05

Метамагнитные фазовые переходы в (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамике, индуцированные статическими и импульсными полями

© Ф.Н. Буханько

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк, Украина E-mail: buhanko@mail.fti.ac.donetsk.ua

(Поступила в Редакцию 15 июня 2011 г. В окончательной редакции 16 ноября 2011 г.)

> В образцах (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ керамики в нулевом внешнем магнитном поле обнаружен не зависящий от частоты измерения острый пик магнитной восприимчивости вблизи температуры 48.5 К с небольшим температурным гистерезисом, характерный для фазового перехода в антиферромагнитное состояние с дальнодействующим зарядовым орбитальным упорядочением, который сопровождался ростом восприимчивости с понижением температуры. Изотермы намагниченности в статических и импульсных магнитных полях при температурах ниже 60 К демонстрируют необратимый метамагнитный переход в однородное ферромагнитное состояние с критическим полем перехода, не зависящим от температуры измерений, связанный, повидимому, с разрушением диэлектрического состояния с дальнодействующим зарядовым упорядочением. В интервале температур 60 К $\leq T \leq 150$ К наблюдался индуцированный магнитным полем обратимый фазовый переход в ферромагнитное состояние, подобный метамагнитному переходу в низкотемпературной фазе, вызванный разрушением локальных зарядовых/орбитальных корреляций. С ростом температуры наблюдался практически линейный рост критических полей перехода и исчезновение полевого гистерезиса. Вблизи критических полей магнитных фазовых переходов в импульсных полях с большой скоростью изменения магнитного поля ~ 400 kOe/ μ s обнаружены небольшие сверхузкие ступеньки намагниченности.

1. Введение

Недавно в манганитах с фазовым разделением были обнаружены сверхузкие ступеньки намагниченности в изотермах M(H), снятых при температурах ниже 5К [1-6]. Этот переход из одного состояния в другое состояние, сосуществующее с ним, был включен в категорию метамагнитных фазовых переходов. Однако в отличие от широких непрерывных переходов, ожидаемых для неоднородных гранулированных систем, в этом случае переход происходит в чрезвычайно узком окне магнитных полей. Эти сверхузкие ступеньки наблюдались как в монокристаллических, так и в поликристаллических образцах, что свидетельствует об отсутствии их связи с особенностями микроструктуры материалов. Наличие разделения фаз было признано ключевым моментом наблюдения этих прыжков намагниченности [5]. Впервые этот эффект был обнаружен в манганитах, допированных в позиции Mn, поэтому предполагалось, что решающую роль для возникновения скачков намагниченности играет беспорядок в спиновой решетке [2]. Однако подобное поведение метамагнитных переходов было обнаружено и в Pr_{0.6}Ca_{0.4}MnO₃, поэтому было высказано предположение о мартенситном поведении состояния, разделенного по фазе [4]. Решающим фактором стабилизации разделения фаз были признаны внутренние напряжения [7,8], но их роль в образовании сверхузких ступенек намагничивания не ясна. Действительно, границы гранул должны действовать как система защиты против движения доменных стенок, препятствующая образованию лавинного процесса, однако этого, по-видимому, не происходит. Более того, несмотря на то, что метамагнитный переход является фазовым переходом первого рода, мартенситное преобразование должно быть размазано в широком интервале значений внешнего магнитного поля, тогда как для манганитов в эксперименте наблюдался сверхрезкий переход.

