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В работе исследованы релаксационные и пьезоэлектрические свойства пленок поливинилиденфторида

(ПВДФ), модифицированных облучением тяжелыми ионами Ne, Xe и Bi и подвергнутых последующему

химическому травлению. Установлено, что облучение ионами различной массы приводит к изменению

интенсивности и температурного положения релаксационных пиков, что свидетельствует о влиянии ионного

воздействия на сегментальную подвижность макромолекул. После химического травления обнаружен

дополнительный релаксационный процесс в области около −10 ◦С, связанный с формированием нового типа

релаксаторов. Показано, что воздействие пучка тяжелых ионов вызывает появление пьезоэлектрического

отклика, величина которого возрастает с увеличением заряда и флюенса налетающих ионов. Дополнительная

поляризация в поле отрицательного коронного разряда способствует усилению пьезоэлектрического отклика,

тогда как химическое травление приводит к снижению значений модуля d33. Полученные результаты

демонстрируют существенное влияние параметров ионного облучения и последующей химической обработки

на релаксационные и функциональные свойства пленок ПВДФ.
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1. Введение

Поливинилиденфторид (ПВДФ) — частично кристал-

лический полимер, сочетающий химическую стойкость,

механическую прочность и выраженные пьезо-, сегнето-

и пироэлектрические свойства [1–4]. Благодаря этим

характеристикам ПВДФ широко применяется в гибкой

электронике, сенсорных устройствах, имплантируемых

медицинских приборах, микроэлектромеханических си-

стемах (MEMS) и системах фильтрации [5]. Электроак-
тивные свойства материала связаны с его способностью

к кристаллизации в различных полиморфных модифика-

циях, среди которых ключевую роль играют α- и β-фазы.

Неполярная α-фаза, стабильная при обычных услови-

ях, может трансформироваться в полярную β-фазу под

действием механического растяжения, поляризации или

облучения [6–8].
Одним из эффективных методов модификации струк-

туры и свойств ПВДФ является облучение быстрыми

тяжелыми ионами (swift heavy ions, SHI). При этом в

материале формируются узкие цилиндрические области

с разрушенной макромолекулярной структурой — ла-

тентные треки [9]. В этих областях происходят необ-

ратимые структурные изменения: разрывы химических

связей, образование активных радикалов и аморфизация,

сопровождающаяся снижением степени кристаллично-

сти полимера [10–14]. Процесс химического травления

сопровождается диффузией молекул реагента в область

латентного трека и избирательным разрушением ослаб-

ленных химических связей в полимерной матрице [15].
При этом наряду с расширением центральной части тре-

ка происходят структурные изменения в прилегающих

зонах, что может способствовать формированию новых

релаксационных процессов.

Известно, что поливинилиденфторид занимает про-

межуточное положение между полимерами, склонными

преимущественно к сшиванию, и материалами, в кото-

рых под действием излучения доминируют деструктив-

ные процессы. Характер протекающих превращений су-

щественно зависит от условий облучения, в частности от

энергии ионов и удельных потерь энергии на ионизацию.

Одним из ключевых параметров, характеризующих

радиационно-индуцированное сшивание, является гель-

доза Dg — минимальная доза, при которой в материале

начинает формироваться нерастворимая фракция. Ниже

этого значения плотность сшивок оказывается недоста-

точной для образования непрерывной трехмерной сетки,

и полимер остается полностью растворимым.

Для β-фазы ПВДФ переход к гель-точке при облу-

чении ионами криптона (6.2MeV/nucleon) наблюдает-
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ся в широком диапазоне доз — от 9.9 до 35.1 kGy.
Такой разброс подчеркивает значимое влияние иони-

зационных потерь энергии на механизм формирования

радиационно-индуцированной сетки и свидетельствует о
сложной природе конкурирующих процессов сшивки и

деструкции в ПВДФ.

Релаксационные процессы в необлученных пленках
на основе ПВДФ ранее подробно изучались различны-

ми методами — механической спектроскопией, диэлек-

трической спектроскопией [16,17]. Установлено нали-
чие нескольких характерных релаксационных процессов.

