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On the stability of orbital dynamics of exoplanet satellite candidates
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By calculating the Lyapunov characteristic exponents for a number of exoplanetary systems in which satellites
(exomoons) potentially exist or have already been identified, orbital dynamics stability diagrams were constructed
and studied in detail. Estimates of the Lyapunov times (the time of predictable dynamics) in the orbital dynamics
of exomoons and possible values of the orbital parameters of candidate exomoons are obtained.
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All the planets of the Solar System, with the exception
of Mercury and Venus, have satellites, and the number of
satellites in the giant planets ranges from several dozen
to two hundred. Currently, more than 6,000 planets
(exoplanets) have been discovered other stars. There is
no doubt that most exoplanetary systems have satellite
subsystems [1,2]. A significant part of the exoplanets are
gas giants. A number of them are located in the region
of potential habitability near the parent star, therefore,
the natural satellites of exoplanets (exomoons) may have
conditions suitable for the existence of life [2,3]. The search
and study of the dynamics of exomoons is a laborious, but
very important and urgent task. The active development of
observation methods in the last decade has made it possible
to identify a number of candidates for exomoons. The first
candidate for an exomoon of the planet Kepler-1625b was
presented in Ref [4]. Later, eight planetary systems were
identified in Ref. [5] in which there are observational signs
of the presence of satellites. Recently, the possibility of
the existence of a satellite of the planet Kepler-1708b was
noted Ref. [6]. The possibility of the existence of satellites
in the planets HD 23079b and HIP 41378f is considered in
Ref. [7,8].

The use of numerical methods for studying the stability
of the motion of celestial bodies (see for more details [9])
makes it possible to evaluate the possibility of detecting exo-
moons from the analysis of observations and to obtain/refine
information about the orbital and physical parameters of the
identified candidates for exomoons. The long-term orbital
dynamics for a satellite that actually exists in a planetary
system must be stable. Having determined the boundaries
of the regions of its stable dynamics for a planetary system
based on the set of possible parameter values and initial con-
ditions for the proposed satellite subsystem (by constructing
stability diagrams), it is possible to evaluate the possibility
of detecting exomoons using modern observational means.
By noting the position of the exomoon candidates detected

from the analysis of observations on the stability diagrams, it
is possible to establish the reliability and estimate the error
of the values of the orbital parameters assumed for it.

The stability of the dynamics of a number of the
above-mentioned candidates for exomoons was studied in
Ref. [10-13]. The stability of the long-term orbital dynamics
of the exomoons is studied in this paper by calculating the
maximum Lyapunov characteristic exponents (MLCE). This
method, unlike others widely used in the problem under
consideration, [10,12,13] methods of stability analysis (cal-
culation of MEGNO, estimation of the maximum attainable
value of the eccentricity of the exomoon during evolution,
etc.), allows us to strictly estimate Lyapunov times [14] and
has already been successfully used by us earlier [11]. We
would like to remind that the LCE represent the average
exponential divergence rate of the phase space trajectories
of a dynamical system that are close (according to initial
conditions) (see for more details [9,14]). A Hamiltonian
system with N degrees of freedom has 2N LCE. A non-zero
value of the maximum LCE (L) indicates a chaotic, and a
zero value indicates a stable character of the motion. We
made a conclusion about the stability of the motion of the
candidates for the exomoons listed in the table based on the
results of numerical integration and estimates of the values

Parameters of planetary systems used in numerical modeling: M is
the mass of the star in the masses of the Sun, M, is the mass of
the planet in the masses of Jupiter, a,, e, is the semi-major axis
and the eccentricity of the orbit of the planet, ms is the mass of
the proposed satellite of the planet (exomoon) in the masses of
the Earth. According to [7,8,13]

The planet M M, ap, AU ep ms
HIP 41378f | 1.16 | 0.038 | 1.370 | 0.004 | 0.15
HD 23079 | 1.01 | 241 1.586 | 0.087 | 1.0
Kepler-1625b | 1.04 | 11.6 0.863 | 0.0 10.22
Kepler-1708b | 1.09 | 4.6 1640 | 040 | 17.15
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Lyapunov times (in years) for the orbital dynamics of the considered exomoons (see table), calculated on the set of possible values of the
semi-major axis as (in the radii of the Hill sphere Ry of the parent planet) and the inclination of the orbit is. The white color corresponds
to unstable orbits. Black dots with error bars, according to Ref. [13], the position of candidates for exomoons is marked.

of the Lyapunov time (the time of predictable dynamics
of the system), for which [15] T, = 1/L is assumed. For
more information on methods for obtaining numerical and
analytical estimates of the MLCE in problems on the
dynamics of satellite systems and in general in celestial
mechanics, see [9, 14].