Первоначально метамагнетизм в неоднородных манганитах исследовался при температурах выше 5К и индуцированные внешним полем переходы были довольно широкими в этом температурном режиме, что можно ожидать из неоднородной природы низкополевого состояния с разделением фаз. Однако в работах [1,2] была впервые обнаружена необычная ступенчатая зависимость *M*(*H*) в Pr_{0.5}Ca_{0.5}MnO₃ с добавкой Sc или Ga в позиции марганца. Аналогичные ступеньки были исследованы в Pr_{0.5}Ca_{0.5}Mn_{0.95}Co_{0.05}O₃ в [3]. Большая ширина индуцированного при температуре 5К метамагнитного перехода от состояния преимущественно диэлектрического с зарядовым/орбитальным упорядочением к состоянию преимущественно металлическому с ферромагнитным порядком предполагает широкое распределение критических полей, которые управляют метамагнитным переходом в различных частях образца. Это согласуется с предположением о разделении фаз в Pr_{0.5}Ca_{0.5}Mn_{0.95}Co_{0.05}O₃ и поведением других манганитов, в которых наблюдался подобный фазовый переход [9–12]. Однако при температурах $T < 5 \,\mathrm{K}$ в первоначальной кривой намагничивания появляется одна (или несколько) резких ступенек намагничивания. Оказалось, что ширина скачка намагниченности в таких ступеньках очень мала (< 2 Oe), что, по-видимому, связано с поликристалличностью образца и фазовым разделением этих материалов при низких температурах. Так как подобные ступеньки наблюдались и в других манганитах, то можно предположить, что низкотемпературные ступеньки образуют новый класс метамагнитных фазовых переходов не только в манганитах, но и в других магнитных системах. Природа этих переходов до сих пор является объектом оживленной дискуссии.

В данной работе были исследованы в широком интервале температур необратимые и обратимые метамагнитные фазовые переходы в $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$ -керамике, индуцированные сильными статическими и импульсными магнитными полями, которые при определенных условиях измерений носят ступенчатый характер.

2. Методика эксперимента

Несколько образцов (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамики были приготовлены в одинаковых условиях с целью избежать влияния побочных эффектов на результаты эксперимента. Образцы были синтезированы с использованием окислов самария, гадолиния, стронция и марганца высокой чистоты, взятых в стехиометрическом соотношении. Смесь была растворена в разведенной (1:1) азотной кислоте. Полученный раствор был выпарен до полного удаления воды, что сопровождалось разрушением азотнокислых солей при 500-700°С. Полученный продукт растирался в порошок и затем отжигался при температуре 900-950°C с целью удаления остатков разложения азотнокислых солей. Описанный выше процесс приводит к однородному распределению составляющих элементов в образцах. Синтезированный порошок прессовали в брикеты диаметром 15 mm и отжигали при температурах 1000, 1100°С в течение 10 h и 1150°С в течение 24 h с промежуточным растиранием в порошок. С целью получить образцы (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамики, полученный порошок прессовали под давлением 10 kbar в таблетки диаметром 6 mm и толщиной 1.2 mm. Потом таблетки спекались на воздухе при 1150°C в течение 10 h с последующим снижением температуры со скоростью 70°C/h. Полученные таблетки представляли собой однофазную по рентгеновским данным керамику с орторомбической структурой Pbnm кристаллической решетки при комнатной температуре.

Температурные зависимости *ac* магнитной восприимчивости $\chi(T)$ измерялись индукционным методом в относительных единицах на частоте $f \cong 1 \,\text{kHz}$ в измерительном поле $h \cong 60 \,\text{Oe}$ в интервале температур 20–200 K, а также на частотах f = 1, 5, 7 и 10 kHz в интервале температур 4.2–100 K с помощью промышленной установки PPMS-10 в измерительном поле

Рис. 1. Температурные зависимости магнитной восприимчивости $\chi(T)$ твердого раствора (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃, полученные в переменном поле с напряженностью 17 Ое на частотах 1 и 7 kHz.

 $h \cong 17$ Ое. Полевые зависимости dc намагниченности M(H) измерялись в интервале температур 4.2–300 К в импульсных и статических магнитных полях. При импульсных измерениях магнитное поле изменялось в интервале ± 200 kOe за одну микросекунду. Измерения в импульсных полях напряженностью до 300 kOe при различных темепературах от 20 до 300 К производились в относительных единицах с помощью непромышленно-го импульсного магнитометра, а измерения в статических полях напряженностью до 75 kOe были проведены с помощью вибрационного магнитометра VSM EGG, Princeton Aplied Reserch при 4.2 K.

