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Conditions and mechanisms for growth of large-scale magnetic field in

outer parts of galactic disks
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The generation and evolution of magnetic fields in spiral galaxies is traditionally described by the dynamo

mechanism. Most studies focus on magnetic fields at moderate distances from the center of the galactic disk.

However, the existence of a galactic magnetic field in the peripheral regions of the galactic disk is confirmed by

numerical models. To estimate the scale of the magnetic field in the outer regions of a spiral galaxy, an eigenvalue

problem can be solved based on previously used equations. The first eigenvalues and eigenfunctions for this

problem are presented. The eigenvalues can be found both theoretically and numerically.
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Introduction

Today, the existence of magnetic fields of the value of

about 1−3µG in some spiral galaxies, such as the Milky

Way, is practically undoubted [1]. The earliest evidence

of existence of these fields was associated with study of

a synchrotron radiation spectrum and spatial distribution

of cosmic rays. Presently, the galactic magnetic fields are

studied mainly by measuring the Faraday rotation of a

radiowave polarization plane. The first studies dedicated

to the Milky Way included analysis of data on radiation

from several dozen pulsars [2], while to data more than a

thousand sources of the magnetic field for our Galaxy [3]
and millions of extragalactic objects [4] are known.

Occurrence of the large-scale magnetic fields is usually

described by a dynamo mechanism that is closely related to

helicity of turbulent motions of an interstellar medium and

differential rotation of the galactic disk, whose simultaneous

presence can result in an exponential increase of the

field [5]. At the same time, turbulent diffusion, being

the main dissipative process, tends to destroy regular field

structures. Thus, the magnetic field can be generated only

when the dynamo effect is quite intense to resist turbulent

diffusion [6]. Usually, these conditions are fulfilled at a

relatively short distance to the galaxy center (up to 10 kpc)
and most studies anyhow assumed that the magnetic fields

existed only in internal parts of the galaxy, whereas it was

still unclear whether the field existed at the large distance

from the center of the galactic disk.

It was evidently shown by computation research related

to investigation of generation and evolution of the magnetic

fields at the distances of up to 15−20 kpc from the galaxy

center that despite the fact that the field had a substantially

lower value in those parts, it still could be present at

such peripheries [7]. The magnetic field can also increase

even when a value of the dynamo number is below or

comparable with its critical values, so that at first sight

the field increase shall be suppressed by dissipative effects

according to estimates. In these studies, the main attention

is focused on the increase of the magnetic field due to

nonlinear transfer of the magnetic field by means of a

mechanism similar to one in the Kolmogorov–Petrovsky–
Piskunov [8].

At the same time, though it may seem strange, generation

of the magnetic field in the outer parts can be described

by means of linear effects as well. The matter is that it

is necessary to consider a problem of generation of the

magnetic field not in a local meaning, but by means of dif-

ferential operators that have smooth eigenfunctions, which

correspond to profiles of the magnetic fields. Although, they

shall decrease in the outer parts, where the dynamo effect

is attenuated, they are still finite there. The main subject of

the present study is an issue of how they can look like at

the large distance from the center.

1. Equations for the magnetic field

Let us consider the galaxy in a thin disk approximation:

since a half-thickness of the galactic disk is significantly less

than its radius, it can be considered that the galaxy is a quite

flat disk in order to reduce the problem to a plane problem.

Let us also consider an axisymmetrical case since large-

scale field structures tend to get to an axisymmetrical form
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as previously shown [9]. The equations for the magnetic

field will be the following [10]:

∂Br/∂t = −�(r)l2Bϕ/h2(r) − ηπ2Br/4h2(r)

+η(∂2Br/∂r2 + ∂Br/r∂r − Br/r2),

∂Bϕ/∂t =B r rd�/dr − ηπ2Bϕ/4h2(r)

+η(∂2Bϕ/∂r2 + ∂Bϕ/r∂r − Bϕ/r2),

where �(r) — differential rotation, η — turbulent diffusion

that reflects dissipation in the disk plane, h(r) — its half-

thickness with taking into account disk expansion [11] and
a function �(r) = V0/r is also introduced.

In order to study excitability of the magnetic field in

the outer parts, we considered the following initial and

boundary conditions:

B r |r=0 = Bϕ|r=0 = B r |r=rmax
= Bϕ|r=rmax

= 0,

where rmax is a certain quite large value of the distance from

the center (for example, for the galaxies that are similar to

the Milky Way, it can be assumed that rmax = 20 kpc).
First of all, for spectral analysis, it is necessary to

formulate the problem as two separate, mutually uncoupled

equations. Let us introduce symmetrical replacements for

this [12]:

y = B r(−rd�/dr)1/2 − Bϕ(�(r)l2/h2(r))1/2,

z = B r(−rd�/dr)1/2 + Bϕ(�(r)l2/h2(r))1/2.

Let us note that the field components are easily expressed

by means of the following relationships:

B r = (y + z )(−rd�/dr)−1/2/2,

Bϕ = (z − y)(�(r)l2/h2(r))−1/2/2.

