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In the present work, we propose a theoretical model to describe a cubic lattice of resonators with bianisotropic

response based on dyadic Green’s function approach. The effects of the bianisotropy parameter value on the

dispersion diagram are investigated and topological properties of the system are considered by calculating the Berry

curvature distributions for three different planes.
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Introduction

Photonic topological insulators are arrays of coupled

resonators that ensure the existence of edge states — the

propagation or localization of electromagnetic energy along

the boundaries of the structure. The existence of such a

wave regime is governed by symmetry properties of the

system bulk and is characterized by unidirectionality and

the absence of scattering by geometric defects [1].

One of the ways to implement a photonic topological

insulator is based on the use of resonators, the geometry

of which is characterized by the absence of inversion

center. A breaking of the spatial inversion symmetry of

the resonator leads to the formation of two hybrid modes

corresponding to the bianisotropic response instead of the

electric and magnetic dipole modes of the original resonator

with unperturbed symmetry [2,3]. In turn, the introduction

of bianisotropy leads to the opening of a band gap in which

pseudospin-polarized topological edge states exist, with the

direction of propagation of which is strictly related to the

sign of the pseudospin, which is an analog of the spin-

orbit interaction [2,4]. For example, topological insulators

based on a triangular lattice have been proposed that

are characterized by Dirac dispersion [3,5], as well those

based on structures with symmetry C4v , with quadratic

degeneracy of eigenmodes [6].

This paper is devoted to the development of a theoretical

model based on the dyadic Green’s function method for

describing a topological insulator consisting of bianisotropic

particles located at the nodes of a cubic lattice. We calcu-

lated the Berry curvature for three orthogonal directions of

the lattice to study the topological properties of the system

under consideration. Previously, a theoretical description

of such systems was proposed within the framework of

perturbation theory [7], applicable only in the vicinity

of high symmetry points and not including the study of

topological properties, which requires the calculation of the

Berry curvature in the entire Brillouin zone.

1. Derivation of the effective Bloch
Hamiltonian

Let us consider a cubic lattice with a period of a , at

the nodes of which point electric px(y) and magnetic mx(y)

dipoles oriented along the x(y) axis (Fig. 1) are located,

corresponding to the simultaneous excitation of electric and

magnetic dipoles in the xy plane of a dielectric resonator

consisting of two concentric cylinders of different sizes,

the axis of which coincides with the z axis [3,6,8]. At

the same time, the geometry of these resonators ensures

the equality of magnitudes of the electric and magnetic

responses necessary for the degeneration of eigenmodes at

high symmetry points in the absence of bianisotropy [2],
therefore, we will consider the amplitudes of electric and

magnetic fields at a given node to be equal.
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Figure 1. Cubic lattice with a period of a , with bianisotropic

particles located in the nodes. The parameter µ characterizes the

coupling strength of the electric p and magnetic m dipole moments.

25 2145



2146 International Conference PhysicA.SPb, 20−24 October, 2025

The components of the electric E and magnetic H fields

at the node with coordinates (ia, ja, ka) are related to

dipole moments by the polarizability tensor α̂ (in the CGS

symmetric system of units):
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where β is polarizability and χ is electromagnetic coupling.

Then the components of the electric and magnetic fields at

a given node are determined by the following expression:
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(1)
where u = β/(β2−χ2) and v = χ/(β2−χ2). Let there

be only one resonant state with a frequency ω0 in

the frequency range where hybridization of electric and

magnetic dipole moments is observed. Then the param-

eter u can be represented as an approximating function

u = (ω−ω0)/C, where C is a constant. To make the

parameters u and v dimensionless, we introduce the

parameters µ = va3 and λ = a3(ω−ω0)/C [8].
On the other hand, the field amplitudes at a given node

can be found as the sum of the fields created by all other

point dipoles expressed using the dyadic Green’s function

G(r, k0) = G:
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(2)
The dyadic Green’s function is determined by the distance

between the point dipoles

r = a

√
(m − i)2 + (n − j)2 + (l − k)2

and the wave number k0. According to the assumptions

introduced, the electric and magnetic components of the

dyadic Green’s function coincide, Gee = Gmm . In addition,

the electromagnetic and magnetoelectric components are

related as ratio Gem = −Gme . The components of the dyadic

Green’s function are defined by the following expressions (in
the CGS symmetric system of units):
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where εζ ηz is the Levi−Civita symbol, δζ η is the Kronecker

delta and ∂ζ = ∂/∂ζ . The expressions obtained for the

components of the dyadic Green’s function in the quasi-

static approximation (k0 = 0) have the following form:
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To simplify the derivation, we will take into account

only the couplings between neighbors in the first and

second coordination spheres. According to Bloch theorem,

the dipole moments at the nodes of a cubic lattice with

coordinates (ia, ja, ka) and (ma, na, la) are related by a

phase multiplier

(
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,

where kx , ky , and kz are the wave vectors along the

axes x , y , and z . Combining the equations (1) and (2),
rewriting the result as an eigenvalue problem Ĥ|ψ〉 = λ|ψ〉,
and taking into account Bloch theorem and the expressions

obtained for dyadic Green’s function, we obtain the effective

Bloch Hamiltonian Ĥ in the basis |ψ〉 = (px , py , mx , my)
T .