3. Экспериментальные результаты и обсуждение

Ранее фазовый переход между однородным ферромагнитным металлическим состоянием и диэлектрическим состоянием, подобным спиновому стеклу, вызванный изовалентным замещением редкоземельных ионов Sm³⁺ $(r_{\rm Sm} = 1.132 \,\text{\AA})$ ионами Gd³⁺ с меньшим ионным радиусом $r_{\rm Gd} = 1.107$ Å, был исследован в монокристаллах $(Sm_{1-y}Gd_y)_{0.55}Sr_{0.45}MnO_3$ $(0 \le y \le 1)$ [13]. Было установлено, что структурный беспорядок за счет локальных искажений решетки, связанный с разницей радиусов редкоземельных ионов (quenched disorder), увеличивает электронные и магнитные флуктуации и препятствует появлению дальнего порядка. Систематическое изучение электронных и магнитных свойств твердых растворов $(Sm_{1-y}Gd_y)_{0.55}Sr_{0.45}MnO_3$ показало, что низкотемпературное однородное ферромагнитное металлическое состояние сохраняется с ростом концентрации Gd до значения $y \sim 0.5$. При этом температура T_c фазового перехода парамагнетик-ферромагнетик линейно умень-

Рис. 2. Температурный гистерезис зависимостей магнитной восприимчивости $\chi(T)$ твердого раствора $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$, полученных при охлаждении и нагреве образца в переменном поле с напряженностью 17 Ое на частоте 10 kHz.

шается от ~ 130 K до ~ 50 K. Для значений $y \geq 0.6$ стабилизируется фаза спинового стекла с температурой "замерзания" спинов $T_{\rm G}$ вблизи 50 К. Признаки разделения фаз в исследованных образцах не были обнаружены.

Как видно из рис. 1, для образцов керамики (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ в нулевом внешнем магнитном поле вместо сильно зависящей от частоты колоколообразной сингулярности $\chi(T)$ вблизи $T_{\rm G} = 44.7 \, {\rm K}$, обнаруженной ранее в монокристаллах $(Sm_{1-v}Gd_v)_{0.55}Sr_{0.45}MnO_3$ вблизи перехода в фазу спинового стекла [13], наблюдается не зависящий от частоты измерений острый пик ас магнитной восприимчивости вблизи температуры 48.5 К с небольшим температурным гистерезисом (рис. 2), характерный для фазового перехода из парамагнитного в антиферромагнитное состояние спинов марганца с дальнодействующим зарядовым/орбитальным упорядочением, который сопровождался при дальнейшем понижении температуры резким ростом магнитной восприимчивости, характерным для суперпарамагнетика. Монотонный рост восприимчивости в (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ с понижением температуры вплоть до 4.2 К указывает на отсутствие дальнодействующего ферромагнитного упорядочения магнитных моментов Sm или Mn и, по-видимому, вызван наличием в образцах в низкотемпературной фазе небольшого количества ферромагнитных областей (кластеров), "вмороженных" в антиферромагнитную матрицу. Суперпозиция двух различных по своей природе вкладов в магнитную восприимчивость свидетельствует о неоднородной природе смешанного состояния в (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамике в нулевом внешнем магнитном поле с преимущественной стабилизацией антиферромагнитного состояния с зарядовым упорядочением при температурах ниже $T_N \cong 48.5$ К.

Хорошо известно, что однородное диэлектрическое состояние с зарядовым упорядочением с критической температурой фазового перехода Т_{СО}, характерное для низкотемпературной фазы большинства манганитов с половинным заполнением зоны проводимости, может быть разрушено сильным внешним магнитным полем [14]. В работах [15-17] на основе измерений полевых зависимостей сопротивления и намагниченности при фиксированных температурах были построены Н-Т фазовые диаграммы. Было показано, что при температурах ниже ТСО с ростом напряженности внешнего магнитного поля до критического значения H_{c1} происходит обратимый метамагнитный фазовый переход из диэлектрического антиферромагнитного состояния в металлическое ферромагнитное состояние, который в области низких температур сопровождается большим полевым гистерезисом. Критическое поле преобразования состояния с зарядовым/орбитальным упорядочением в ферромагнитное металлическое состояние существенно зависело от величины среднего ионного радиуса в А-позиции редкоземельных ионов: в Nd_{1/2}Sr_{1/2}MnO₃ оно равно 110 kOe при 4.2 K, тогда как в $Pr_{1/2}Ca_{1/2}MnO_3$ критическое поле метамагнитного фазового перехода достигает 270 kOe. В соединении $Sm_{1/2}Ca_{1/2}MnO_3$ с меньшим радиусом редкоземельного катиона и, соответственно, с меньшей шириной зоны проводимости W переход в металлическое состояние происходит в полях больших 500 kOe.

