюдавшихся при их мо-

дификации наноалмазными частицами детонационного

синтеза DND (detonation nanodiamonds). Наиболее су-

щественным представляется способность пленок частич-

но восстанавливать свою дифференциальную проводи-

мость G, снижавшуюся с начала проведения экспери-

ментов (как у всех HP [1]) по прошествии значительного

времени — нескольких десятков суток. Отметим, что и

начальное снижение проводимости G в течение первых

нескольких суток было не слишком большим (не более

50%).
Настоящая работа посвящена интерпретации наблю-

давшихся тенденций, а также обсуждению вольтам-

перных характеристик модифицированного гибридного

перовскита. Напомним, что перовскиты HP — класс

материалов с общей формулой ABX3, где A — органи-

ческая функциональная группа — например, метилам-

моний (МА) или формамидий (FA), B — атом тяжелого

металла (наиболее распространенный вариант — свинец

Pb), X — тяжелый галоген (как правило, йод или бром);
с последней компонентой связан и второй вариант про-

чтения аббревиатуры HP — галогенидный перовскит [2].
Гибридные перовскиты характеризуются высокими

светопоглощающими свойствами, способностью к пе-

реносу заряда и простотой химических растворных

методов при синтезе и обработке. Со временем был

осознан потенциал НР и в других областях — мемри-

стивные структуры [3], светоизлучающие диоды и ла-

зеры [4], фотодетекторы, сегнетоэлектрические прило-

жения. Последнее направление выглядит естественным,

если вспомнить классические сегнетоэлектрики с перов-

скитной структурой решетки — титанаты бария, свинца,

стронция, ниобат калия и ряд других [5]. Сегнетоэлек-
трические свойства обнаружены в настоящее время как

у классических HP [6], так и новых, разрабатывае-

мых специально для повышения основных параметров

сегнетоэлектриков — поляризуемости и температуры

Кюри [7].
Сегнетоэлектрические НР упоминаются нами здесь

в связи с возможной интерпретацией ремиссии диффе-

ренциальной проводимости в заключительной части [1].
Интерпретация аппелирует к возникновению встроен-

ных электрических полей в объеме НР. Действительно,

почти весь объем, занимаемый зернами перовскита, на-

ходится в области полей, создаваемых подповерхностны-

ми слоями наноалмазов и функциональными группами

(functional groups FG) на их поверхности. Если объ-

емная доля наноалмазов примерно равна их массовой

концентрации η = 0.01, то среднее расстояние D между

частицами DND (условно упакованными в кубическую

решетку) составляет D ≈ rND(4/η)1/3 . При rND = 5 nm

оно равно 40−50 nm, т. е. лишь на порядок превышает

радиус DND (это видно и из рис. 2, b в [1]). Так как

анализируемый затем пленочный композит формируется

из раствора кристаллизацией HP-зерен вокруг DND, D

можно ассоциировать с размером некоторого класте-
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Рис. 1. Схема структурирования перовскита вокруг алмазных

наночастиц (DND — желтый цвет) и окружающих их слоев

функциональных групп (серый цвет). Весь объем за пределами

функциональных групп — объем перовскита. Области H и

W — области холмов (hillocks) и ям (wells). Стрелка —

траектория миграция галоген-ионов вдоль электрического по-

ля, приложенного в том же направлении. Серые линии —

изолинии потенциала.

ра, формирующегося вокруг DND-частицы. Будем для

краткости называть его далее HP-кластером (в действи-

тельности каждый такой кластер — поликристаллом из

большого количества монокристалликов HP).
Интерфейсное электрическое поле F на границе слоя

функциональных групп (FG) с НР оценивается далее по

знаку и величине. Оно уступает характерным значениям

межатомных полей (имеющих порядок единиц V/�A) не

более чем на порядок, т. е. составляет десятые доли V/�A,

и может быть как положительным, так и отрицательным.

HP-кластеры диэлектрического перовскита вокруг

DND-частиц не имеют электрического заряда. Поэтому

структура потенциала внутри кластеров и с учетом

поля F на интерфейсах с DND имеет вид потенциальных

горбов H и ям W (H — hillocks и W — wells на рис. 1).
Ямы на рис. 1 располагаются по кратчайшему расстоя-

нию между ближайшими соседями, вершины холмов —

по главным диагоналям кубических ячеек.

Расположение H и W на рис. 1 относится к случаю

ямы для галоген-анионов вдоль оси, соединяющей бли-

жайшие алмазные наночастицы. При этом интерфейсное

электрическое поле отталкивает анионы от внешней

границы FG. При противоположном знаке по́ля на этой

границе горбы H и ямы W меняются местами. Однако

в любом случае при приложении внешнего электри-

ческого поля траектория аниона-галогена траверсирует

склоны холмов и ям, как показано черной стрелкой t

(trajectory), обходя ямы и вершины. При этом область

траекторий дрейфа галогенов в виде узкой полосы

вокруг линии t обедняется галогенами, уходящими в

результате электромиграции.

Как и в обычном, немодифицированном HP, эти

галоген-анионы могут уходить далее через катод и

покидать область пленки, ухудшая ее характеристики.