Let us change the basis to pseudospin states

|ψ′〉 = (px + mx , py + my , px − mx , py − my )
T [3] by

converting Ĥ ′ = UĤU↑, where the matrix U has the

following form:

U =
1√
2
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
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Finally, the effective Bloch Hamiltonian in the pseudospin

basis |ψ′〉 is defined as:

Ĥ ′=


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,

b = 4 cos kx − 2 cos ky − 2 cos kz

+
1√
2

(cos kx cos ky + cos kx cos kz − 2 cos ky cos kz ),

c = −2 cos kx + 4 cos ky − 2 cos kz

+
1√
2
(cos kx cos ky + cos ky cos kz − 2 cos kx cos kz ),

d =
3√
2
sin kx sin ky ,

where Ĥ↑ and Ĥ↓ denote the pseudospin parts of the Bloch

Hamiltonian with opposite polarization.
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2. Dispersion curves and topological
properties

The dispersion curves of the obtained Bloch Hamiltonian

Ĥ ′ for three different values of the bianisotropy parameter µ

are shown in Fig. 2 and are described by the following

expression:
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+
1
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(
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+9 cos(2kx )
(
13+4 cos(2ky )+8

√
2 cos kz + cos(2kz )

))1/2

.

In the absence of bianisotropy (µ = 0), the dispersion

is characterized by quadratic degeneracy at high symmetry

points Ŵ(0, 0, 0) and M(π, π, 0). In addition, degen-

eracy is observed at point A(π, π, π), between points

Ŵ(0, 0, 0) and Z(0, 0, π) and between points M(π, π, 0)
and A(π, π, π). The degeneracy is removed with the

introduction of bianisotropy, and an increase in the value

of the parameter µ is accompanied by an increase in the

band gap. Indeed, at the point Ŵ(0, 0, 0), the expression for

eigenvalues takes the form λ
↑(↓)
1(2) = ±µ, which emphasizes

the crucial role of bianisotropy in the opening of the band

gap.

To study the topological properties of a cubic lattice

of bianisotropic particles, the distributions of the Berry

curvature (which is an analog of the magnetic field in
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Figure 2. Dispersion curves of the effective Bloch Hamiltonian

Ĥ′ in the first Brillouin zone of a cubic lattice. The solid, dotted,

and dashed curves correspond to three different values of the

bianisotropy parameter.
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Figure 3. Berry curvature distributions �z in the xy plane for the

upper (a,b) and lower (c,d) branches of eigenstates corresponding

to pseudospin-up Ĥ↑ and pseudospin-down Ĥ↓ parts of the

Hamiltonian Ĥ′ for the value of the bianisotropy parameter µ = 10.

the reciprocal space [9]) were calculated for three different

planes using the formula
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∂
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〉
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where ξ 6= ζ 6= η take values to [x ; y ; z ], the upper index

of the eigenfunction ψ indicates the pseudospin part of the

Hamiltonian Ĥ↑(↓), and the lower index indicates the branch

of the eigenvalues. The Berry curvature for all planes

vanishes in the absence of bianisotropy (µ = 0). When

bianisotropy is introduced (µ = 10), a nonzero local and

opposite-sign distribution of Berry curvature is observed �z

in the vicinity of points with coordinates (0,0) and (π, π),
as shown in Fig. 3. In this case, the values of the Berry

curvature distribution change their sign when the direction

of the pseudospin or branch of the eigenstates change.

The Berry curvature in the other two planes �x and �y

retains its trivial properties even with a nonzero bianisotropy

parameter µ. Thus, the cubic lattice under consideration is

an example of a weak topological insulator with nontrivial

topological properties along the z axis.

Conclusion

A theoretical model is proposed for describing a cubic

lattice of bianisotropic resonators based on the dyadic

25∗ Technical Physics, 2025, Vol. 70, No. 12
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Green’s function and taking into account the couplings

between nodes in the first and second coordination spheres.

The crucial role of bianisotropy in the opening of the band

gap and the emergence of nontrivial topological properties is

demonstrated, as follows from Berry curvature distributions.

The proposed model can be used to describe arrays of

bianisotropic resonators with the size, as well as the distance

between the nearest resonators, being much smaller than the

wavelength of electromagnetic radiation in the considered

frequency range.
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