Так, релаксация вблизи −40 ◦C (α-процесс) соответству-
ет стеклованию и связана с дипольной релаксацией в
аморфной фазе. Другой процесс — αc -релаксация [18] —
наблюдается в диапазоне 0− 40 ◦C и обусловлен коопе-

ративной дипольно-сегментальной подвижностью мак-
ромолекул в межфазной области между аморфными и

кристаллическими участками.

В полимерных диэлектриках накопление и релаксация
заряда определяются несколькими механизмами диэлек-

трической релаксации: ориентационной, межфазной и

объемной (пространственный заряд), проявляющимися
при достаточно высоких поляризующих полях. Одним

из наиболее информативных методов исследования та-

ких процессов является метод термостимулированной
деполяризации (ТСД), позволяющий выявить механизмы

накопления и релаксации заряда и определить ключевые

энергетические параметры — энергию активации и вре-
мена релаксации.

Настоящая работа посвящена исследованию релакса-

ционных процессов и пьезоэлектрических свойств пле-

нок ПВДФ методом термостимулированной деполяри-

зации до и после облучения тяжелыми ионами Ne,

Xe и Bi. Особое внимание уделено влиянию природы

ионов и последующего химического травления треков на

параметры релаксации и пьезоэлектрические свойства.

Полученные результаты позволяют уточнить механизмы

диэлектрической релаксации и параметров релаксаторов

в облученных пленках ПВДФ, а также определить

оптимальные условия для получения пьезоактивных

трековых мембран с улучшенными функциональными

свойствами.

2. Методы и материалы

2.1. Материалы

В работе использовалась гомополимерная пленка по-

ливинилиденфторида (степень кристалличности около

40%) толщиной 9мкм коммерческой марки Kureha

(Япония). Пленки ПВДФ облучались в циклотронах

ИЦ-100 и У-400 Лаборатории ядерных реакций имени

Г.Н. Флёрова Объединенного института ядерных иссле-

дований (Дубна, Россия). Облучение ионами 22Ne+4

(24MeV), 132Xe+26 (158MeV) и 209Bi+51 (670MeV)
проводили в вакууме при комнатной температуре. Флю-

енс (n) для ионов 22Ne+4 и 209Bi+51 оставался по-

стоянным порядка 109 cm−2, и варьировался от 105

до 1010 cm−2 для 132Xe+26 . При указанных энергиях

пробеги ионов 22Ne+4, 132Xe+26 и 209Bi+51 для ПВДФ

составляют соответственно 13, 19 и 42 µm.

Дозы, поглощенные 9µm пленки ПВДФ, при

облучении ионами Ne (1.2MeV/nucleon), Xe

(1.2MeV/nucleon) и Bi (3.2MeV/nucleon) с плотностью

потока n = 109 cm−2, составили 3.9; 10.4 и 186.8 kGy

соответственно.

Пленки ПВДФ, облученные тяжелыми ионами Xe26+

с флюенсом 109 cm−2 и 108 cm−2, подвергались трав-

лению в водном растворе 10М КОН и 0.1 м KMnO4

при 65 ◦С. Затем протравленные мембраны промывали

раствором Na2S2O5 (7.5% по массе) с последующей

тщательной промывкой в деионизированной воде. При

варьировании времени травления были получены поры

различного диаметра.

Размеры пор определялись методом сканирующей

электронной микроскопии (SEM) с использованием мик-

роскопа HITACHI SU8020.

2.2. Метод термостимулированных токов
деполяризации

Измерения термостимулированного тока деполяриза-

ции (ТСД) проводились в атмосфере гелия с исполь-

зованием установки TSC II (Setaram, Франция). Ток

деполяризации регистрировался высокочувствительным

электрометром Keithley с разрешением до 10−16 A, что

обеспечивало высокую точность при измерении слабых

токов.

На первом этапе измерений образцы ПВДФ поляризо-

вались контактным методом при температуре 20 ◦C или

70 ◦C в электрическом поле напряженностью 10 kV/mm

в течение 2 минут. После поляризации образцы охлажда-

ли при сохранении приложенного электрического поля.

На втором этапе поляризованный образец нагревали с

постоянной скоростью до температуры 70 ◦C. При этом

ток деполяризации регистрировался в непрерывном ре-

жиме.