В HP, модифицированном DND, пополнение уходящих

галоген-анионов в токовых каналах t во время про-

текания тока и в периодах паузы происходит за счет

диффузии из ям W (против электрического поля) и с

холмов вниз (вдоль поля).
При величине поля F , близкой к межатомным полям,

времена этих двух диффузий резко различны. В общем

случае скорость диффузии определяется активационным

барьером Ea выхода галоген-аниона из своего положения

в решетке перовскита. В различных источниках [8,9] Ea,

рассчитываемое методами квантовой химии (полуэмпи-
рикой или DFT), дает 0.2−0.6 eV. Знание Ea позволяет

оценить вероятность перехода галоген-аниона в сосед-

нюю позицию в решетке HP (рис. 2), коэффициент диф-

фузии и подвижность в слабом внешнем поле, опираясь

на базовые формулы химической кинетики [10]. Однако в

сильном поле масштаба поля F барьер Ea изменяется на

величину порядка самого Ea в сторону уменьшения (при
диффузии с холма) или увеличения (при диффузии из

ямы). Если принять Ea = 0.5 eV, то скорость диффузии,

пропорциональная exp(−Ea/T ), меняется на 9 порядков

в одну либо другую сторону. При подвижности µ поряд-

ка 1 cm2/Vs (в слабом поле) эффективный коэффициент

диффузии Ddiff из ямы (против поля F) составляет

не более 3 · 10−11 сm2/s, превращая ямы в резервуар

длительного хранения галогенов и обеспечивая частич-

ное восстановление структуры перовскита на больших

временных интервалах.

Время выхода из резервуара имеет порядок r2w/Ddiff

(где rw — радиус ям W), сильнейшим образом зависит

от Ea и может составлять даже часы и дни. С другой

стороны, во время протекания тока канал протекания,

обедняемый галогенами, пополняется за счет быстрой

(практически мгновенной) диффузией с холмов. Неопре-

деленность величины Ea сглаживает различие размеров

областей H и W между случаем, показанным на рис. 1,

MA1

MA5
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MA3 MA4

Pb2

Pb1

H1

H2

Pb3

Рис. 2. Элементарная ячейка HP, структурированная вокруг

октаэдра анион-галогенов Н1-Н2 (выделенных желтым цветом),
при переходе Н1 в положение вблизи Н2.
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и противоположным (когда H и W меняются местами).
Существенно, однако, что достаточно регулярная карти-

на ям и холмов, способствующая удержанию созданию

резервуара галоген-анионов, существует лишь в услови-

ях n- или p-легирования DND-частиц. Примесями явля-

ются в данном случае никель и традиционные допанты

алмаза — бор и фосфор [11].

2. Моделирование легированных
DND-частиц с различными
функциональными группами
на их поверхности

Как уже сказано, напряженность поля F на внешней

границе слоя функциональных групп DND-частиц внут-

ри HP-кластера определяется полярностью групп и по-

лем на интерфейсе легированной (или нелегированной)
DND-частицы. Верхняя граница F — порядка отношения

энергии кулоновского взаимодействия зарядов ближай-

ших атомов, которым приписывается локализованный

заряд ξе, к межатомному расстоянию r12 (е — элемен-

тарный заряд, ξ < 1). Если речь не идет о сильно элек-

троотрицательных атомах (кислороде), то ξ ∼ 0.1. Тогда

энергия взаимодействия зарядов в eV равна отношению

ξ1ξ2/(r12/r0), где r0 = 14.4�A = 1.44 · 10−7 сm — рассто-

яние между зарядами
”
е“, на котором кулоновская энер-

гия равна 1 eV. При r12 = 1.4�A ξ1ξ2/(r12/r0) ∼ 0.1 eV,

F ∼ 107 V/cm. По отношению к перовскиту поле F

играет роль внешнего.

Если сравнить F с насыщающим полем HP как

сегнетоэлектрика, то при поляризуемости, выраженной в

µC(микрокулон)/cm2 (то есть в единицах поверхностной

плотности заряда конденсатора заряд Q/(площадь A)),
эффективное поле составляет 4πQ/(εА) в системе CGS

или Q/(εε0А) в СИ. При Q/A= 1 это поле равно

1.1 · 107/εV/cm, что и отвечает величине, рассчитанной

выше. Для MaPbI3 проницаемость ε равна примерно

50 [6], а восприимчивость Q/A ∼ 0.3 (для ряда более

современных НР величина Q/A гораздо выше, несколько

единиц [7]). Поэтому внутренние поля на границах функ-

циональных групп отвечают предельной поляризации

перовскита как сегнетоэлектрика.

С другой стороны, внешние поля в средней части HP-

пленки при работе пленки в режиме мемристивной ячей-

ки, гораздо меньше: Fmean ∼ 6 · 104 V/cm. Действительно,

если оценивать подвижности ионов галогена и гало-

геновых вакансий на уровне µHal,vac ∼ (1−10) сm2/Vs, а

плотность ионно-вакансионной плазмы — 1018 сm−3, то

рассчитанная для поля Fmean плотность тока на много

порядков превышает наблюдаемую [9]. Это означает, что

почти все приложенное к пленке напряжение локализо-

вано в приэлектродных слоях. Что касается встроенного

поля F , то оно значительно больше, чем Fmean, и при

анализе системы
”
DND-groups-HP“ последнее можно

вообще не принимать во внимание.

