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In the present work, we propose a theoretical model to describe a cubic lattice of resonators with bianisotropic
response based on dyadic Green’s function approach. The effects of the bianisotropy parameter value on the
dispersion diagram are investigated and topological properties of the system are considered by calculating the Berry

curvature distributions for three different planes.
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Introduction

Photonic topological insulators are arrays of coupled
resonators that ensure the existence of edge states — the
propagation or localization of electromagnetic energy along
the boundaries of the structure. The existence of such a
wave regime is governed by symmetry properties of the
system bulk and is characterized by unidirectionality and
the absence of scattering by geometric defects [1].

One of the ways to implement a photonic topological
insulator is based on the use of resonators, the geometry
of which is characterized by the absence of inversion
center. A breaking of the spatial inversion symmetry of
the resonator leads to the formation of two hybrid modes
corresponding to the bianisotropic response instead of the
electric and magnetic dipole modes of the original resonator
with unperturbed symmetry [2,3]. In turn, the introduction
of bianisotropy leads to the opening of a band gap in which
pseudospin-polarized topological edge states exist, with the
direction of propagation of which is strictly related to the
sign of the pseudospin, which is an analog of the spin-
orbit interaction [2,4]. For example, topological insulators
based on a triangular lattice have been proposed that
are characterized by Dirac dispersion [3,5], as well those
based on structures with symmetry Cy4,, with quadratic
degeneracy of eigenmodes [6].

This paper is devoted to the development of a theoretical
model based on the dyadic Green’s function method for
describing a topological insulator consisting of bianisotropic
particles located at the nodes of a cubic lattice. We calcu-
lated the Berry curvature for three orthogonal directions of
the lattice to study the topological properties of the system
under consideration. Previously, a theoretical description
of such systems was proposed within the framework of
perturbation theory [7], applicable only in the vicinity
of high symmetry points and not including the study of

topological properties, which requires the calculation of the
Berry curvature in the entire Brillouin zone.

1. Derivation of the effective Bloch
Hamiltonian

Let us consider a cubic lattice with a period of a, at
the nodes of which point electric p,(,) and magnetic m,,)
dipoles oriented along the x(y) axis (Fig. 1) are located,
corresponding to the simultaneous excitation of electric and
magnetic dipoles in the xy plane of a dielectric resonator
consisting of two concentric cylinders of different sizes,
the axis of which coincides with the z axis [3,6,8]. At
the same time, the geometry of these resonators ensures
the equality of magnitudes of the electric and magnetic
responses necessary for the degeneration of eigenmodes at
high symmetry points in the absence of bianisotropy [2],
therefore, we will consider the amplitudes of electric and
magnetic fields at a given node to be equal.
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Figure 1. Cubic lattice with a period of a, with bianisotropic
particles located in the nodes. The parameter u characterizes the
coupling strength of the electric p and magnetic m dipole moments.
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The components of the electric £ and magnetic H fields
at the node with coordinates (ia, ja, ka) are related to
dipole moments by the polarizability tensor & (in the CGS
symmetric system of units):
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where S is polarizability and y is electromagnetic coupling.
Then the components of the electric and magnetic fields at
a given node are determined by the following expression:
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where u = B/(B*—x*) and v = y/(B>—x?). Let there
be only one resonant state with a frequency wo in
the frequency range where hybridization of electric and
magnetic dipole moments is observed. Then the param-
eter u can be represented as an approximating function
u=(w—wp)/C, where C is a constant. To make the
parameters # and v dimensionless, we introduce the
parameters u = va> and 1 = a3(w—awy)/C [8].

On the other hand, the field amplitudes at a given node
can be found as the sum of the fields created by all other
point dipoles expressed using the dyadic Green’s function
G(V, k()) =G:
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The dyadic Green’s function is determined by the distance
between the point dipoles

r=ay/(m—i)?+(n—jP+ (1~ k)

and the wave number kg. According to the assumptions
introduced, the electric and magnetic components of the
dyadic Green’s function coincide, G = G™". In addition,
the electromagnetic and magnetoelectric components are
related as ratio G = —G™*. The components of the dyadic
Green’s function are defined by the following expressions (in
the CGS symmetric system of units):
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where &, is the Levi—Civita symbol, &, is the Kronecker
delta and 9; = 9/9;. The expressions obtained for the
components of the dyadic Green’s function in the quasi-
static approximation (ko = 0) have the following form:

G = (3a*(m—i)*/r*—1)/r?,
Gy, = (3a2(n — j)z/r2 - 1)/r3,
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To simplify the derivation, we will take into account
only the couplings between neighbors in the first and
second coordination spheres. According to Bloch theorem,
the dipole moments at the nodes of a cubic lattice with
coordinates (ia, ja, ka) and (ma, na,la) are related by a
phase multiplier

ijk o ijk ik if\T ik (i—m)—iky (j—n)—ik (k—1
(pxj?pyj’mxj’myj) — o thli—m)—iky(j—n)—ik: (k=1)
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where k,,k,, and k, are the wave vectors along the
axes x,y, and z. Combining the equations (1) and (2),
rewriting the result as an eigenvalue problem H|p) = A[1h),
and taking into account Bloch theorem and the expressions
obtained for dyadic Green’s function, we obtain the effective
Bloch Hamiltonian H in the basis 1) = (p., Dys Mg, my)T.
Let wus change the basis to pseudospin states
W) = (px + my, py +my, px —me, py —my)" 3] by
converting H' = UHU', where the matrix U has the
following form:

10 1 0
1

po Lot o 1
A2l o -1 o
01 0 -1

Finally, the effective Bloch Hamiltonian in the pseudospin
basis [1p') is defined as:
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where H' and H' denote the pseudospin parts of the Bloch

Hamiltonian with opposite polarization.
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2. Dispersion curves and topological
properties

The dispersion curves of the obtained Bloch Hamiltonian
H' for three different values of the bianisotropy parameter u
are shown in Fig. 2 and are described by the following
expression:

/11T<(21)) = cosk, +cosk, —2cosk;
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12
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In the absence of bianisotropy (u = 0), the dispersion
is characterized by quadratic degeneracy at high symmetry
points I'(0,0,0) and M(m, o, 0). In addition, degen-
eracy is observed at point A(sz, s, ), between points
r0,0,0) and Z(0, 0, ) and between points M (s, 7, 0)
and A(s,a, ). The degeneracy is removed with the
introduction of bianisotropy, and an increase in the value
of the parameter u is accompanied by an increase in the
band gap. Indeed, at the point T'(0, 0, 0), the expression for
eigenvalues takes the form lL(zl)) = +u, which emphasizes
the crucial role of bianisotropy in the opening of the band
gap.

To study the topological properties of a cubic lattice
of bianisotropic particles, the distributions of the Berry
curvature (which is an analog of the magnetic field in
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Figure 2. Dispersion curves of the effective Bloch Hamiltonian
H' in the first Brillouin zone of a cubic lattice. The solid, dotted,
and dashed curves correspond to three different values of the
bianisotropy parameter.
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Figure 3. Berry curvature distributions €2 in the xy plane for the
upper (a,b) and lower (c¢,d) branches of eigenstates corresponding
to pseudospin-up H' and pseudospin-down H* parts of the
Hamiltonian A’ for the value of the bianisotropy parameter u = 10.

the reciprocal space [9]) were calculated for three different
planes using the formula
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where & # ¢ # n take values to [x;y;z], the upper index
of the eigenfunction ¥ indicates the pseudospin part of the
Hamiltonian T(1), and the lower index indicates the branch
of the eigenvalues. The Berry curvature for all planes
vanishes in the absence of bianisotropy (4 =0). When
bianisotropy is introduced (u = 10), a nonzero local and
opposite-sign distribution of Berry curvature is observed €2,
in the vicinity of points with coordinates (0,0) and (ar, 7),
as shown in Fig. 3. In this case, the values of the Berry
curvature distribution change their sign when the direction
of the pseudospin or branch of the eigenstates change.
The Berry curvature in the other two planes €2, and €,
retains its trivial properties even with a nonzero bianisotropy
parameter u. Thus, the cubic lattice under consideration is
an example of a weak topological insulator with nontrivial
topological properties along the z axis.
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Conclusion

A theoretical model is proposed for describing a cubic
lattice of bianisotropic resonators based on the dyadic
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Green’s function and taking into account the couplings
between nodes in the first and second coordination spheres.
The crucial role of bianisotropy in the opening of the band
gap and the emergence of nontrivial topological properties is
demonstrated, as follows from Berry curvature distributions.
The proposed model can be used to describe arrays of
bianisotropic resonators with the size, as well as the distance
between the nearest resonators, being much smaller than the
wavelength of electromagnetic radiation in the considered
frequency range.
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