Двухфазная природа низкотемпературного состояния $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$ -керамики подтверждается изотермами намагниченности M(H), полученными в данной работе путем изменений внешнего статического магнитного поля в интервале ± 60 kOe при 4.2 K. Как видно из рис. 3, существует начальный участок кривой M(H) с нелинейным ростом намагниченности по мере увеличения напряженности внешнего магнитного поля, который, по-видимому, связан в выстраиванием магнит-

Рис. 3. Изотермы намагничивания M(H) образца керамики $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$ при 4.2 K, полученные в результате многократного изменения статического магнитного поля в интервале полей ± 60 kOe.

ных моментов ферромагнитных областей вдоль направления поля. Далее имеет место изгиб кривой намагничивания вблизи $H \approx 17$ kOe, после которого наблюдается второе более резкое увеличение намагниченности образца, вызванное преобразованием диэлектрических областей с упорядочением заряда в метеллическую ферромагнитную фазу. Подобное поведение намагниченности наблюдалось ранее и в других манганитах со смешанным состоянием, например, Pr_{0.5}Ca_{0.5}Mn_{0.98}Cr_{0.02}O₃ [18] и La_{0.25}Pr_{0.375}Ca_{0.375}MnO₃ [19]. При дальнейшем росте напряженности поля намагниченность выходит на насыщение вблизи 32 kOe. При уменьшении магнитного поля от 60 kOe поведение намагниченности в (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ подобно поведению намагниченности в обычном ферромагнетике: с уменьшением внешнего магнитного поля намагниченность слегка уменьшается вплоть до поля 7 kOe с последующим резким падением при $H \rightarrow 0$. Большая ширина индуцированного при температуре 4.2 К статическими полями метамагнитного перехода от состояния преимущественно диэлектрического с зарядовым/орбитальным упорядочением к состоянию преимущественно металлическому ферромагнитному предполагает широкое распределение критических полей, которые управляют метамагнитным переходом в различных частях образца. Это согласуется с предположением о разделении фаз в Pr_{0.5}Ca_{0.5}Mn_{0.95}Cr_{0.05}O₃ и поведением других манганитов, в которых наблюдался такой же фазовый переход [18-20].

Качественно новым явлением в манганитах с почти половинным заполнением зоны проводимости является обнаруженный в данной работе необратимый метамагнитный фазовый переход в однородное ферромагнитное состояние, устойчивое в интервале температур 4.2-60 К. Этот неожиданный результат был получен при исследовании полевых зависимостей намагниченности образцов (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ в статических магнитных полях при температуре 4.2 К (рис. 3). Рост статического магнитного поля привел к необратимому индуцированию ферромагнитной фазы, свойства которой не изменялись в течение длительного времени. Индуцирование происходило в результате метамагнитного фазового перехода, вызванного ростом напряженности внешнего магнитного поля до необычно малого критического значения $H_{c1} \cong 25 \,\mathrm{kOe}$. Дальнейшее увеличение напряженности поля до 60 kOe привело лишь к незначительному увеличению намагниченности образца. При уменьшении магнитного поля индуцированное ферромагнитное состояние сохраняется вплоть до нулевого поля. Последующие изменения поля в интервале ±15 kOe позволили получить ряд гистерезисных кривых M(H), соответствующих устойчивому ферромагнитному состоянию образца. Характерными особенностями полученных при 4.2 К полевых зависимостей намагниченности образца в ферромагнитном состоянии являются относительно большая ширина гистерезисной кривой $M(H) \sim 4.4$ kOe, соответствующая полю коэрцитивности $H_c \cong 2.2 \,\mathrm{kOe}$,

Рис. 4. Изотермы намагничивания M(H) керамики $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$ в импульсных полях, полученных при нагреве образца от 20 до 110 К.