При оценке Fmean данной выше, мы сталкиваемся с

принципиальным вопросом физики перовскитов НР, уже

затронутой нами в [9]: огромная подвижность галогенов-
анионов и сложность фиксации состояния пленки как
мемристивной системы при сбросе напряжения. В дей-

ствительности подвижность анионов в приэлектродных
слоях перовскита на много порядков ниже и именно она
лимитирует проводимость пленки. Мы вернемся к этой

задаче при обсуждении ВАХ пленок HP в разд. 4.
Простейший вариант моделирования профиля потен-

циала в HP-кластере сводится к построению кривой
потенциала через цепочку объемов, занимаемых отдель-

ными атомами. Цепочка должна включать осевые эле-
менты функциональной группы на поверхности DND-
частицы и естественное их продолжение в структуру

DND-частицы (в одну сторону) и сфероподобную HP-
оболочку (в другую). Усредненную кривую потенциала
можно построить из уравнения Пуассона, если известны

заряды, условно локализованные на атомах цепочки.
Условность такой процедуры связана с тем, что рас-
пределение заряда в пространстве между ближайшими

атомами весьма сложно.
При этом конкретный вид атомов в составе функцио-

нальной группы, в DND-частице и в перовските должен

быть
”
знако́м“ данному пакету. С этой точки зрения

никаких проблем не возникает с алмазом, легированного
традиционными для него легкими примесями (бор и

фосфор), и распространенными функциональными груп-
пами (гидроки-, карбокси-, амино-группы, эпоксидные
мостики). Информацию о распределениях зарядов на
атомах этих структур дают полуэмпирические методы

квантовой химии, например, в наиболее простом в
обращении пакете HyperChem [12], оптимальный в то
же время при работе с молекулярными (а не с перио-

дическими) объектами, которыми являются комплексы

”
DND-частица — перовскит“.
В ряде случаев мы обращались также к пакету

Quantum Espresso, использующему методы теории функ-
ционала плотности (DFT), содержащему данные о тяже-
лых атомах перовскита (свинец, бром, цезий), и удоб-

ному при работе с периодическими решетками. К сожа-
лению, Espresso не дает информации о распределении
зарядов и испытывает трудности при попытке сочетать

слишком разные по своей морфологии объекты.
Отметим, что корректное решение краевой зада-

чи второго порядка с двумя нулевыми условиями на

нормальную производную на края изучаемой области
(HP-кластера как аналога условной элементарной HP-
ячейки) построено быть не может. Поэтому мы ограни-
чились рассмотрением отрезка от центра DND к сере-

дине отрезка в направлении другой DND, ближайшей к
ней (с координатой r = D/2), ставили нулевое условие
на производную в этой точке (r = D/2). Достоверность
решения оценивалась тем, что и в глубине DND-частицы
(где никакого условия формально не ставилось) кривая
потенциала монотонно выполаживается и ее производ-

ная близка к нулю. При этом проблем, связанных с
формальной некорректностью задачи, не возникало.
Вначале была рассмотрена структура алмаза (наи-

более простого для моделирования компонента компо-
зита) с нулевой производной потенциала внутри него
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Рис. 3. Традиционные схемы загиба зон на интерфейсе

легированного алмаза с вакуумом.

и функциональными группами, открытыми наружу. Так

оценивались поля, возникающие на внешней стороне

этих групп.

Задача хода потенциала вблизи интерфейса по-разно-

му легированного (или вовсе нелегированного) алмаза

тесно связана с актуальными проблемами физики ал-

маза: отрицательного электронного сродства (NEA —

negative electron affinity) и акцепторной проводимости

вблизи алмаза, поверхностно легированного водоро-

дом, причем оба этих обстоятельства интерпретируются

неоднозначно [13,14].
Обычно считается, что профиль потенциала n-легиро-

ванного полупроводника вблизи интерфейса ведет себя

подобно профилю потенциала внутри металла, который

препятствует выходу электронов (рис. 3). Для n-алмаза

(рис. 3, а) он мало зависит от того, контактирует ли

интерфейсный атом полупроводника с адатомом водоро-

да H или кислородом O группы OH. Менее однозначна

ситуация с p-легированным полупроводником (будем
говорить именно об алмазе). Простейший профиль,

показанный на рис. 3, b и обращенный по отноше-

нию к кривой а, модифицируется в зависимости от

функциональной группы. При контакте с простейшей

такой группой — H-адатомом — направление перехода

заряда от интерфейсного углерода к адатому указать

сложно. Вариант NEA отвечает переходу электрона

от водорода к углероду. Если переход идет в сторо-

ну водорода, на кривой b появляется дополнительный

”
клевок“ (рис. 3, с), который и может проявляться как

область акцепторной проводимости. Впрочем, причина

такой проводимости может состоять в проникновении

водорода внутрь кристалла в качестве акцепторной при-

меси.

При такой неоднозначности удобно обратиться к ква-

новохимическому моделированию и проверить различ-

ные варианты. Вначале в рамках полуэмпирического

метода АМ1 пакета HyperChem были построены алмаз-

ные фрагменты, не легированные в объеме, затем —

легированные бором либо фосфором в различных сло-

ях (111), параллельных интерфейсу (т. е. в объеме фраг-

мента). Затем добавлялись внешние атомы: кислород-

ный атом, либо связанный с интерфейсным атомом С,

либо соединенный с ним через промежуточный атом

водорода. Остальная поверхность алмазного фрагмента,

не связанная с FG, была легирована водородом. Для

минимизации краевых эффектов нами рассматривался

избыточно
”
толстый“ алмаз — в 4 двойных плоскости

атомов (111) с общим количеством атомов около 400.

На вставке рис. 4 показан участок такого алмазного

фрагмента, перпендикулярный лучу зрения [111], и кри-

вые изменения средней плотности заряда вдоль линии

атомов 0-1-. . . -5 (жирные точки на вставке рис. 4);
последний атом этой цепочки−водород.