The integration of the equations of motion describing
the dynamics of three bodies (a star, a planet, and an
exomoon) was carried out on a set of initial values of
the orbital parameters of the exomoon, set at nodes of a
uniform grid of size 50 x 50 on the plane (ag, is), where
as and ig is the semi-major axis and the inclination of
the exomoon’s orbit to the plane of the planet’s orbit.
Three values of the eccentricity of the exomoon’s orbit
were considered: eg = 0,0.05 and 0.1, it was accepted:
0.05 < ag/Ry <0.5 and 0° < ig < 70°, where the radius
of the Hill sphere of the planet Ry was determined by
Ry =a,((M,+ms)/(3M))!/3.  The accepted values for
the parameters of planetary systems are given in the
table. It was assumed that at the initial moment of
time the exomoon and the planet were located in the
pericenters of their orbits, zero values were assumed for
unknown orbital elements (arguments of the pericenters
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and longitude of the ascending nodes) (see also [7,8]).
Numerical integration was performed over a time interval
of 10° years. Double precision numbers were used. During
integration, the DOP853 [16] integrator was used, which
implements an explicit Runge-Kutta method of the 8th
order with an automatically variable value of the integration
step. The maximum integration step was assumed to be
Atmax = 1072 years, the value of the local (at one step)
error was set to € = 10712, Based on the value of ¢,
the DOPS853 integrator automatically selects the required
integration step value, which does not exceed Aty (see for
more information [16]).

The orbit of the exomoon was considered unstable, and
numerical integration stopped if there was a close ap-
proach/collision with the planet, or the exomoon left the Hill
sphere of the planet. The fact of a close approach/collision of
an exomoon with a planet was recorded when ag decreased
to a value equal to the radius of the planet, or when the
relative energy of the ,,planet-satellite AE > 10~ system
changed (see the discussion in Ref [11]). It should be
noted that the change in energy AE < 107! in the case
of stable dynamics during integration over the time interval
of 10° years. If the integration was successfully completed
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when the specified time interval was reached, then the
conclusion about the stability of the orbital dynamics of
the exomoon was made based on the Lyapunov time 7
determined for it. It was believed that the orbits of
exomoons with 7; > 5000 years are stable (see details in
Ref. [11]). Next, the boundaries of the stability region were
determined on the plane (ag, is), the position of candidates
for exomoons (if known) on it was considered, and the
relative proportion of trajectories occupied by them on the
constructed two-dimensional diagram was estimated.

The figure shows examples of stability diagrams obtained
at es =0 for exomoon candidates in planetary systems
listed in the table. In all cases, the relative proportion
of stable trajectories in the constructed diagram was
about 25—40%, which is consistent with the results in
Ref. [8,11,13]. With an increase in eg, the proportion of
stable orbits of exomoons decreased and did not exceed
15-25% at eg = 0.1. For ag/Ry > 0.4—0.5 and is > 60°,
stable orbits were not found in the diagrams we constructed
(see the discussion in Ref. [10,13]). This can be explained
by the fact that at high inclinations of the exomoon’s orbit,
the Lidov-Kozai resonance begins to play an essential role
in its dynamics, leading to unstable motion. If we compare
the sizes of the stability regions shown in the figure with the
estimates obtained in Ref. [10,13], it should be noted (see
also [11]) that when using the stability criterion based on the
value of the MLCE, the upper limit in terms of ay is less for
all the considered exomoons. From the diagrams shown in
the figure, it can be seen that in the Kepler-1625b system,
the candidate for an exomoon is located in the region of
stable motion near the stability boundary, and in the Kepler-
1708b system, the exomoon is located far enough away
from areas with unstable dynamics. No exomoons have yet
been identified in the HIP 41378f and HD 23079b systems,
but the diagrams show that the stability regions on the plane
(as,is) are quite large (especially for iy in the case of
HIP 41378f), and in these planetary systems there may be
satellites with the considered parameters (masses ).

So, the method proposed in Ref [11] is developed in
this paper for constructing stability diagrams of satellite
subsystems of exoplanets by calculating the LCE. Stability
diagrams with significantly (several times) higher resolution
than in Ref [11] have been constructed and analyzed for
a number of planetary systems (HIP 41378f, HD 230790,
Kepler-1625b, Kepler-1708b) in which satellites potentially
exist or have already been identified. It is shown that the
dynamics of exomoon candidates in the planetary systems
Kepler-1625b and Kepler-1708b is stable. The possibility of
exomoons in HIP 41378f and HD 23079b systems has been
confirmed and estimates of their possible orbital parameters
have been obtained.
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