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Исследовано влияние парциального давления реактивного газа (кислорода) в камере напыления и
температуры подложки на электропроводность, подвижность носителей заряда и термоэдс тонких пленок
оксида цинка (ZnO), полученных методом ионно-лучевого распыления. Синтезированные пленки являются
нанокристаллическими и характеризуются гексагональной кристаллической решеткой вюрцита и текстурой
с преобладающей осью 〈0001〉, перпендикулярной плоскости пленки. Электронно-микроскопический анализ
подтвердил формирование нанокристаллической структуры с характерной текстурой роста.

Установлено, что в исследованных образцах доминирующим механизмом переноса заряда является
прыжковая проводимость с переменной длиной прыжка по локализованным состояниям вблизи уровня
Ферми, что подтверждается: линейностью зависимостей ln(ρ/ρo)(T

−1/4) и S(T 1/2), а также низкими
значениями плотности локализованных состояний на уровне Ферми g(EF) ∼ 1017 eV−1·cm−3 . Проведены
оценки основных модельных параметров исследованных пленок: характерной температуры B , плотности
состояний на уровне Ферми g(EF), длины прыжка и радиуса локализации. Установлено, что увеличение
парциального давления кислорода в газовой смеси приводит к уменьшению g(EF), а повышение температуры
подложки способствует росту плотности электронных состояний.
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1. Введение

Оксид цинка (ZnO) продолжает вызывать повышен-
ный интерес исследователей благодаря ряду существен-
ных достоинств. Оксид цинка имеет рекордную сре-
ди бинарных полупроводников энергию связи эксито-
на — 60meV, что является предпосылкой для создания
устройств, эффективно работающих при температурах
до 700 ◦C [1], обладает широкой запрещенной зоной
(∼ 3.37 eV) и стабильностью в агрессивных средах [2].
Кроме того, ZnO податлив к химическому травлению,
безвреден и относительно недорог, что делает его при-
влекательным для создания самых разнообразных прибо-
ров электронной техники [3]. С практической точки зре-
ния, оксид цинка является перспективным материалом
для электродов прозрачной электроники, чувствитель-
ных слоев газовых и биологических сенсоров, катали-
заторов, детекторов рентгеновского и γ-излучений [4–6],
а также других применений [7,8]

Известно, что электропроводность пленок оксида цин-
ка существенно зависит от условий их синтеза [9]. При
этом значения электропроводности, представленные в
литературе, изменяются от типичных для вырожден-
ных полупроводников с зонным механизмом проводи-
мости до очень малых, характерных для изоляторов

с активационной или прыжковой проводимостью [10].
Это указывает на то, что при определенном уровне
дефектности в пленках оксида цинка может происходить
локализация подвижных носителей заряда. Вместе с тем
механизмы этой локализации и параметры локализован-
ных электронных состояний остаются малоизученными,
в то время как их понимание важно для получения
пленок с более высокой подвижностью электронов и
разработки технологии их синтеза.

Для получения пленок оксида цинка используются
различные методы: молекулярно-лучевая эпитаксия [11],
магнетронное распыление [12], осаждение из газовой
фазы [13], включая металлоорганику и импульсное ла-
зерное напыление [14], а также другие [15,16]. Однако
качество тонких пленок ZnO, полученных методами
физического или химического осаждения, существенно
зависит от параметров синтеза, включая температуру
подложки, давление и состав газовой среды. Особенно
важна роль кислорода, который влияет на стехиометрию
материала, концентрацию дефектов и, как следствие,
на его электронные и оптические характеристики [17].
Недостаток кислорода приводит к образованию вакансий
кислорода (VO) и межузельных атомов цинка (Zni),
что увеличивает плотность локализованных состояний
в запрещенной зоне и снижает подвижность носителей
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заряда. Напротив, избыток кислорода может вызывать
формирование поверхностных оксидов или вторичных
фаз, нарушающих кристаллическую структуру [18]. Со-
временные исследования показывают, что оптимизация
содержания кислорода в камере синтеза позволяет улуч-
шить структурное совершенство пленок ZnO и кон-
тролировать их электрические свойства. Например, при
использовании реактивного магнетронного распыления
с регулируемым потоком кислорода достигается высокая
кристаллическая чистота и однородность пленок [19].
Актуальность настоящего исследования обусловлена