и сравнительно небольшая величина намагниченности насыщения $\sim 60 \,\mathrm{emu/g}$ в поле 10 kOe, связанная, повидимому, со скошенным состоянием спинов марганца, существующим в индуцированном ферромагнитном состоянии (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамики при $T < 60 \,\mathrm{K}$.

Эволюция изотерм намагниченности (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃, полученных в импульсных полях напряженностью до 300 kOe, в зависимости от температуры измерения представлена на рис. 4, из которого следует существование трех интервалов температур с различным механизмом намагничивания. Как видно из рис. 4, при температурах, меньших 60 К, форма изотерм M(H) в импульсных полях практически совпадает с кривыми намагничивания, снятыми в статических полях при 4.2 К. Метамагнитный фазовый переход в упорядоченное ферромагнитное состояние осуществляется в критическом поле, равном $H_{c1} \cong 25 \,\mathrm{kOe}$, которое остается постоянным с ростом температуры до 60 К. Об устойчивости индуцированной ферромагнитной фазы в области температур 4.2-60 К свидетельствует также температурная зависимость магнитной восприимчивости $\chi(T)$, полученная при нагреве образца, в котором была индуцирована ферромагнитная фаза сильным магнитным полем при 18 К. Температурная зависимость восприимчивости соответствует фазовому переходу из упорядоченного ферромагнитного состояния в разупорядоченное парамагнитное состояние с ростом температуры до критического значения $T_c \approx 48$ K. Температура 60К соответствует окончательному разрушению дальнего ферромагнитного упорядочения спинов Мп и может рассматриваться как граница стабильности индуцированной ферромагнитной фазы, что значительно превышает область существования метастабильного антиферромагнитного состояния в нулевом магнитном поле. Следует отметить, что изотермы намагничивания, измеренные в интервале температур 4.2-60 К, не содержат сильных разрывов, характерных для ранее исследованных необратимых метамагнитных фазовых переходов [21-26] как в статических, так и в импульсных магнитных полях, поэтому предложенные в этих работах механизмы необратимой стабилизации индуцированной магнитным полем ферромагнитной фазы не могут объяснить данные экспериментальные результаты.

При температурах выше 60К поведение намагниченности твердого раствора (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ в сильном магнитном поле существенно меняется. На рис. 4 показано, что в интервале температур 60-100 К, соответствующем парамагнитному состоянию образцов в нулевом магнитном поле, форма изотерм M(H) сильно отличается от аналогичных изотерм, полученных в низкотемпературной фазе с антиферромагнитным упорядочением спинов марганца. Основным отличием изотерм является отсутствие признаков разрушения дальнодействующего антиферромагнитного упорядочения и необратимого индуцирования однородного ферромагнитного состояния при использованных нами напряженностях импульсных магнитных полей. Согласно изотерме намагниченности, снятой в импульсных полях при 77 К, с ростом напряженности внешного магнитного поля до критического значения H_{c1} происходит ступенчатый переход из парамагнитного в ферромагнитное состояние, аналогичный переходу из антиферромагнитного состояния в ферромагнитное, рассмотренный выше, который, однако, сопровождается температурным гистерезисом с критическим полем $H_{c2} \neq 0$, ниже которого образец возвращается в исходное парамагнитное состояние. Значения критических поолей H_{c1} и H_{c2} практически линейно растут в интервале температур 80-150 К; при этом разность критических полей H_{c1} - H_{c2} уменьшается с ростом температуры и обращается в нуль вблизи 110 К. При дальнейшем повышении температуры индуцированный полем фазовый переход имел вид резкой ступеньки намагниченности без температурного гистерезиса, которая линейно по температуре смещалась в сторону более сильных полей и исчезала при температурах выше 150 К. При температурах выше 150 К мы наблюдали только линейное увеличение намагниченности с ростом

Рис. 5. Температурная зависимость приращения намагниченности $\Delta M(T)$ образца керамики (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃ в интервале температур 18–165 К, индуцированного ростом импульсного поля.