В используемой процедуре усреднения заряду ξе,

локализованному на атоме, ставилось в соответствие

значение на кривой непрерывной плотности заряда.

В узловых точках это значение получали делением

заряда на табличный объем данного типа атомов. Таким

образом, строили полином шестого порядка для второй

производной и восьмого — для значения потенциала).
Альтернативой является построение последовательно-

сти гауссовых функций, размытых вокруг локальных

зарядов атомов; этот подход не приводит к принципи-

альному изменению результатов.
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Рис. 4. Профиль второй производной ϕ′′ потенциала и самого

потенциала ϕ на интерфейсе плоскости (111) алмаза с водо-

родным адатомом на
”
торчащем“ атоме С (ϕ′′ — представлена

через условные заряды, локализованные на отдельных атомах).
ϕ′′ — осциллирующая кривая, потенциал — монотонная.

Направление справа налево по графику отвечает на вставке

перемещению снизу вверх.
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Видно, что кривая изменения потенциала на рис. 4

качественно вполне соответствует концепции NEA. На-

против, введение p-примесного атома (бора) непосред-

ственно на интерфейсе ликвидирует NEA (рис. 5).

Ряд других характерных взаиморасположений внут-

реннего легирующего атома и фрагментов внешних

функциональных групп показаны на рис. 6, 7. Кривые 1

на этих рисунках воспроизводят вторую производную

потенциала и сам потенциал на рис. 4. Другие варианты

обозначены на кривых цветом кружков. Видно, что

при перемещении легирующего атома B
”
во второй

ряд“ двойных алмазных плоскостей (111) монотонно

спадающий профиль потенциала (т. е. намек на NEA)
можно проследить вдоль нормали, непосредственно не

проходящей через легирующий атом (рис. 6, кривые 2
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Рис. 5. То же, что и на рис. 4, с одним p-легирующим атомом

(бор, выделенный желтым) непосредственно на луче зрения.
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Рис. 6. Изменение второй производной потенциала, полу-

ченное интерполированием по зарядам на атомах алмаза

(углеродных иил примесных) и атомах функциональных групп,

даваемых HyperChem. Кривая 1 воспроизводит кривую 1 на

рис. 3; на кривой 2 атом бора перемещен во второй ряд атомов

алмаза; 3 — кривая через нормаль, параллельную нормали

кривой 2 и не проходящую через атома бора B (желтые): 4 —

гидроксильный радикал ОН на нелегированном алмазе. Атом О

выделен красным.
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Рис. 7. Изменение потенциала, отвечающие второй его про-

изводной на рис. 4. Пояснения на кривых аналогичны рис. 5.

и 3). Для упрощения построения кривых на рис. 6 счи-

талось, что положения атомов вдоль луча зрения [111]
(ось x) на всех кривых одинаковы, что, разумеется, не

вполне верно.

Атом кислорода, соседствующий с интерфейсным ато-

мом углерода в виде фрагмента ОН, всегда только

пассивирует поверхность алмаза, что хорошо известно

из эксперимента — кривая 4 на рис. 5, 6. Ничего не

меняет и перемещение кислородного атома на внешнюю

по отношению к алмазной наночастице позицию либо

внедрение в алмаз донорной примеси — фосфора (соот-
ветствующие кривые не показаны).

Изложенные результаты не являются новыми, однако

позволяют оценить адекватность построения потенциала

по дискретным зарядам, даваемым HyperChem, и проце-

дуры обработки этих данных. Для задачи о перовските

из этих результатов наиболее важны величина поля на

внешнем по отношению к алмазу конце функциональной

группы. Во всех показанных на рис. 6, 7 случаях это поле

составляет (0.5−2)V/�A. Ниже оценивается характер

изменения этой величины при нагрузке группы с обеих

сторон.

3. Моделирование перовскитных
наночастиц, структурированных
вокруг легированной DND-частицы
через функциональные группы
на ее поверхности

Как сказано выше, моделирование ансамбля наноча-

стиц гибридного перовскита затруднено из-за атомов

тяжелого металла и громоздкости структуры органи-

ческой составляющей НР-перовскита — метиламмо-

ния или формамидия. Но для интерпретации резуль-

татов по HP наиболее существен вопрос, насколько

на поле поляризации внутри перовскита влияет несим-

Физика твердого тела, 2025, том 67, вып. 12
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Рис. 8. Две нелегированных наноалмазных частицы, соединен-

ные через функциональную группу ОН.
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Рис. 9. Изменение второй производной потенциала ϕ′′ (кри-
вая 1) и потенциала ϕ (кривая 2) через функциональную

группу и ее продолжения внутри DND-частиц. Пунктир —

условная граница правой нелегированной DND-частица.

метричность структуры
”
DND-частица–функциональные

группы–перовскит“ и насколько это поле меняется по

сравнению со случаем
”
свободного конца“ функциональ-

ной группы. Поэтому, полагая вначале, что специфика

перовскита для качественного рассмотрения может быть

непринципиальной, мы заменяли его вначале нелеги-

рованным алмазом. Характерное изменение профиля

потенциала для этого случая показано на рис. 8, 9. При

этом поле между атомом кислорода и интерфейсным

атомом правой DND-частицы почти не отличается от

такового на внешней стороне функциональной группы

цепочки ОН, не соединенной ни с чем. Та же тенденция

наблюдается и при легировании наноалмазной частицы

различными допантами.