необходимостью установления количественных законо-
мерностей между содержанием кислорода при синтезе,
температурой подложки и электронной структурой пле-
нок ZnO. Решение этой задачи позволит создавать мате-
риалы с заданными характеристиками для приложений в
транзисторах, солнечных элементах, элементах энерго-
независимой памяти (RRAM) и газовых сенсорах. Пред-
варительные исследования показали, что для пленок
оксида цинка, полученных методом ионно-лучевого рас-
пыления, несмотря на кристаллическую структуру, при
температурах выше комнатной реализуется прыжковый
механизм проводимости по локализованным состояниям
вблизи уровня Ферми с переменной длиной прыжка.
Использование уже отработанной методики позволило
из результатов температурных зависимостей электро-
проводности экспериментально определить плотность
локализованных состояний и ее изменение в зависимо-
сти от технологических параметров напыления пленок.
С учетом вышесказанного, целью работы стало изучение
зависимости плотности электронных состояний от тем-
пературы подложки для образцов, синтезированных при
различных концентрациях кислорода, с последующим
анализом механизмов формирования дефектов и их вли-
яния на проводимость. Для достижения поставленной
цели использовался метод ионно-лучевого напыления в
условиях контролируемой атмосферы, а также комплекс-
ные исследования структурных и электронных свойств,
включая рентгеновскую дифракцию [20].

2. Методика эксперимента

Для получения экспериментальных образцов исполь-
зовался метод ионно-лучевого напыления, реализуемого
на базе вакуумного поста УВН-2М, устройство которого
подробно описано в работе [21]. В качестве подло-
жек использовали ситалл марки СТ-50 (образцы для
измерения электрических свойств и эффекта Холла)
и окисленный кремний (для исследования структуры)
ориентации (001). При получении тонких пленок была
использована водоохлаждаемая мишень, состоящая из
пластин керамики ZnO. Осаждение производилось на
подогреваемую подложку, температура которой поддер-
живалась равной Tsub = 200, 300, 400, 500 ◦C для различ-
ных напылений. Газовая атмосфера в камере напыле-
ния создавалась следующим образом: предварительно

рабочий объем вакуумировался до давления остаточных
газов 10−7 Torr, затем через программно-управляемые
натекатели напускались рабочий газ — аргон чистотой
99.9995% до давления 7 · 10−4 Torr и кислород чистотой
99.9999% в пределах от 0 до 10% от рабочего. Подлож-
ки располагались вертикально на подложкодержателе,
который перемещает их в зоны напыления или зону ион-
ной очистки с заданной скоростью. Перед нанесением
пленки производилась ионная очистка подложек в те-
чение 5min. Параметры работы ионных источников бы-
ли: ускоряющее напряжение 2.0 kV, ток плазмы 60mA.
Скорость нанесения материала составляла ∼ 0.5µm в
час. Толщина полученных пленок была измерена на
интерферометре МИИ-4 и составляла ∼ 0.8µm.
Для исследования структуры и фазового состава

полученных образцов применялись методики
рентгеноструктурного фазового анализа (РФА) и
просвечивающей электронной микроскопии (ПЭМ).
РФА проводили на дифрактометре Bruker D2 Phaser
(λCuKα1 = 1.54�A) с применением программного
обеспечения DIFFRAC.EVA 3.0 и базы данных
ICDD PDF Release 2012 [22].
Исследование электрической проводимости и термо-

эдс полученных образцов проводили дифференциальным
методом на установке Netzsch SBA 458 в диапазоне
температур 300−550K [23]. Для проведения данных из-
мерений использовались образцы прямоугольной формы
со сторонами 20× 4mm.
Коэффициент Холла измеряли методом Ван-дер-Пау

на установке Ecopia HMS-5500. Данный измерительный
комплекс позволяет в автоматическом режиме фикси-
ровать значения подвижности, объемной и поверхност-
ной концентрации носителей зарядов и коэффициен-
та Холла [24]. Измерение проводилось в постоянном
магнитном поле величиной 0.55 T на образцах в виде
квадрата с длиной стороны 10mm, на углы которого
предварительно были нанесены омические контакты из
пасты марки ПП-17.