напряженности внешнего магнитного поля, характерное для обычной парамагнитной фазы.

На рис. 5 представлена температурная зависимость индуцированной внешним магнитным полем дополнительной намагниченности образца ΔM , возникающей при метамагнитном фазовом переходе вследствие фазового перехода первого рода. Так как величина ступеньки в изотермах намагниченности ΔM напрямую связана с объемом, занимаемым исходной фазой с зарядовым упорядочением, то можно предположить, что сингулярность температурной зависимости скачка намагниченности $\Delta M(T)$ вблизи 60 К соответствует переходу образца в состояние с коллективным упорядочением заряда. Предполагаемая критическая температура $T_{CO} \cong 60 \,\mathrm{K}$ электронного фазового перехода в состояние с зарядовым порядком лишь незначительно превосходит критическую температуру антиферромагнитного фазового перехода $T_N \cong 48.5 \, {\rm K}$, полученную ранее из температурных зависимостей магнитной восприимчивости. Согласно рис. 5, приращение намагниченности при индуцированном переходе в ферромагнитное состояние падает до нуля с ростом температуры выше Т_{СО} в интервале температур ~ 90 К, что соответствует, по-видимому, разрушению локального зарядового порядка с ростом температуры и соответственно уменьшению до нуля его корреляционной длины $\xi_{CO}T$ при температурах выше 150 К.

Температурные зависимости критических полей H_{c1} и H_{c2} магнитных фазовых превращений представлены на рис. 6 в виде H-T фазовой диаграммы. Согласно рис. 6, индуцированное внешним магнитным полем $H_{c1} \cong 25$ kOe устойчивое ферромагнитное состояние существует в низкотемпературной фазе $(\text{Sm}_{0.5}\text{Gd}_{0.5})_{0.55}\text{Sr}_{0.45}\text{MnO}_3$ при температурах ниже $T_{CO} \cong 60$ K, что значительно превышает область существования антиферромагнитного состояния в нулевом

Рис. 6. Магнитная H-T фазовая диаграмма керамики $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$, полученная в сильных импульсных магнитных полях.

магнитном поле. Таким образом, разрушение метастабильного состояния с зарядовым упорядочением сильным магнитным полем носит в исследованных образцах необратимый характер и сопровождается захватом в металлическое ферромагнитное состояние. Значения критических полей H_{c1} и H_{c2} нелинейно растут в интервале температур 60-80 К с последующим линейным ростом по мере увеличения температуры до 150 К. При этом разность критических полей $\Delta H_c = H_{c1} - H_{c2}$, определяющая гистерезистные явления при метамагнитном фазовом переходе первого рода, быстро уменьшается с ростом температуры и обращается в ноль вблизи 110 К. Причиной гистерезиса критических полей метамагнитных фазовых переходов в манганитах с почти половинным заполнением зоны проводимости принято считать локальные деформации кристаллической решетки, тесно связанные с зарядовым и орбитальным состоянием ионов марганца. Поэтому можно предположить, что резкое падение до нуля величины гистерезиса $\Delta H_c(T)$ критических полей метамагнитного фазового перехода при температурах выше Тсо, по-видимому, связано с разрушением с ростом температуры и исчезновением локальных корреляций орбитального порядка длиной $\xi_{OO}(T)$ при температурах выше 110 К. Полученные результаты хорошо согласуются с данными исследования температурных зависимостей интенсивностей диффузного рассеяния рентгеновских лучей и рамановского спектра фононов в монокристаллах с близким составом, свидетельствующими о существовании сильной антиферромагнитной короткодействующей зарядово/орбитальной корреляции в интервале температур 65–150 К [13].