Для композитного материала, включающего наноал-

мазные частицы и структурируемые вокруг него зерна

перовскита конфигурация функциональных групп фор-

мируется вокруг легированного алмаза при взаимодей-

ствии с электрическими полями на его поверхности

(являющихся следствием легирования). При этом функ-

циональная группа (например, ОН-группа) оказаться

обращенной положительным (или отрицательным) за-

рядом как к наночастице, так и от нее — это зависит

от типа легирования. Например, кислород OH-группы

может быть соединен с углеродным атомом левой DND-

частицы и атомом водорода, относящимся к правой

частицы.

При этом формальная валентность водорода нару-

шается и его связь с правой DND-схожа с донорно-

акцепторной связью (далее для краткости — DA).
Однако использовавшийся пакет HyperChem

”
видит“

подобную связь, даже если она не указана формально.

Положение атома кислорода можно называть в этом

случае внутренним. Напротив, при
”
внешнем“ положе-

нии атома кислорода для свободной частицы DND, не

соединенной с другими DND, часть атомов кислорода

оказывается соединена между собой DA-связями. При

введении изучаемого комплекса
”
легированный DND-

группы“ c нелегированной DND-частицей эти связи

должны частично перейти на атомы этой DND-частицы.

Таким образом, оптимизация отдельной легированной

DND-частицы и двух ND-частиц, соединенных через

группы, должны проводиться порознь.

Кроме того, моделирование системы
”
легированная

DND-частица–группа–нелегированная DND-частица“

корректнее, если оно проводится для симметричной

системы, включающей две нелегированные DND-части-

цы по обе стороны от центральной частицы (которая и

сама может быть нелегированной) и функциональные

группы,
”
включенные“ навстречу друг другу — рис. 10.

Все рассмотренные варианты представлены в табл. 1.

Так как изображения, даваемые HyperChem — весь-

ма блеклые, а перерисовка структуры как целого до-

статочно трудоемка, мы ограничились условными схе-

мами. Ноль энергии связи для каждого из двух ти-

пов рассмотренных групп −СО и NH2 — отвечает

центральной нелегированной DND-частице и данному

направлению подключения групп к боковым нелеги-

рованным DND-частицам (строки 1, 7 в таблице, от-

носящиеся к СО и NH2-группам). Противоположные

направления подключения групп для той же централь-

ной нелегированной DND-частицы дают иную энергии

связи конфигурации (строки 4 и 10 для СО и NH2-

групп, соответственно). Это относится как к нена-

груженной центральной DND-частице (столбец 1 во

всех строках, энергия |Eunloaded
doped | − |Eunloaded,line1

undoped | для ОН-

группы или |Eunloaded
doped | − |Eunloaded,line7

undoped | для NH2-группы),
так и к нагруженным — вторые столбцы c энергией

|E loaded
doped | − |E loaded,line1

undoped | или |E loaded
doped | − |E loaded,line7

undoped |. Третий

ND NDDoped ND
Group Group

Рис. 10. Две нелегированные DND-частицы, соединенные с

центральной, легированной DND-частицей.
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Таблица 1. Различные конфигурации связанных DND-частиц

|Eunloaded
doped |− |Eunloaded

doped |−
|Funloaded

outer | |F loaded
outer |

−|Eunloaded,line1
undoped | −|Eunloaded,line1

undoped |

(C. . .−C) · ·HO−(C− . . .−C. . .−C)−OH· · · (C− . . .−C) 0 0 0.46 0.42

(C. . .−C) · ·HO−(C− . . .−B. . .−C)−OH· · · (C− . . .−C) −0.4 −0.56 0.63 0.35

(C. . .−C) · ·HO−(C− . . .−P . . .−C)−OH · · · (C− . . .−C) −1.2 −1.42 1.28 1.23

(C. . .−C)−OH· · ·(C− . . .−C. . .−C)· · ·HO−(C− . . .−C) 0.7 1.05 0.35 0.57

(C. . .−C)−OH· · ·(C− . . .−B . . .−C)· · ·HO−(C− . . .−C) −1.45 −2.15 1.13 1.36

(C. . .−C)−OH· · ·(C− . . .−P. . .−C)· · ·HO−(C− . . .−C) 0.90 1.25 0.24 0.79

|Eunloaded
doped |− |Eunloaded

doped |−
|Funloaded

outer | |F loaded
outer |

−|Eunloaded,line7
undoped | −|Eunloaded,line7

undoped |

(C−C) · ·HNH2−(C−. .C. . .−C)−NH2H· · ·(C− . . .−C) 0 0 0.36 0.4

(C−C) · ·HNH2−(C−. .B. . .−C)−NH2H· · ·(C− . . .−C) −0.33 −0.26 0.53 0.45

(C−C) · ·HNH2−(C−. .P. . .−C)−NH2H· · ·(C− . . .−C) −1.44 −1.32 1.62 1.43

(C−C)−NH2H· · ·(C− . . .−C. . .−C)· · ·HNH2−(C−C) 0.56 1.25 0.15 0.5

(C−C)−NH2H· · ·(C− . . .−B. . .−C)· · ·HNH2−(C−C) −1.45 −2.05 1.32 1.16

(C−C)−NH2H· · ·(C− . . .−P. . .−C)· · ·HNH2−(C−C) 0.83 1.37 0.24 0.59

и четвертый столбцы указывают на абсолютную вели-

чину напряженности электрического поля |Fouter| либо

на внешней границе группы, не нагруженной нелеги-

рованной DND-частицей (|Funloaded
outer |), либо на границе

с этой DND-частицей (|F loaded
outer | — пунктир на рис. 10).

