
Technical Physics, 2025, Vol. 70, No. 12

On the stability of orbital dynamics of exoplanet satellite candidates
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By calculating the Lyapunov characteristic exponents for a number of exoplanetary systems in which satellites

(exomoons) potentially exist or have already been identified, orbital dynamics stability diagrams were constructed

and studied in detail. Estimates of the Lyapunov times (the time of predictable dynamics) in the orbital dynamics

of exomoons and possible values of the orbital parameters of candidate exomoons are obtained.
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All the planets of the Solar System, with the exception

of Mercury and Venus, have satellites, and the number of

satellites in the giant planets ranges from several dozen

to two hundred. Currently, more than 6,000 planets

(exoplanets) have been discovered other stars. There is

no doubt that most exoplanetary systems have satellite

subsystems [1,2]. A significant part of the exoplanets are

gas giants. A number of them are located in the region

of potential habitability near the parent star, therefore,

the natural satellites of exoplanets (exomoons) may have

conditions suitable for the existence of life [2,3]. The search

and study of the dynamics of exomoons is a laborious, but

very important and urgent task. The active development of

observation methods in the last decade has made it possible

to identify a number of candidates for exomoons. The first

candidate for an exomoon of the planet Kepler-1625b was

presented in Ref. [4]. Later, eight planetary systems were

identified in Ref. [5] in which there are observational signs

of the presence of satellites. Recently, the possibility of

the existence of a satellite of the planet Kepler-1708b was

noted Ref. [6]. The possibility of the existence of satellites

in the planets HD 23079b and HIP 41378f is considered in

Ref. [7,8].

The use of numerical methods for studying the stability

of the motion of celestial bodies (see for more details [9])
makes it possible to evaluate the possibility of detecting exo-

moons from the analysis of observations and to obtain/refine

information about the orbital and physical parameters of the

identified candidates for exomoons. The long-term orbital

dynamics for a satellite that actually exists in a planetary

system must be stable. Having determined the boundaries

of the regions of its stable dynamics for a planetary system

based on the set of possible parameter values and initial con-

ditions for the proposed satellite subsystem (by constructing

stability diagrams), it is possible to evaluate the possibility

of detecting exomoons using modern observational means.

By noting the position of the exomoon candidates detected

from the analysis of observations on the stability diagrams, it

is possible to establish the reliability and estimate the error

of the values of the orbital parameters assumed for it.

The stability of the dynamics of a number of the

above-mentioned candidates for exomoons was studied in

Ref. [10–13]. The stability of the long-term orbital dynamics

of the exomoons is studied in this paper by calculating the

maximum Lyapunov characteristic exponents (MLCE). This
method, unlike others widely used in the problem under

consideration, [10,12,13] methods of stability analysis (cal-
culation of MEGNO, estimation of the maximum attainable

value of the eccentricity of the exomoon during evolution,

etc.), allows us to strictly estimate Lyapunov times [14] and
has already been successfully used by us earlier [11]. We

would like to remind that the LCE represent the average

exponential divergence rate of the phase space trajectories

of a dynamical system that are close (according to initial

conditions) (see for more details [9,14]). A Hamiltonian

system with N degrees of freedom has 2N LCE. A non-zero

value of the maximum LCE (L) indicates a chaotic, and a

zero value indicates a stable character of the motion. We

made a conclusion about the stability of the motion of the

candidates for the exomoons listed in the table based on the

results of numerical integration and estimates of the values

Parameters of planetary systems used in numerical modeling: M is

the mass of the star in the masses of the Sun, M p is the mass of

the planet in the masses of Jupiter, a p, e p is the semi-major axis

and the eccentricity of the orbit of the planet, mS is the mass of

the proposed satellite of the planet (exomoon) in the masses of

the Earth. According to [7,8,13]

The planet M M p a p, AU e p mS

HIP 41378f 1.16 0.038 1.370 0.004 0.15

HD 23079b 1.01 2.41 1.586 0.087 1.0

Kepler-1625b 1.04 11.6 0.863 0.0 10.22

Kepler-1708b 1.09 4.6 1.640 0.40 17.15
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Lyapunov times (in years) for the orbital dynamics of the considered exomoons (see table), calculated on the set of possible values of the

semi-major axis aS (in the radii of the Hill sphere RH of the parent planet) and the inclination of the orbit iS . The white color corresponds

to unstable orbits. Black dots with error bars, according to Ref. [13], the position of candidates for exomoons is marked.

of the Lyapunov time (the time of predictable dynamics

of the system), for which [15] TL = 1/L is assumed. For

more information on methods for obtaining numerical and

analytical estimates of the MLCE in problems on the

dynamics of satellite systems and in general in celestial

mechanics, see [9, 14].
The integration of the equations of motion describing

the dynamics of three bodies (a star, a planet, and an

exomoon) was carried out on a set of initial values of

the orbital parameters of the exomoon, set at nodes of a

uniform grid of size 50× 50 on the plane (aS, iS), where

aS and iS is the semi-major axis and the inclination of

the exomoon’s orbit to the plane of the planet’s orbit.