Для количественного анализа релаксационных про-

цессов использовались различные методы обработки

экспериментальных результатов, такие как метод ва-

рьирования скоростей нагревания [19], метод активиро-

ванных состояний Эйринга [20] и метод оптимизации,

или численного моделирования данных термодеполя-

ризационного анализа [21]. В последнем случае для

теоретического расчета ТСД использовалось уравнение:

j(T ) ∼
∑

i

(

Si

ωm
∫

0

Wm
∫

0

Gi(W, ω)

× exp

[

−

W

kT
−

T
∫

T0

ω

β
exp

(

−

W

kT ′

)

dT ′

]

dW dω

)

(1)

где Gi — двумерная функция распределения релакса-

торов, участвующих в i-м релаксационном процессе, а
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Si — весовой коэффициент данного релаксационного

процесса. Критерием корректности определения пара-

метров релаксационных процессов является наиболее

полное совпадение экспериментальных данных и зави-

симостей I(T ), рассчитанных по формуле (1), β —

скорость нагревания.

2.3. Метод измерения пьезоэлектрических

констант

Измерение пьезоэлектрического модуля d33 прово-

дилось квазистатическим методом с использованием

прибора D33 Meter (SinoCera). Исследование выполнено

для двух групп образцов: (1) пленок ПВДФ, облученных

тяжелыми ионами без последующей поляризации, и

(2) пленок, подвергнутых после облучения поляризации

в поле отрицательного коронного разряда. Поляризацию

осуществляли при комнатной температуре в электриче-

ском поле напряженностью 1MV/cm в течение 10min.

3. Результаты и обсуждение

3.1. Облученные пленки ПВДФ

На рис. 1 и 2 представлены спектры токов термости-

мулированной деполяризации для пленок, поляризован-

ных при температуре 20 ◦C и 70 ◦C.

При температуре поляризации 20 ◦C наблюдается

2 релаксационных процесса — при −40 ◦C — извест-

ный из литературных данных как процесс стеклования

ПВДФ и около 25 ◦C — αc — релаксация. При повыше-

нии температуры поляризации до 70 ◦C в температурной

области от 0 до 70 ◦C наблюдается 3 релаксационных

процесса — в области 10 ◦C, 25 ◦C и 50 ◦C.
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Рис. 1. Спектры ТСД на скорости нагрева β = 6 ◦C/min (1) и

9 ◦C/min (2) для необлученного ПВДФ, поляризованного при

Tp = 20 ◦C при E = 10 kV/mm
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Рис. 2. Спектры ТСД на скорости нагрева β = 6 ◦C/min (1) и

9 ◦C/min (2) для необлученного ПВДФ, поляризованного при

Tp = 70 ◦C при E = 10 kV/mm
I
, 
p
A

10

8

12

14

16

40

2

4

–20 200

6

T, °C

2

1

0

Рис. 3. Экспериментальная (1) и теоретически рассчитан-

ная (2) кривая для необлученного образца (Tp = 20 ◦C).

Из-за сильно перекрывающихся релаксационных про-

цессов использование стандартных методов обработки

пиков термостимулированных токов становится невоз-

можным. Для определения параметров Ea и α ис-

пользовался метод численного моделирования (метод
оптимизации).
На рис. 3 показано совпадение между эксперименталь-

ной и теоретически рассчитанной кривой для пленок,

поляризованных при 20 ◦C, на рис. 4 показано разло-

жение на 3 составляющие, а также на вставке совпа-

дение экспериментальной и теоретически рассчитанной

по формуле (1) кривой с подобранными параметрами

релаксаторов.

Энергия активации αc -релаксации (в области ∼ 25 ◦С)
составляет 0.64 eV, соответствующий частотный фактор

Физика твердого тела, 2025, том 67, вып. 12
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Таблица 1. Значения параметров релаксации в пленках ПВДФ поляризованных при температуре 70 ◦С.