Особый интерес представляет дополнительная ступенчатая структура метамагнитных фазовых переходов, впервые обнаруженная в (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃керамике в широком интервале температур в импульсных полях изменяющихся с большой скоро-

Физика твердого тела, 2012, том 54, вып. 6

стью $\sim 400 \, \mathrm{kOe}/\mu \mathrm{s}$. В эксперименте это проявилось в виде существования одной или двух небольших сверхузких ступеней (скачков) в изотермах намагниченности, возникающих с ростом напряженности импульсного магнитного поля. Более четко эти особенности проявляются в полевых зависимостях производной намагниченности *dM/dH* в виде дополнительных сверхузких пиков производной вблизи критического значения внешнего магнитного поля, имеющих своим основанием пик шириной $\sim 20 \, \text{kOe}$ (рис. 7, 8). В низкотемпературной фазе при температурах ниже $T_{CO} \cong 60 \, \mathrm{K}$ наблюдался одиночный сверхузкий пик вблизи критического поля метамагнитного фазового перехода, который, возможно, связан с внутренним термодинамическим свойством фазы с зарядовым упорядочением [3]. При температурах выше T_{CO} обнаружено расщепление одиночного пика dM/dH, повидимому, связанное с сосуществованием при температурах выше T_{CO} в узком интервале 60-80 K сильных локальных зарядовых и орбитальных корреляций. Одиночные скачки изотерм намагничивания вблизи H_{c1} , полученные в импульсных полях в парамагнитной фазе, существуют только при температурах ниже 110 К, что позволяет предположить, что причиной их появления является разрушение локальных корреляций орбитального порядка, образующих доменную структуру локальных

Рис. 7. Полевые зависимости производной намагниченности dM/dH, полученные в импульсных магнитных полях вблизи критического поля необратимого перехода в ферромагнитное состояние при температурах ниже $T_{CO} \simeq 60$ K.

Рис. 8. Полевые зависимости производной намагниченности dM/dH, полученные в импульсных магнитных полях вблизи критического поля H_{c1} обратимого перехода в ферромагнитное состояние при температурах выше $T_{CO} \simeq 60$ K.

ян-теллеровских искажений кристаллической решетки для T < 110 К. Для выяснения природы сверхузких скачков намагниченности при метамагнитных фазовых переходах в (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамике и их связи с локальными зарядовыми и орбитальными корреляциями потребуются дополнительные, более детальные исследования.

4. Заключение

Увеличение внешнего статического магнитного поля при 4.2 К в керамике $(Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO_3$ привело к необратимому индуцированию ферромагнитной фазы, свойства которой не изменялись в течение длительного времени. Метамагнитный фазовый переход в упорядоченное ферромагнитное состояние осуществляется в необычно малом критическом поле $H_{c1} \cong 25$ kOe, которое остается постоянным с ростом темепературы до 60 К. Об устойчивости индуцированной ферромагнитной фазы в области температур 4.2–60 К свидетельствует также температурная зависимость *ac* магнитной восприимчивости. Характерными особенностями полученных при 4.2 К полевых зависимостей намагниченности индуцированной ферромагничной фазы является

относительно большая ширина гистерезисной кривой $M(H) \sim 4.4 \,\mathrm{kOe}$, соответствующая полю коэрцитивности $H_{c1} \cong 2.2$ kOe, и сравнительно небольшая величина намагниченности насыщения в поле $10 \,\mathrm{kOe} \sim 60 \,\mathrm{emu/g}$, связанная, по-видимому, со скошенным состоянием спинов марганца. Температурные зависимости магнитной восприимчивости и изотермы намагничивания образцов указывают на двухфазную природу низкотемпературного состояния (Sm_{0.5}Gd_{0.5})_{0.55}Sr_{0.45}MnO₃-керамики, в котором в нулевом магнитном поле доминирует диэлектрическое антиферромагнитное состояние с зарядовым/орбитальным упорядочением. Следует отметить, что необратимые метамагнитные фазовые переходы первого рода, исследованные в данной работе в интервале температур 4.2-60 К, соответствующего области устойчивого существования индуцированной ферромагнитной фазы, не содержат сильных разрывов, характерных для ранее исследованных в манганитах необратимых фазовых переходов. При высоких скоростях изменения магнитного поля $\sim 400 \, \mathrm{kOe}/\mu\mathrm{s}$ впервые обнаружена дополнительная ступенчатая структура метамагнитных фазовых переходов при температурах значительно выше 5 К.