Строки (2-3), (5-6) для ОН-группы и аналогичные для

NH2-группы показывают изменения энергии связи для

ненагруженных — столбец 1, и нагруженных групп при

легировании центральной DND-частицы — столбец 2.

Столбцы 3, 4 дают напряженности поля на границах

групп.

Общий результат таблицы можно сформулировать

так. Максимальную величину энергии связи обеспечива-

ет такое направление присоединения групп, при котором

комбинация с загибом потенциала внутри DND-частицы

дает чередование положительного и отрицательного за-

рядов. Например, при n-легировании (фосфор), создаю-
щим в среднем вогнутость кривой потенциала внутри

правого интерфейса центральной легированной DND-

частицы вниз (минус), максимум |Ebond| обеспечива-

ется при обращении атома Н в ОН-группе к DND-

частице и кислородом — наружу. При p-легировании

все происходит наоборот. Этот результат можно считать

ожидаемым. Менее очевидно — то, что в этом случае

обеспечивается и максимальное приращение в величине

электрического поля на границе с нелегированной DND-

частицей. На интуитивном уровне это связано, по-

видимому, с тем, что две области отрицательного заряда,

”
включенные“ одна за другой, взаимно ослабляются.

Нежелательное же чередование знаков заряда дает ре-

зультат, мало отличающийся от случая нелегированной

центральной DND-частицы. Это относится как к энергии

связи системы, так и к величине электрического поля

во внешней нелегированной DND-частице — имитаторе

перовскита.

В отсутствие легирования DND-частиц центральная

частица контактирует как с различными полюсами функ-

циональных групп, так и с группами разного типа. При

этом знак электрического поля на границе внешней

функциональной группы оказывается не определенным,

а его величина — минимальной.

Для понимания специфики перовскита с точки зрения

полей, наводимых функциональными группами, был по-

строен минимальный фрагмент решетки, позволяющий

присоединить эти группы к центрам перовскитного

интерфейса (100). В качестве модельного перовскита

был выбран энстатит MgSiO3 — материал, известный

в геологии. Перовскит не является для MgSiO3 един-

ственным вариантом кристаллической решетки, но па-

раметры перовскитного варианта известны: a = 4.780�A,

c = 6.902�A. Средства HyperChem позволяют тогда вве-

сти координаты приемлемого числа атомов вручную по

точкам и использовать их в качестве первого прибли-

жения.

Исследуемый кубический фрагмент решетки перов-

скита MgSiO3 включал восемь (23) элементарных яче-

ек, т. е. 27 атомов магния, восемь атомов кремния, и

36 атомов кислорода в восьми октантах. Атомы на

интерфейсах фрагмента
”
засчитывались“ за один атом.

Таким образом, учитывался 71 атом. Так как все атомы

перовскита характеризуются высокой металличностью

связей, мы прибегли к опции
”
Arbitrary valence“, поз-

воляющей сшить фрагмент хотя бы минимальным набо-

ром связей — внутри галогеновых октаэдров и между

атомами магния, формирующими кубическую ячейку

вокруг каждого октаэдра. Примечательно, что атомы

кремния, оказавшиеся внутри октаэдров, находили свой

положение сами. Идеальная схема ячейки и результат

оптимизации полуэмпирическим методом РМ3 показаны

на рис. 11, а, слева.
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Таблица 2. Варианты конфигураций связанных DND-частиц с учетом влияния гибридного перовскита

|Eunloaded
doped |− |Eunloaded

doped |−
|Funloaded

outer | |F loaded
outer |

−|Eunloaded,line1
undoped | −|Eunloaded,line1

undoped |

(C. . .−C) ··HO−(C− . . .−C. . .−C)−OH· · ·НР 0 0 0.36 0.40

(C. . .−C) ··HO−(C− . . .−B. . .−C)−OH· · ·НР −0.66 −0.79 0.60 0.31

(C. . .−C)−OH· · ·(C− . . .−C. . .−C)· · ·HO−НР 0.93 1.25 0.54 0.59

(C. . .−C)−OH· · ·(C− . . .−B. . .−C)· · ·HO−НР −1.25 −1.59 1.10 1.06

a b

Рис. 11. Идеальный фрагмент решетки энстатита MgSiO3,

нарисованный по точкам (слева) и результат оптимизации его

геометрии методом РМ3 в пакете HyperChem.

Искажение идеальной решетки на рис. 10, b весьма

невелико и позволяет присоединить к молекуле HP

и функциональную группу, и наноалмазную частицу.

В большинстве случаев структуру можно было оптими-

зировать методом РМ3.

Ниже приведены данные табл. 2, аналогичной табл. 1,

в тех геометриях, которые позволили получить резуль-

тат.

Видно, что проследить усиление встроенного поля

при правильном чередовании знаков зарядов удалось

лишь в одном случае (строка 4), который близок к

строке 5 предыдущей таблицы. Влияние этого поля на

миграцию ионов галогена и положительных вакансий,

возникающих в НР, было оценено в п. 2.

4. Вольт-амперные характеристики
HP-пленок, структурированных
наноалмазами

ВАХ пленок композитного материала, описанные

в [1], в основном аналогичны ВАХ, полученным без вве-

дения наноалмазного структуратора. Их анализ требует

детального рассмотрения стационарного токопереноса в

пленках НР, учитывающего такую специфику НР, как

легкость выхода галоген-ионов Hal− из решетки (т. е.
малость их энергии активации) и образования при этом

пары
”
вакансия–галоген-анион“ (

”
Vac+–Hal−“). Концен-

трация пар при этом на много порядков превышает

концентрацию
”
обычных“ полупроводниковых носите-

лей — электронов и дырок, достигая величины по-

рядка 1018 см−3 [8,9]. Детальному изложению токопро-

хождения в НР, развивающему нашу более раннюю

работу [10], будет посвящена отдельная статья. Здесь

ограничимся некоторым конспективным изложением по-

лученных результатов.