Three values of the eccentricity of the exomoon’s orbit

were considered: eS = 0, 0.05 and 0.1, it was accepted:

0.05 ≤ aS/RH ≤ 0.5 and 0◦ ≤ iS ≤ 70◦, where the radius

of the Hill sphere of the planet RH was determined by

RH = a p((M p + mS)/(3M))1/3 . The accepted values for

the parameters of planetary systems are given in the

table. It was assumed that at the initial moment of

time the exomoon and the planet were located in the

pericenters of their orbits, zero values were assumed for

unknown orbital elements (arguments of the pericenters

and longitude of the ascending nodes) (see also [7,8]).
Numerical integration was performed over a time interval

of 105 years. Double precision numbers were used. During

integration, the DOP853 [16] integrator was used, which

implements an explicit Runge-Kutta method of the 8th

order with an automatically variable value of the integration

step. The maximum integration step was assumed to be

1tmax = 10−2 years, the value of the local (at one step)
error was set to ε = 10−12. Based on the value of ε,

the DOP853 integrator automatically selects the required

integration step value, which does not exceed 1tmax (see for

more information [16]).
The orbit of the exomoon was considered unstable, and

numerical integration stopped if there was a close ap-

proach/collision with the planet, or the exomoon left the Hill

sphere of the planet. The fact of a close approach/collision of

an exomoon with a planet was recorded when aS decreased

to a value equal to the radius of the planet, or when the

relative energy of the
”
planet-satellite“ 1E ≥ 10−7 system

changed (see the discussion in Ref. [11]). It should be

noted that the change in energy 1E ≤ 10−12 in the case

of stable dynamics during integration over the time interval

of 105 years. If the integration was successfully completed
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when the specified time interval was reached, then the

conclusion about the stability of the orbital dynamics of

the exomoon was made based on the Lyapunov time TL

determined for it. It was believed that the orbits of

exomoons with TL ≥ 5000 years are stable (see details in

Ref. [11]). Next, the boundaries of the stability region were

determined on the plane (aS, iS), the position of candidates

for exomoons (if known) on it was considered, and the

relative proportion of trajectories occupied by them on the

constructed two-dimensional diagram was estimated.

The figure shows examples of stability diagrams obtained

at eS = 0 for exomoon candidates in planetary systems

listed in the table. In all cases, the relative proportion

of stable trajectories in the constructed diagram was

about 25−40%, which is consistent with the results in

Ref. [8,11,13]. With an increase in eS , the proportion of

stable orbits of exomoons decreased and did not exceed

15−25% at eS = 0.1. For aS/RH > 0.4−0.5 and iS > 60◦,

stable orbits were not found in the diagrams we constructed

(see the discussion in Ref. [10,13]). This can be explained

by the fact that at high inclinations of the exomoon’s orbit,

the Lidov-Kozai resonance begins to play an essential role

in its dynamics, leading to unstable motion. If we compare

the sizes of the stability regions shown in the figure with the

estimates obtained in Ref. [10,13], it should be noted (see
also [11]) that when using the stability criterion based on the

value of the MLCE, the upper limit in terms of aS is less for

all the considered exomoons. From the diagrams shown in

the figure, it can be seen that in the Kepler-1625b system,

the candidate for an exomoon is located in the region of

stable motion near the stability boundary, and in the Kepler-

1708b system, the exomoon is located far enough away

from areas with unstable dynamics. No exomoons have yet

been identified in the HIP 41378f and HD 23079b systems,

but the diagrams show that the stability regions on the plane

(aS, iS) are quite large (especially for iS in the case of

HIP 41378f), and in these planetary systems there may be

satellites with the considered parameters (masses ms).

So, the method proposed in Ref. [11] is developed in

this paper for constructing stability diagrams of satellite

subsystems of exoplanets by calculating the LCE. Stability

diagrams with significantly (several times) higher resolution

than in Ref. [11] have been constructed and analyzed for

a number of planetary systems (HIP 41378f, HD 23079b,

Kepler-1625b, Kepler-1708b) in which satellites potentially

exist or have already been identified. It is shown that the

dynamics of exomoon candidates in the planetary systems

Kepler-1625b and Kepler-1708b is stable. The possibility of

exomoons in HIP 41378f and HD 23079b systems has been

confirmed and estimates of their possible orbital parameters

have been obtained.
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