1 релаксационный 2 релаксационный 3 релаксационный

Тип иона процесс (α1) процесс (α2) процесс (α3)
(около 10 ◦С) (около 25 ◦С) (около 50 ◦С)

Параметр

релаксационного Wa , eV ω, s−1 Wa , eV ω, s−1 Wa , eV ω, s−1

процесса

Необлученный 0.91 1.3 · 1014 0.66 7.5 · 108 0.67 2 · 108
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Рис. 4. Разложение термостимулированного тока на состав-

ляющие, ответственных за три релаксационных процесса для

необлученного образца (Tp = 70 ◦C). На врезке показано соот-

ветствие между экспериментальными кривыми ТСД (сплошная
линия) и теоретически рассчитанными (пунктирная линия).
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Рис. 5. Двумерные функции распределения для релаксацион-

ных процессов в пленках ПВДФ, поляризованных при 20 ◦C

0.75

0.25

0.50

1.00

G
(W

, 
ω

)
log ω

W
, e

V

1.5

15

Рис. 6. Двумерные функции распределения для релаксацион-

ных процессов в пленках ПВДФ, поляризованных при 70 ◦C

порядка 108 s−1. В случае поляризации при повышенной

температуре результаты представлены в табл. 1.

На рис. 5 и 6 представлены итоговые двумерные

функции распределения релаксаторов для процессов,

наблюдающихся в облученных пленках ПВДФ

Влияние облучения ионами Ne, Xe и Bi на релакса-

ционный процесс, наблюдаемый в области около 25 ◦C,

при фиксированной плотности ионного потока 109 cm−2

для пленок ПВДФ представлено на рис. 7.

Видно, что увеличение атомной массы бомбардиру-

ющих ионов приводит к смещению соответствующего

релаксационного пика в область более высоких темпе-

ратур. При этом для образцов, облученных ионами Bi,

по сравнению с необлученным полимером и пленками,

подвергнутыми облучению ионами Ne и Xe, наблюдает-

ся уменьшение интенсивности данного пика ТСД.

Снижение амплитуды тока деполяризации указывает

на уменьшение числа активных релаксаторов и ограни-

чение их подвижности, что может свидетельствовать о

формировании более жесткой и структурно упорядочен-
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ной фазы ПВДФ под действием облучения тяжелыми

ионами.

Зависимость энергии активации, рассчитанная мето-

дом варьирования скорости нагрева, от массы налета-

ющего иона представлена на рис. 8. Частотный фактор

увеличивается на порядок по мере изменения типа иона,

что может указывать на изменение массы и/или момента

инерции релаксаторов.

При относительно низких дозах облучения ПВДФ,

преобладет деструкция цепей, сопровождающаяся уве-

личением числа структурных дефектов. Формирование

таких дефектов способствует увеличению интенсивно-

сти тока деполяризации. По мере увеличения дозы до

значений, сопоставимых с Dg , наблюдается переход

к преобладанию процессов сшивания, что приводит
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Рис. 7. Спектры ТСД для пленки ПВДФ до (1) и после

облучения Ne (2), Xe (3) и Bi (4). Параметры эксперимента:

E = 10 kV/mm, Tp = 20 ◦C и β = 9 ◦C/min.
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Рис. 8. Зависимость энергии активации от атомной массы

налетающих ионов.
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Рис. 9. Кривые ТСД для пленок ПВДФ: 1 — необлученных, и

облученных 2 — 22Ne4+, 3 — 132Xe26+ и 4 — 209Bi51+ . Усло-

вия поляризации: Tp = 70 ◦C, Ep = 10 kV/mm и β = 9 ◦C/min.

к затруднению подвижности молекулярных сегментов,

как следствие, к увеличению энергии активации и

уменьшению интенсивности релаксационных процессов,

что согласуется с полученными экспериментальными

данными.

Увеличение температуры поляризации до 70 ◦C позво-

ляет для облученных пленок выделить в температурном

интервале от 0 до 70 также три релаксационных процес-

са вблизи 10 ◦C, 25 ◦C и 50 ◦C (рис. 9).

На рис. 10 представлено разложение на 3 состав-

ляющие экспериментальных кривых ТСД для пленок,

облученных разными ионами, а также на вставке совпа-

дение экспериментальной и теоретически рассчитанной

по формуле (1) кривой с подобранными параметрами

релаксаторов.

В табл. 2 представлены параметры найденных функ-

ций распределения, а на рис. 11 представлены рассчи-

танные по ним двумерные функции распределения.

Наиболее низкотемпературный релаксационный про-

цесс (α1), наблюдаемый в области около 10 ◦C, демон-

стрирует существенные изменения интенсивности при

переходе от необлученного к облученному полимеру.

Как видно из рис. 10, с увеличением массы и заряда

ионов интенсивность данного процесса заметно воз-

растает. Это может указывать на развитие в ПВДФ

радиационно-индуцированных процессов.