3. Результаты и их обсуждение

3.1. Структура тонких пленок ZnO

Результаты РФА тонких пленок ZnO приведены на
рис. 1. Анализ дифрактограмм показал, что для всех
исследованных образцов характерна кристаллическая
структура оксида цинка с гексагональной решеткой
вюрцита (пространственная группа P63mc). При до-
бавлении кислорода до 10% включительно пленки яв-
ляются преимущественно текстурированными с осью
текстуры 〈0001〉, перпендикулярной плоскости пленки,
что проявляется в виде увеличения интенсивности от
рефлекса (0002) относительно справочного значения
карточки PDF 01-089-1397 базы данных ICDD PDF 2012.
Оценка параметров элементарной ячейки дала значения
a = 3.36 ± 0.02�A и c = 5.24± 0.02�A, практически не
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Рис. 1. Рентгеновские дифрактограммы (λCuKα1 = 1.54�A)
тонких пленок ZnO, осажденных на подложки при
Tsub = 200 ◦С (а) и Tsub = 400 ◦С (b): 1 — nO2 = 1%,
2 — nO2 = 1.2%, 3 — nO2 = 1.4%, 4 — nO2 = 2.4%, 5 —
nO2 = 5%, 6 — nO2 = 10%.

зависящие от температуры подложки и давления кис-
лорода. Сравнивая полученные значения с табличными
параметрами (a = 3.325�A и c = 5.205�A) можно сделать
вывод, что в процессе ионно-лучевого напыления на
неподвижную подложку формируются тонкие пленки
кристаллического ZnO с дефектной структурой, что
приводит к увеличению параметров a и c . Оценка
размеров кристаллитов по формуле Шеррера

d =
Kλ

β cos θ
, (1)

где d — средний размер кристаллов, K — безразмер-
ный коэффициент формы частиц, λ — длина волны
рентгеновского излучения, β — ширина рефлекса на
полувысоте (в радианах), θ — угол дифракции (брэггов-
ский угол), дает достаточно большие значения ∼ 28 nm.
Добавление кислорода не приводит к появлению новых

фаз или значительному изменению параметров элемен-
тарной ячейки.
Увеличение интенсивности и уменьшение уширения

дифракционных пиков ZnO, наблюдаемое для дифрак-
тограмм при Tsub = 400 ◦C (рис. 1, b) в сравнении с
Tsub = 200 ◦C (рис. 1, a) свидетельствуют об улучше-
нии структурного совершенства пленок, осажденных
при повышенной температуре, и о большем, чем при
Tsub = 200 ◦C, размере кристаллитов. Данный эффект
проявляется во всем исследованном диапазоне пар-
циальных содержаний кислорода (nO2 = 1−10%). Ос-
новной причиной наблюдаемого улучшения является
термическая активация процессов на поверхности под-
ложки: повышение температуры до 400 ◦C усилива-
ет поверхностную диффузию адсорбированных атомов
и процессы перестройки решетки (рекристаллизацию),
что способствует формированию более крупных кри-
сталлитов ZnO. Для образцов, синтезированных при
Tsub = 400 ◦C, оценки размеров кристаллитов дали зна-
чения ∼ 38 nm.
Анализ микрофотографии ПЭМ поперечного сечения

тонкой пленки ZnO, полученной без добавления кисло-
рода на подложку при Tsub = 200 ◦C (рис. 2) показал, что
структура изученного образца является нанокристалли-
ческой и характеризуется фазой гексагонального ZnO
типа вюрцита, на что указывает присутствие дугооб-
разных рефлексов на картинах электронной дифракции
(вставка на рис. 2). На основании анализа картин элек-
тронной дифракции также можно сделать вывод, что в
исследованных тонких пленках присутствуют кристал-
литы ZnO двух ориентаций, определяемых селективным
ростом зерен с осью 〈0001〉, нормальной поверхности
подложки. Взаимная ориентация зерен ZnO описывает-
ся соотношением (101̄0), [0001] ‖ (112̄0), [0001] (плос-
кость (101̄0) и направление [0001] одних кристаллитов
параллельны плоскости (112̄0) и направлению [0001]
других кристаллитов).

20 nm

1123 2020

1010
1011

1012

0002

0001

Рис. 2. ПЭМ-изображение поперечного сечения и картина ди-
фракции электронов (на вставке) тонких пленок ZnO, получен-
ных без добавления кислорода на подложку при Tsub = 200 ◦С.
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Рис. 3. Зависимости ρ(T ) (a) и ln(ρ/ρo)(T
−1/4) (b) для тонких пленок оксида цинка, напыленных при Tsub = 200 ◦С (1, 3, 5, 7)

и Tsub = 400 ◦С (2, 4, 6, 8) при различном значении содержания кислорода в камере: 1, 2 — nO2 = 0%; 3, 4 — nO2 = 1.4%; 5, 6 —
nO2 = 5%; 7, 8 — nO2 = 10%.

Надо отметить некоторую разориентацию кристал-
литов относительно оси 〈0001〉, что проявляется на
электронной дифракции как дугообразное размытие ре-
флексов.