Существование миграции и анион-вакансионной (да-
лее для краткости — a-v-) проводимости сильно вли-

яет на зонную структуру НР как полупроводника. На

рис. 12 золотой электрод (условно — катод) в контакте

с НР-пленкой формирует контакт с другим металлом

с несколько большей работой выхода. При короткоза-

мкнутых электродах и в отсутствие миграции уровень

СВМ внутри легированных полупроводников должен

приводить к образованию двух барьеров Шоттки с

потенциальной ямой между ними (рис. 12, b). Однако
для этого необходимы свободные электроны или дыр-

ки, т. е. легированные HP (концентрация собственных

носителей в НР как достаточно широкозонном полу-

проводнике мала). Можно предположить, что миграция

галоген-иона по диагонали октаэдра галогенов (рис. 2),
приводящая к образованию пар

”
вакансия–галоген-ион“

(
”
Vac+−Hal−“) [8,9], ведет также и к появлению именно

таких
”
обычных“ носителей — электронов и дырок.

Система зон этих носителей, частично попадающих в

запрещенную зону НР, зависит от концентрации пар

”
Vac+−Hal−“, т. е. от температуры.

Au Au
Au

HP

HP
HP

CBM

VBM
Me

Me

CBM

ε
1

1

2

ϕ
c

ϕ(x)a b c

Рис. 12. Схема формирования равновесного уровня СВМ

при возникновении контактов электродов с галогенидным

перовскитом HP. а — левого электрода (катода) из Au с HP

при их условном сближении; b — совокупной структуры HP-

Au-Ме с правым электродом (Ме — металл); с — уровни CBM

и профиль потенциала ϕ(x), формируемого анион-галогенами

и вакансиями.
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В то же время при наличии миграции и большого

количества пар формируется кривая изменения потен-

циала (жирная кривая на рис. 12, c), аналогичная про-

филю потенциала в некоторых видах газового разря-

да (например, термоэмиссионном высокого давления).
Однако при малом напряжении на пленке НР эта

кривая почти не имеет отношения к переносу тока,

так как уровень Ферми металлического катода нахо-

дится намного ниже профиля потенциала и электроны

металла не могут рекомбинировать с положительными

вакансиями, подходящими к левой кромке пленки. Дей-

ствительно, при разности уровней Ферми между ме-

таллом и перовскитом 1ε = 5.1−3.36 = 1.74 eV (цифры
взяты из [15,16] и отвечают галогенидному перовскиту

МАPbI3) и комнатной температуре RT термоэмиссия

из металла через барьер 1ε ничтожно мала. Легко

оценить также и прямое туннелирование сквозь уз-

кий почти прозрачный прикатодный барьер (стрелка 1,

рис. 12, c) в комбинации с предварительным терми-

ческим набором энергии электрона. Если напряжение

поперек пленки U делится между прикатодным ϕc и

прианодным ϕa поровну (на рис. 12 U = 0), каждое

из них составляет ϕc = ϕa = (U/2 + (Ac − Aa)/2), где

Ac, Aa — работы выхода катода и анода, соответственно.

Тогда ток туннелирования на уровень СВМ оценивается

сверху величиной 1.1 · 107 · exp(−(1ε −U/2)/T ) (если
пренебречь разностью работ выхода) и может соста-

вить хотя бы 1 nA/см2 лишь при достаточно большом

напряжении на пленке U = 1.6 eV. При таком только

напряжении и может проявляться a-v ток, какую бы

потенциально большую величину он не имел при данной

температуре. Профиль потенциала является при этом

почти совершенно равновесным.

При большем напряжении электроны начинают прохо-

дить сквозь прикатодный барьер, понемногу активируя

a-v ток. Переход к такому режиму и смене доминиру-

ющего механизма переноса тока проявляется в форме

излома ВАХ, но не должен сопровождается скачком, так

как при увеличения напряжения на пленке прикатодный

барьер (с падением напряжения ϕc на рис. 12, с) расши-

ряется и длина туннелирования растет.

Другой механизм, ограничивающий рост a-v тока как

доминирующего тока в пленке — резкое снижение

подвижности ионов и вакансий в приэлектродных слоях.

Механизм такого ограничения сводится к тому, что

концентрация вакансий (т. е. отсутствующих галоген-

ионов) в прикатодном слое возрастает в направлении

от пленки к левому электроду (катоду) так быстро, что

вакансии более не могут возникать.

Интересно проанализировать с этой точки зрения

ВАХ пленки НР, структурированной графеновыми на-

ночастицами [17,18], при различных температурах. На

кривых на рис. 13, а, отвечающих RT, наблюдается слабо

выраженное резистивное переключение, и именно при

напряжении на пленке U ∼ 2V, начиная с которого

электроны из металлического катода могут начать тун-

нелировать в тело пленки. При температуре, меньшей на

420–4 –2

–1210
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–810

I,
 A

a

U, V

Dark

60 days
after

50

–910

–710
I,

 A

b

U, V

1

2

–510

Рис. 13. ВАХ HP, структурированных вокруг p-легированных

наноалмазов (бор) (a), и вокруг композита HP-графен (b)
при различных температурах: кривая 1 на (b) — при RT,

кривая 2 — при 220 ◦С.