Релаксационный процесс, наблюдаемый в области

около 25 ◦C (α2), также демонстрирует закономерные

изменения под воздействием облучения. С ростом массы

иона наблюдается увеличение энергии активации, что

согласуется с ранее полученными результатами, выяв-

ленными ранее. Как показано на рис. 12, одновременно

возрастает и частотный фактор, что, вероятно, связано

с образованием все большего числа низкомолекулярных
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Таблица 2. Значения параметров релаксации для облученных тяжелыми ионами пленок ПВДФ поляризованных при температуре

70 ◦С

1 релаксационный 2 релаксационный 3 релаксационный

Тип иона процесс (α1) процесс (α2) процесс (α3)
(около 10 ◦С) (около 25 ◦С) (около 50 ◦С)

Параметр

релаксационного Wa , eV ω, s−1 Wa , eV ω, s−1 Wa , eV ω, s−1

процесса

22Ne4+ 0.91 1.3 · 1014 0.69 2.8 · 109 0.67 2 · 108

132Xe26+ 0.90 1.3 · 1014 0.78 7.5 · 1010 0.67 2.1 · 108

209Bi51+ 0.91 1.0 · 1014 0.84 8.5 · 1011 0.67 2 · 108

Experimental TSD curve
1 relaxation process
2 relaxation process
3 relaxation process
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Рис. 10. Разложение термостимулированного тока на составляющие, ответственных за три релаксационных процесса для: а —

облученный ионами Ne, b — облученный ионами Xe, c — облученный ионами Bi. На врезке показано соответствие между

экспериментальными кривыми ТСД (сплошная линия) и теоретически рассчитанными (пунктирная линия).
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Рис. 11. Двумерные функции распределения для релаксационных процессов в пленках, облученных ионами Ne, ионами Xe,

ионами Bi.

дефектов по мере увеличения заряда и массы ионов,

взаимодействующих с полимером.

Для релаксационного процесса α3, наблюдаемого в

области около 50 ◦C, значения энергии активации и

частотного фактора остаются практически неизменными

(в пределах экспериментальной погрешности) как для

необлученного образца, так и для пленок, облученных

ионами Ne, Xe и Bi (см. табл. 2). Данный процесс харак-

теризуется относительно низким значением частотного

фактора, что, вероятно, связано с участием в релаксации

крупных фрагментов макромолекулярных цепей, размо-

раживающихся при повышенных температурах.

На рис. 13, (а) и (b) представлены зависимости пьезо-

электрического модуля d33 неполяризованных образцов

от заряда налетающего иона и флюенса ионного облуче-

ния, соответственно.

Наблюдаемый рост значения d33 с увеличением заряда

налетающего иона и флюенса может быть обусловлен

совокупным влиянием кинетических и термических эф-

фектов. П1gовышение передаваемой энергии при уве-

личении заряда ионного пучка способствует возник-

новению термических всплесков в объеме материала,

сопровождающихся кратковременным локальным повы-

шением температуры вблизи треков ионов. Это, в свою

очередь, вызывает временное размягчение полимерных

цепей ПВДФ, создавая условия для ориентации молеку-

лярных диполей вдоль направления действия пучка.

Дополнительное воздействие поляризующего элек-

трического поля, созданного отрицательным коронным

разрядом, оказывает усиливающее влияние на сформи-

рованные дипольные структуры, что иллюстрируется

на рис. 14, (а) и (b). Для всех ионов (Ne, Xe, Bi)
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Рис. 12. Трансформация релаксационного процесса, наблюда-

емого вблизи 25 ◦С, при увеличении заряда и массы ионов.

наблюдается взаимно усиливающий эффект воздействия.

Таким образом, можно говорить об эффекте синергии

между облучением и поляризацией в коронном разряде.

3.2. Электрофизические свойства трековых
мембран на основе ПВДФ

Процесс травления включает в себя проникновение

небольших молекул травителя в сильно обедненное ядро

трека и селективное разрушение химических связей.

В ходе травления, по мере роста пор, в области гало

трека формируются новые структурные дефекты, кото-
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Рис. 13. Зависимость пьезоэлектрического модуля d33 : a — от заряда налетающего иона; b — от флюенса иона Xe.

рые могут приводить к возникновению дополнительных

релаксационных процессов.