3.2. Электрические свойства тонких пленок
оксида цинка

Результаты измерений зависимостей удельного элек-
трического сопротивления от температуры синтезиро-
ванных тонких пленок оксида цинка приведены на рис. 3.
Из рис. 3, а видно, что с повышением температуры
до 500K значения удельного электрического сопротив-
ления для всех исследованных пленок уменьшаются.
При комнатной температуре величина электрического
сопротивления существенно зависит от парциального
давления кислорода в распылительной камере: увели-
чение парциального давления от 0 до 10% приводит
к росту электрического сопротивления на несколько
порядков (рис. 3, а).
Для установления доминирующего механизма прово-

димости экспериментальные зависимости ρ(T ), пред-
ставленные на рис. 3, a, были перестроены в коорди-
натах ln(ρ/ρo)(1/T ), ln(ρ/ρo)(1/T 1/2), ln(ρ/ρo)(1/T 1/4)
(где ρo — электрическое сопротивление при ком-
натной температуре), и установлено, что в области
температур 300−500K удельное электрическое сопро-
тивление имеет линейную зависимость в координатах
ln(ρ/ρo)(1/T 1/4) (рис. 3, b). Представленные на рис. 3, b
зависимости указывают на прыжковый механизм прово-
димости носителей заряда с переменной длиной прыж-
ка по локализованным состояниям, лежащим в уз-
кой полосе энергий вблизи уровня Ферми. Отметим,
что для легированного железом керамического образ-
ца оксида цинка линейная зависимость ρ(T ) в коор-
динатах Мотта наблюдалось в интервале температур

20K < T < 40K [25]. В случае же тонкопленочного
нелегированного образца оксида цинка с нанокристал-
лической структорой, полученного ионно-лучевым мето-
дом в настоящей работе, когда по границам зерен фор-
мируется высокая концентрация оборванных химических
связей вследствие отсутствия стехиометрии по кислоро-
ду, прыжковый механизм проводимости реализуется при
температурах выше комнатной.
Для прыжковой проводимости электронов с пере-

менной длиной прыжка по локализованным состояниям
вблизи уровня Ферми справедливо уравнение [26]:

σ = e2 · R2 · νph · g(EF) · exp
(

−B

T

)1/4

, (2)

где

B =
21

a3 · kB · g(EF)
, (3)

K =

(

3 · a

2π · g(EF) · kB · T

)1/4

, (4)

e — заряд электрона, K — средняя длина прыжка,
νph — фактор спектра фононов взаимодействия, T —
абсолютная температура, g(EF) — плотность состояний
на уровне Ферми, a — радиус локализации волновой
функции электрона, kB — постоянная Больцмана.
Из рис. 3, b были определены значения величин B для

исследованных пленок. Предполагая, что процесс пере-
носа носителей заряда лимитируется прыжками между
оборванными связями по границам кристаллитов, для
оценки плотности локализованных состояний принима-
ем радиус локализации равным боровскому радиусу [27]:

a = aB =
4πε0ε~2

m∗e2
, (5)

где ε0 — электрическая постоянная, ε = 9 — стати-
ческая диэлектрическая проницаемость ZnO [28], ~ —
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Рис. 4. Зависимости g(EF) от концентрации O2 (nO2) в камере при напылении (а), где 1 — Tsub = 200 ◦С, 2 — Tsub = 400 ◦С и
температуры подложки (b), где 1 — nO2 = 0%, 2 — nO2 = 1.4%, 3 — nO2 = 1.7%, 4 — nO2 = 5%, 5 — nO2 = 10%.

приведенная постоянная Планка, m∗ ≈ 0.24m0 — эф-
фективная масса электрона для ZnO [28,29], m0 —
масса покоя электрона, e — заряд электрона, что дает
aB = 2 nm.
Тогда, применяя выражения (2)−(5), можно провести

оценку параметров тонкой пленки оксида цинка соглас-
но модели прыжковой проводимости электронов с пере-
менной длиной прыжка по локализованным состояниям,
лежащим в узкой полосе энергий вблизи уровня Ферми,
плотность электронных состояний из уравнения (2), а
также длину прыжка K и среднюю энергию прыжка
WVRH по формуле:

WVRH
∼= 1

4
kBT

(

B4

T

)1/4

, (6)

где kB — постоянная Больцмана, T — абсолютная
температура, B — параметр в уравнении (2).
По экспериментальным данным рис. 3, b из уравне-