By substituting the said replacements into the initial

equations and after some algebraic transformations, one

can obtain two indistinctly interrelated equations, which can

be solved separately within the framework of the present

problem due to proportionality of the field components B r

and Bϕ :

∂z/∂t =−z (A1(r) + A2(r)) + η(∂2z/∂r2 + ∂z/r∂r −z/r2),

∂y/∂t =y(A1(r) − A2(r)) + η(∂2y/∂r2 + ∂y/r∂r − y/r2),

where the functions A1(r)=(−rd�/dr)1/2(�(r)l2/h2(r))1/2

and A2(r) = ηπ2/4h2(r) are introduced for conveniently

and shortly writing the equations.

For each of the two equations, a dependence on the

variable t is exponential, i.e.

z (r, t) = z 0(r) exp(pz t),

y(r, t) = y0(r) exp(py t).

Then, it can be stated that z ′(r, t) = pz z (r, t) and,

similarly, y ′(r, t) = py y(r, t) and the eigenproblems will be

written as

pz z = −z (A1(r) + A2(r)) + η(∂2z/∂r2 + ∂z/r∂r − z/r2),

py y = y(A1(r) − A2(r)) + η(∂2y/∂r2 + ∂y/r∂r − y/r2).

2. Approximations for the eigenvalues

We will seek for the eigenvalues by means of the pertur-

bation theory. To begin with, we will consider a differential

operator, which will be assumed to be unperturbed, and

find exact expressions for its unperturbed eigenvalues. For

example, we will consider the equation with the variable z ,

then we will do the same for the equation with the variable

y. The problem with the unperturbed operator (we will take

a radial part of the Laplace vector operator for this) will be

written as

∂z/∂t = η(∂2z/∂r2 + ∂z/r∂r − z/r2).

Let us substitute ∂z/∂t = pz z 0(r) exp(pz t) and perform a

number of simple algebraic transformations. In this case,

we obtain the equation

r2z ′′
0 (r) + rz ′

0(r) + z 0(r)(−pz r2/η) − z 0(r) = 0.

Let us introduce the substitution x = r(−pz /η)
1/2, then

it can be expressed r = x(−η/pz )
1/2. Therefore,

z ′
0(r) = dz 0/dx · dx/dr = (−pz /η)

1/2
· dz 0/dx ;

z ′′
0 (r) = −pz/η · d2z 0/dx2.

And after substitution we obtain

x2
· d2z 0/dx2 + x · dz 0/dx + (x2

− 1)z 0 = 0.

A solution of this equation is the first-order Bessel function.

In this case, the exact solution of the unperturbed problem

will be written as follows

z 0(r) = ZJ1(r(−pz /η)
1/2).

Zeros of the Bessel function are determined from the

relationship

J1,n(x) = (2/πx)1/2 cos(x − 3π/4) = 0,

rmax(pz n/η)
1/2 = π/4 + πn,

pz n = −η(π/4 + πn)2/r2max.

For the second problem, the unperturbed eigenvalues and

the eigenfunctions will be similar

y0(r) = YJ1(r(−py/η)
1/2),

pyn = −η(π/4 + πn)2/r2max.

3. Perturbation theory

The other parts of the equations will act as perturbations.

In order to calculate the first-order perturbations, it is

necessary to calculate the integrals [13]:

1p(1)
z n =

(

−

∫

r

(J1(r(−pz n/η))
2(A1(r)

+ A2(r))rdr
) / (

∫

r

(J1(r(−pz n/η))
2rdr

)

,
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Eigenfunctions corresponding to the following eigenvalues:

p1 = 2.34 (black), p2 = 1.62 (red).

1p(1)
yn =

(

∫

r

(J1(r(−pyn/η))
2(A1(r)

− A2(r))rdr
) / (

∫

r

(J1(r(−pyn/η))
2rdr

)

.

Thus, for each equation, with taking into account the first-

order perturbations, a senior eigenvalue can be calculated as

follows:

Pz1 = pz1 + 1p(1)
z n ,

Py1 = py1 + 1p(1)
yn .

Based on the obtained eigenvalues, it can be concluded that

the equation with the variable z corresponds to a decreasing

field component and is undescriptive at the large distances.

Further on, we will focus our attention on solving the second

equation.

4. Numerical study

Let us use a reciprocal power method for solving the

eigenproblem. Its essence is to multiply affecting an arbi-

trary function y0 by the operator (L − pI)−1, while having

approximate eigenvalues. After obtaining the respective

eigenfunction in this way, we will find the eigenvalue by

the formula

P =< y, Ly > / < y, y >

The eigenvalues obtained in this way are: Py1 = 2.34,

Py2 = 1.62 and Py3 = −0.84. The results of calculations

are shown in the figure.

Results

Thus, it can be assumed that the third and subsequent

harmonics will not contribute to field generation at the

periphery of the galactic disk, thereby allowing us further on

limiting ourselves with the two first harmonics for further

describing the weak magnetic fields that originate in the

galactic disk. Nevertheless, in addition to the dynamo, there

can also be other mechanisms contributing to generation of

the magnetic field at the remote distances from the center

of the galactic disk.
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