На рис. 15 представлены спектры термостимулиро-

ванного деполяризационного (ТСД) тока для пленок

ПВДФ, облученных ионами Xe с флюенсом 108 и

109 cm−2 и подвергнутых последующему химическому

травлению различной продолжительности. Процесс фор-

мирования трековых мембран, включающий травление

после ионного облучения, сопровождается появлением

нового релаксационного процесса, наблюдаемого при

температуре около −10 ◦C. Указанный пик отсутствует

в спектрах образцов, облученных ионами Xe, но не

подвергнутых травлению, что подтверждает его связь со

структурными изменениями, происходящими в процессе

вытравливания треков.

Появление данного релаксационного максимума, по-

видимому, связано с появлением новых релаксаторов,

формирующихся на границе между стенками латентного

трека и неповрежденной областью полимера. При этом

интенсивность пика увеличивается с ростом времени

травления, что указывает на прямую зависимость между

числом вновь образованных релаксаторов и увеличе-

нием удельной площади поверхности пористой струк-

туры.

Исследования, проведенные на пленках ПВДФ, не

подвергавшихся ионному облучению, но травленных

в течение 15, 45, 60 и 150min, также выявили по-

явление слабовыраженного пика в области −10 ◦C

(рис. 16). Однако его интенсивность значительно ни-

же, чем у облученных и затем травленных образ-

цов. Это свидетельствует о том, что сам процесс

травления может вызывать ограниченные структурные

модификации поверхности полимера — формирование

дефектов на поверхности пленки. Тем не менее, в

отсутствие латентных треков эти изменения не сопро-

вождаются значительным увеличением интенсивности

тока.
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Рис. 14. Зависимость пьезоэлектрического модуля d33 в пленках, поляризованных в отрицательном коронном разряде: a — от

заряда налетающего иона; b — от флюенса иона Xe.

Таким образом, возникновение выраженного низко-

температурного релаксационного пика при совмещен-

ном воздействии ионного облучения и последующего

травления может быть обусловлено формированием в

результате облучения областей повышенной дефектно-

сти. При последующем травлении эти области транс-

формируются в межфазные зоны, характеризующиеся

повышенной подвижностью сегментов макромолекул и

дипольных групп, что приводит к появлению дополни-

тельных релаксационных механизмов.

Для вычисления энергии активации и частотного

фактора процесса, возникающего в области −10 ◦C, был

использован метод оптимизации. Для определения ве-
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Рис. 15. Спектры ТСД для пленки ПВДФ, облученных ионами

Xe с флюенсом 109 cm−2 и 108 cm−2 с различными размерами

пор. Параметры эксперимента: E = 10 kV/mm, Tp = 20 ◦C и

β = 6 ◦C/min.
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Рис. 16. Спектры ТСД для пленки ПВДФ после травления

в течение 15, 45, 60 и 150min. Параметры эксперимента:

E = 10 kV/mm, Tp = 20 ◦C и β = 6 ◦C/min.

роятных параметров использовался метод варьирования

скорости нагрева (рис. 17). На рис. 18 представлено

совпадение экспериментальной и теоретически рассчи-

танной кривой для пленок, облученных ионами Xe с

флюенсом 109 cm−2 и размером пор 51 nm.

Энергия активации этого процесса составила 0,83 eV,

а частотный фактор — 2.5 · 1012 s−1, что указыва-

ет на наличие высоко подвижных дефектных струк-

тур.Энергия активации данного процесса не зависит от

времени травления и остается постоянной.

На рис. 19 представлена двухмерная функция распре-

деления релаксаторов в облученных пленках ПВДФ с

последующим травлением.
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На рис. 20 (а, b) представлены зависимости пьезоэлек-

трического модуля d33 от времени химического травле-

ния пленок ПВДФ, облученных ионами Xe при флюенсе

109 cm−2, без поляризации в поле отрицательного ко-

ронного разряда и после нее соответственно. В обоих

случаях наблюдается быстрое уменьшение значения d33
с увеличением времени травления.