ния (3) были определены плотности локализованных
состояний на уровне Ферми тонкопленочного оксида
цинка (см. таблицу) и представлены на рис. 4 в виде за-
висимостей g(EF) от парциального давления O2 в камере
при напылении (рис. 4, а) и от температуры подложки
(рис. 4, b). Результаты расчета других параметров также
приведены в таблице.
С ростом парциального давления O2 в распылитель-

ной камере наблюдается монотонное уменьшение g(EF)
(рис. 4, а) как для Tsub = 200 ◦С так и для Tsub = 400 ◦С,
что вероятно обусловлено снижением концентрации
вакансий по кислороду. При этом при низких температу-
рах подложки эффект более выражен: при Tsub = 200 ◦С
g(EF) снижается на два порядка при увеличении парци-
ального давления O2 в распылительной камере.
На рис. 4, b показана зависимость g(EF) от Tsub при

различных концентрациях O2 в камере при напылении.

Из рис. 4, a и b видно, что с увеличением температу-
ры подложки плотность локализованных состояний на
уровне Ферми растет. Это может быть связано с тем, что
взаимодействие кислорода с цинком в процессе синтеза
пленки происходит на поверхности подложки, а при уве-
личении ее температуры происходит десорбция атомов
кислорода, что приводит к образованию кислородных
вакансий и росту плотности локализованных состояний,
связанных с ними.
Таким образом, увеличение парциального давления

кислорода в распылительной камере в процессе роста
пленки оксида цинка и изменение температуры под-
ложки позволяют изменять плотность локализованных
состояний в тонких пленках оксида цинка в широких
пределах (на несколько порядков величины) и управлять
электрическими свойствами формируемых пленок.
Как отмечалось во введении, прыжковый механизм

проводимости, реализуемый при недостатке кислорода
в пленке, должен сказаться на снижении подвижности
носителей заряда, для чего были исследованы темпера-
турные зависимости подвижности электронов, определя-
емой как произведение электрической проводимости на
коэффициент Холла. На рис. 5, a показаны зависимости
подвижности носителей заряда от температуры для
синтезированных образцов оксида цинка. Из рис. 5, a
видно, что при комнатной температуре наблюдаемые
значения имеют величины, характерные для прыжковой
проводимости, и с повышением температуры подвиж-
ность возрастает для всех исследованных в работе
образцов. Такое поведение отличает исследуемые пленки
от обычных полупроводников, в которых подвижность
при температурах выше комнатной, наоборот, падает из-
за усиления рассеяния на тепловых колебаниях решетки.
На рис. 5, b представлены зависимости подвижности в

координатах Мотта ln(µ/µo)(1/T 1/4), где µo — значения
подвижности носителей заряда при комнатной темпе-
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Параметры тонких пленок ZnO, рассчитанные согласно модели прыжковой проводимости электронов с переменной длиной прыжка
по локализованным состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми

Атмосфера
Tsub, ◦С nО2 , % B1/4, K1/4 g(EF), K, nm WVRH , eV

(

∂ ln
(

g(EF)

g0

)

∂E

)

E=EF

, eV−1

при напылении eV−1 · cm−3 (T = 300K) (T = 300K) (T = 300K)

200 − 204.1 1.3 · 1016 40.8 0.32 −0.024

Ar
300 − 130.1 8.1 · 1016 26.0 0.21 −

400 − 81.3 5.3 · 1017 16.2 0.13 −0.238
500 − 71.4 8.9 · 1017 14.3 0.11 −

200 1.4 245.5 6.4 · 1015 49.0 0.38 −0.016
300 138.8 6.2 · 1016 27.7 0.22 −

400 84.8 4.5 · 1017 16.9 0.13 −0.220
500 31.7 2.3 · 1019 6.3 0.05 −

Ar+O2
200 1.7 173.6 2.6 · 1016 34.7 0.27 −0.032
300 159.7 3.6 · 1016 31.9 0.24 −

400 100.1 2.3 · 1017 20.0 0.25 −0.173
500 61.9 1.6 · 1018 12.4 0.16 −

200 5 253.2 5.6 · 1015 50.6 0.39 −0.023
400 104.8 1.9 · 1017 20.9 0.16 −0.189
200 10 346.1 1.6 · 1015 69.1 0.54 −0.029
400 119.4 1.1 · 1017 23.9 0.19 −0.210
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Рис. 5. Зависимости µ(T ) (a) и ln(µ/µo)(T
−1/4) (b) для тонких пленок оксида цинка, напыленных при Tsub = 200 ◦С (1, 3, 5, 7)

и Tsub = 400 ◦С (2, 4, 6, 8) при различном значении содержания кислорода в камере: 1, 2 — nO2 = 0%; 3, 4 — nO2 = 1.4%; 5, 6 —
nO2 = 5%; 7, 8 — nO2 = 10%.