Автор благодарен сотрудникам института В.И. Валькову, В.И. Каменеву, В.П. Дьяконову, Б.М. Тодрису, С.В. Васильеву, С.Л. Сидорову, З.Ф. Кравченко за техническую помощь, оказанную в проведении экспериментов и изготовлении высококачественных образцов керамики.

Список литературы

- S. Hebert, V. Hardy, A. Maignan, R. Mahendiran, M. Hervieu, C. Martin, B. Raveau. J. Solid State Chem. 165, 6 (2002).
- [2] S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau. Solid State Commun. 122, 335 (2002).
- [3] R. Mahendiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J.F. Mitchell, P. Schiffer. Phys. Rev. Lett. 89, 286602 (2002).
- [4] V. Hardy, S. Hebert, A. Maignan, C. Martin, M. Hervieu, B. Raveau. J. Magn. Magn. Mater. 264, 183 (2003).
- [5] S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, R. Mahendiran, P. Schiffer. Eur. Phys. J. B 29, 419 (2002).
- [6] L. Ghivelder, R.S. Freitas, M.G. das Virgens, M.A. Continentino, H. Martinho, L. Granja, M. Quintero, G. Leyva, P. Levy, F. Parisi. Phys. Rev. B 69, 214414 (2004).
- [7] V. Podzorov, B.G. Kim, V. Kiryukhin, M.E. Gershenson, S-W. Cheong. Phys. Rev. B 64, 140 406 (2001).
- [8] N.D. Mathur, P.B. Littlewood. Solid State Commun. 119, 271 (2001).
- [9] M. Uehara, B. Barbara, B. Dieny, P.C.E. Stamp. Phys. Lett. 114 A, 23 (1986).
- [10] V. Podzorov, C.H. Chen, M.E. Gershenson, S.-W. Cheong. Europhys. Lett. 55, 411 (2001).
- [11] K.H. Kim, M. Uehara, C. Hess, P.A. Sharma, S.-W. Cheong. Phys. Rev. Lett. 84, 2961 (2000).
- [12] A.M. Balagurov, V.Y. Pomjakushin, D.V. Sheptyakov, V.L. Aksenov, N.A. Babushkina, L.M. Belova, O.Y. Gorbenko, A.R. Kaul. Eur. Phys. J. B 19, 215 (2001).

- [13] Y. Tomioka, Y. Okimoto, J.H. Jung, R. Kumai, Y. Tokura. Phys. Rev. B 68, 094 417 (2003).
- [14] Y. Tokura. Rep. Prog. Phys. 69, 797 (2006).
- [15] H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritoma, Y. Tokura. Science 270, 961 (1995).
- [16] H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritoma, Y. Tokura. Phys. Rev. Lett. 74, 5108 (1995).
- [17] M. Tokunaga, N. Miura, Y. Tomioka, Y. Tokura. Phys. Rev. B 57, 5259 (1998).
- [18] R. Mahendiran, B. Raveau, M. Hervieu, C. Michel, A. Maignan. Phys. Rev. B 64, 064 424 (2001).
- [19] I.G. Deac, S.V. Diaz, B.G. Kim, S.-W. Cheong, P. Schiffer. Phys. Rev. B 65, 174 426 (2002).
- [20] I.G. Deac, J.F. Mitchell, P. Schiffer. Phys. Rev. B 63, 172408 (2001).
- [21] A. Sundaresan, A. Maignan, B. Raveau. Phys. Rev. B 55, 5596 (1997).
- [22] Joonghoe Dho, N.H. Hur. Phys. Rev. B 67, 214414 (2003).
- [23] A.V. Kalinov, L.M. Fisher, I.F. Voloshin, N.A. Babushkina, D.I. Khomskii, T.T.M. Palstra. J. Magn. Magn. Matter. 300, 399 (2006).
- [24] D.S. Rana, S.K. Malic. Phys. Rev. B 74, 052407 (2006).
- [25] Yu. Li, Jipeng Miao, Yu Sui et al. J. Alloys and Comp. 458, 11 (2008).
- [26] A.V. Kalinov, L.M. Fisher, I.F. Voloshin, N.A. Babushkina, C. Martin, A. Mfignan. J. Phys. **150**, 042 081 (2009).