Такое поведение пьезоэлектрической константы свиде-

тельствует о постепенном исчезновении пьезоактивной

фазы в процессе химического травления, протекающего

при повышенной температуре в неполяризованных об-

разцах. Для пленок, поляризованных в отрицательном

коронном разряде, дополнительным фактором снижения

d33 может являться рост поверхностной проводимо-
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Рис. 17. Спектры ТСД для трековых мембран на основе

ПВДФ, облученных ионами Хe с флюенсом 109 cm−2 (диа-
метр пор 51 nm). Параметры эксперимента: E = 10 kV/mm,

Tp = 20 ◦C.
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Рис. 18. Спектры ТСД для трековых мембран на основе

ПВДФ с диаметром пор 51 nm (1 — практическая кривая, 2 —

теоретически рассчитанная кривая).
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Рис. 19. Двумерные функции распределения для релаксаци-

онных процессов в пленках ПВДФ, облученных ионами Xe с

последующим травлением.

сти по мере увеличения времени травления, а также

уменьшение объема полимерной матрицы вследствие

расширения пор.

Предполагается, что поляризованные β-фазовые об-

ласти преимущественно локализуются вблизи границ

треков и разрушаются на ранних стадиях травления, что

приводит к сокращению объема пьезоактивной фазы и,

как следствие, к экспоненциальному снижению моду-

ля d33.

4. Выводы

Метод термостимулированной деполяризации позво-

лил выявить в пленках ПВДФ, облученных тяжелыми

ионами Ne, Xe и Bi, три кооперативных релаксацион-

ных процесса, проявляющихся в диапазоне температур

0− 70 ◦С. Низкотемпературный процесс, наблюдаемый

около 10 ◦С, демонстрирует выраженную зависимость

интенсивности от массы и заряда налетающих ионов и

обусловлен формированием на поверхности и вблизи

треков функциональных групп, концентрация которых

увеличивается при облучении более тяжелыми ионами.

Второй, проявляющийся в области около 25 ◦С, связан

с образованием радиационно-индуцированных дефектов

и процессами сшивания макромолекулярных цепей, уси-

ливающихся при приближении к точке гелеобразования.

Высокотемпературный релаксационный процесс, наблю-

даемый вблизи 50 ◦С, обусловлен повышенной подвиж-

ностью крупных сегментов макромолекул в переходной

зоне между аморфными и кристаллическими областями.
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Рис. 20. Зависимость пьезоэлектрического модуля d33 — а) от времени травления пленки, облученной ионами Xe с флюенсом

109 cm−2; b) от времени травления пленки, поляризованной в поле отрицательного коронного разряда, облученной ионами Xe с

флюенсом 109 cm−2 .

После химического травления в спектрах термостиму-

лированной деполяризации выявлен дополнительный ре-

лаксационный пик в области около −10 ◦С, связанный с

формированием релаксационных центров на границе пор

и вблизи латентных треков. Установлено, что наиболь-

шее число релаксаторов возникает именно в областях

латентных треков, где под действием ионного облучения

формируются дефектные структуры и локальные неод-

нородности, способствующие повышенной подвижности

сегментов макромолекул. В образцах, не подвергшихся

облучению, но прошедших химическое травление, также

наблюдается слабый пик в той же температурной обла-

сти, что подтверждает влияние структурных изменений,

вызванных воздействием травителя. Однако значительно

более высокая интенсивность данного процесса в об-

лученных образцах свидетельствует о ключевой роли

радиационно-индуцированных дефектов в формировании

новых типов релаксаторов на ранних стадиях травления.

Измерения пьезоэлектрического модуля d33 показали,

что воздействие пучка тяжелых ионов вызывает фор-

мирование устойчивого пьезоэлектрического отклика,

величина которого возрастает с увеличением заряда и

флюенса налетающего иона. Дополнительная поляриза-

ция в поле отрицательного коронного разряда приводит

к дальнейшему росту d33, что связано с усилением

ориентации дипольных групп и увеличением остаточной

поляризации. В то же время химическое травление со-

провождается снижением значений d33, вероятно вслед-

ствие частичного разрушения поляризованных областей

и изменения проводимости вдоль треков, способствую-

щих утечке зарядов.

Таким образом, установлено, что параметры ионного

облучения и последующей химической обработки ока-

зывают влияние на релаксационные и функциональные

свойства пленок ПВДФ. Контроль над этими парамет-

рами позволяет целенаправленно изменять структуру

и пьезоэлектрические характеристики материала, что

открывает перспективы его применения в сенсорных и

энергоаккумулирующих устройствах нового поколения.
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