ратуре. Наблюдаемые линейные зависимости свидетель-
ствуют о том, что подвижность увеличивается с ростом
температуры по закону, характерному для прыжковой
проводимости с переменной длиной прыжка. Таким
образом, анализ подвижности независимо и однознач-
но подтверждает вывод о доминировании прыжкового
механизма проводимости в полученных пленках оксида
цинка.
Экспериментальное изучение термоэдс в полупровод-

никовых пленках позволяет получить дополнительную
информацию о механизмах электронного переноса, для
чего в синтезируемых пленках ZnO. Были исследова-

ны температурные зависимости термоэдс, результаты
измерений которых представлены на рис. 6, а. При
комнатной температуре для пленок, синтезированных
в атмосфере аргона, величина термоэдс относительно
невелика (S ∼ 60µV/K) и слабо растет с увеличением
температуры (кривые 1 и 2 на рис. 6, а). Увеличение пар-
циального давления кислорода в распылительной камере
до 10% приводит к росту термоэдс до S ∼ 220µV/K
при комнатной температуре (кривая 7 на рис. 6, а).
Отметим, что для всех синтезированных образцов знак
термоэдс отрицательный, что указывает на электронный
тип носителей заряда.
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Если в исследованном интервале температур имеет
место прыжковый механизм проводимости с переменной
длиной прыжка по локализованным состояниям, лежа-
щим в узкой полосе энергий вблизи уровня Ферми, то
для термоэдс должно быть справедливо выражение [30]:

S =
kB

2e

√
BT

(

∂ ln( g(EF)
g0

)

∂E

)

E=EF

, (7)

где kB — постоянная Больцмана, e — заряд электрона,
T — абсолютная температура, B — параметр в урав-

нении (2),
(

∂ ln(
g(EF)

g0
)

∂E

)

E=EF

— производная логарифма

плотности локализованных состояний на уровне Ферми
по энергии.
Если перестроить экспериментальные зависимости

термоэдс в координатах S(T 1/2), то можно видеть,
что измеренные образцы демонстрируют линейную за-
висимость (рис. 6, b). Данные зависимости являются
подтверждением того, что в исследуемом интервале
температур преобладает прыжковая проводимость по
локализованным состояниям вблизи уровня Ферми. Учи-
тывая полученные ранее значения B и S, можно оценить
значения производной логарифма плотности локализо-
ванных состояний на уровне Ферми по энергии для
различных температур. Результаты таких для исследо-
ванных образцов представлены в таблице.
В заключение отметим, что, меняя такие условия

синтеза тонких пленок оксида цинка как температура
подложки и парциальное давление кислорода, можно
управлять концентрацией вакансий по кислороду, изме-
няя таким образом плотность локализованных состоя-
ний на уровне Ферми и получать заданные электриче-
ские свойства.

4. Заключение

Исследованы электрофизические свойства тонких пле-
нок оксида цинка (ZnO), полученных методом ионно-
лучевого распыления при различных значениях парци-
ального давления кислорода в распылительной камере и
температурах подложки. Синтезированные пленки явля-
ются нанокристаллическими и характеризуются гексаго-
нальной кристаллической решеткой и текстурой с пре-
обладающей осью 〈0001〉, перпендикулярной плоскости
пленки.
Анализ температурных зависимостей электрической

проводимости и термоэдс показал, что преобладающим
механизмом переноса заряда в исследованных образцах
в области температур 300−500K является прыжковая
проводимость с переменной длиной прыжка вблизи
уровня Ферми. Это подтверждается: линейностью за-
висимостей ln(ρ/ρo)(T

−1/4) и S(T 1/2), а также низки-
ми значениями плотности состояний на уровне Ферми
g(EF) ∼ 1017 eV−1·cm−3, типичными для локализован-
ных состояний. Были вычислены основные модельные
параметры исследованных пленок ZnO: характерная тем-
пература B , плотность состояний на уровне Ферми
g(EF), длина прыжка и радиус локализации. Установле-
но, что увеличение парциального давления кислорода
в газовой смеси приводит к уменьшению g(EF), а
повышение температуры подложки способствует росту
плотности электронных состояний.
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