80K (рис. 13, b, кривая 2), это переключение выражено

гораздо слабее. Это может означать, что a-v ток не

может теперь рассматриваться как неограниченно боль-

шой, т. е. его энергия активации галогенов и вакансий

много больше T .

Второе резистивное переключение, наблюдающееся

при напряжении около 10V (на рис. 13, b), по нашему

мнению, не имеет отношения к a-v току и может указы-

вать либо на начало конвективного разбиения движения

галогенов и вакансий на ячейки типа ячеек Бенара либо

на возникновение проволочек.

Отметим, что поликристалличность структуры НР

почти ничего не меняет в приведенных рассуждениях,

как будет показано в более детальном рассмотрении.

Заключение

Было проведено моделирование гибридной перовскит-

ной пленки, модифицированной наноалмазами детонаци-

онного синтеза для улучшения стабильности перовскита.

Оно ставило целью объяснить ряд эксперименталь-

ных особенностей по сравнению с немодифицированной

пленкой.

В поисках механизма восстановления дифференци-

альной проводимости гибридной пленки мы проана-
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лизировали структуру электрических полей кластеров,

формирующихся вокруг наноалмазов. Пути миграции

анион-галогенов в потенциальном рельефе кластеров

выявили наличие иерархии характерных времен —

малые времена обеднения путей анион-галогенами и

времена пополнения этих путей, причем последние ока-

зываются очень большими, превращая ямы в резервуар

длительного хранения галогенов и обеспечивая частич-

ное восстановление структуры перовскита на больших

временных интервалах. Существенно, что достаточно

регулярная картина ям и холмов, обеспечивающая хо-

рошо разделенные во времени спад и восстановление

проводимости, явно выражена лишь в условиях n- или

p-легирования DND-частиц традиционными допантами

алмаза — бором и фосфором. В этом случае модели-

рование, учитывающее взаимовлияние полей допантов

внутри наноалмазов и характерных функциональных

группа на периферии наноалмазов, указывает на наи-

большее увеличение величины энергии связи именно

при определенном типе легирования.

Предложена, далее, интерпретация небольшого скачка

тока в форме резистивного переключения на ВАХ

модифицированного перовскита при напряжении около

1.5−2V. Скачок связан с переходом от электронного то-

копереноса по разрешенным состояниям внутри запре-

щенной зоны перовскита к туннелированию электронов

с катода через узкий прикатодный барьер, создаваемый

плотной плазмой галоген-ионов и положительных вакан-

сий на катодном интерфейсе

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

[1] G.V. Nenashev, A.N. Aleshin, N.I. Alekseev, M.S. Dunaevskiy,

V.Yu. Dolmatov. J. Mater. Sci.: Mater. Electron. 36, 1498

(2025).
[2] D.N. Jeong, J.M. Yang, N.G. Park. Nanotechnology 31, 15,

152001 (2020).
[3] S. Liu, J. Zeng, Q. Chen, G. Liu. Front. Phys. 19, 2, 23501

(2024).
[4] P. Wang, X. Bai, C. Sun, X. Zhang, T. Zhang, Y. Zhang. Appl.

Phys. Lett. 109, 6, 063106 (2016).
[5] Г.А. Смоленский. УФН 62, 1, 41 (1957).
[6] S. Yoon, Y. Kim, T. Dang, H.J. Choi, B. Park, J. Eom, H. Song,

D. Seol, Y. Kim, S. Shin, J. Nah. J. Mater. Chem. A 4, 3, 756

(2016).
[7] R.S. Muddam, L.K. Jagadamma. J. Mater. Chem. C 13, 21,

10488 (2025).
[8] A. Walsh, D.O. Scanlon, S. Chen, X.G. Gong, Su-H. Wei.

Angew. Chem. 54, 6, 1791 (2015).
[9] T. Leijtens, S.D. Stranks, G.E. Eperon, R. Lindblad,

E.M. Johansson, I.J. McPherson, H. Rensmo, J.M. Ball,

M.M. Lee, H.J. Snaith. ACS Nano 8, 7, 7147 (2014).
[10] Н.И. Алексеев, А.Н. Алешин. ФТТ 66, 3, 377 (2024).

[11] Н.И. Алексеев, В.В. Лучинин. Электроника алмаза. Изд-во

СПбГЭТУ
”
ЛЭТИ“, Санкт-Петербург (2019). 144 с.

[12] HyperChem. Computational Chemistry, Hypercube Inc.

Publication HC50-00-03-00 (1996).
[13] I.L. Kraisky, V.M. Asnin. Appl. Phys. Lett. 72, 20, 2574

(1998).
[14] D. Takeuchi, M. Riedel, J. Ristein, L. Ley. Phys. Rev. B 68, 4,

041304 (2003).
[15] М. Насируддин, М. Василопулу. Глобальная энергия 29, 1,

21 (2023).
[16] Э.И. Батталова, С.С. Харинцев. Оптика и спектроскопия

131, 11, 1495 (2023).
[17] Д.В. Амасев. Фотоэлектрические явления в тонких плен-

ках гибридных металлорганических перовскитов на осно-

ве CH3NH3PbI33 . Дисс. к.ф.-м.н. Москва, 2023.

[18] G.V. Nenashev, A.N. Aleshin, I.P. Shcherbakov, V.N. Petrov.

Solid State Commun. 348, 114768 (2022).

Редактор В.В. Емцев

Физика твердого тела, 2025, том 67, вып. 12


