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Thermoelastic stresses in slip systems of ribbon gallium oxide crystals

grown from a melt by the Stepanov method (EFG)
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The influence of anisotropy of gallium oxide crystal properties on the magnitude and distribution of shear

stresses in slip systems is investigated. An algorithm of calculating shear stresses for crystals of monoclinic syngony

is presented. Equivalent slip systems are found. A comparison of shear thermoelastic stresses distributions in

various slip systems for thin gallium oxide ribbons grown from a melt by the Stepanov method (EFG) is carried

out. A correlation between shear stresses calculated in the ribbon with orientation [010] (2̄10) and the experimental

data at the dislocation structure is found.

Keywords: monoclinic syngony, transition matrix, equivalent systems.

DOI: 10.61011/TP.2025.12.62373.222-25

Introduction

Crystals of β-phases of gallium oxide (β−Ga2O3), have
been intensively studied recently and have good prospects

for wide application in microelectronics and high-power

electronics. Gallium oxide surpasses third-generation semi-

conductors in band gap and electrical breakdown value,

combined with radiation resistance, excellent scintillation

ability, and transparency in the UV-visible region [1].
By now, Japanese company Tamura Corp. has already

started commercial production of β−Ga2O3 crystals grown

from a melt in the form of ribbons and substrates

based on them. However, it is necessary not only to

develop various growing processes for obtaining high-

quality defect-free crystals, but also to study structural

defects and the causes of their formation. Very few

such studies have been conducted for β−Ga2O3 crys-

tals.

The defective structure of plates oriented parallel to

the planes (010) and (2̄01) was studied in a number

of papers [2–6] using X-ray topography, selective etching,

and transmission electron microscopy. Nakai et al. [2]
were the first to find two types of defects in the cross

section of plates (010): b-screw dislocations forming

subgrain boundaries parallel to the planes (2̄01), (010),
and hollow nanotubes elongated along [010]. Yam-

aguchi et al. [3] analyzed the crystal structure of β−Ga2O3

based on the well-known principle that the main planes

and slip directions correlate with densely packed planes

and shortest translation vectors, respectively. Four slip

planes have been identified: {2̄01}, {101}, {3̄10}, {3̄1̄0}
and the directions of the shortest translations in them

(table, points 1.1−4.3). The existence of dislocations

of the {2̄01} system has been strictly established by X-

ray topography using the invisibility criterion, and for

others, a dislocations rows that can correspond to them

have been demonstrated. Ueda et al. [4] discovered by

the method of transmission electron microscopy a rows

of edge dislocations with a Burgers vector along 〈010〉

corresponding to etching pits on a surface parallel to (2̄01);

hollow nanoplates perpendicular to the plane of (010), as

well as twin plates (100). Yao et al. [5] in a substrate

with orientation (010), using synchrotron X-ray diffraction

(XRD) and X-ray topography (XRT), dislocations belong-

ing to three more slip systems 〈010〉{001}, 〈201〉{102̄}

and 〈001〉{100} (see table, points 5−7). Information

was collected in a recent review in Ref. [6] about

all known slip systems, but only the indices of one

of a row of crystallographically equivalent systems are

given.

However, the studies described above have not con-

sidered the causes and mechanisms of the formation of

defects during the growth process. Meanwhile, studies in

Ref. [7] carried out during the growth of other crystals

from the melt by the Stepanov method (EFG) have shown

that one of the main causes of defect formation is plastic

deformation under the influence of thermal stresses in

slip systems. Thermoelastic stresses were calculated for

cylindrical and ribbon β−Ga2O3 crystals in Ref. [8,9] ,

taking into account the anisotropy of the coefficients of

elasticity and thermal expansion, but without taking into

account slip systems.

In this paper, thermoelastic tangential stresses in slip

systems of β−Ga2O3 crystals grown in the form of ribbons

in the direction [010] has been calculated according to the

proposed algorithm, taking into account equivalent systems.

Their orientation dependence in all operating slip systems

has been investigated when the normal to the ribbon plane

is rotated from the initial position (100) by 360◦ around the

growing direction [010]
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Possible slip systems of β−Ga2O3 crystals

� Slip Plane Slip direction Equivalent systems

1.1 {2̄01} 〈010〉 (2̄01) [010], (2̄01) [01̄0], (201̄) [010], (201̄) [01̄0]

1.2 {2̄01} 〈112〉 (2̄01) [112], (2̄01) [11̄2], (201̄) [1̄12̄], (201̄) [1̄1̄2̄]

2.1 {101} 〈010〉 (101) [010], (101) [01̄0], (1̄01̄) [010], (1̄01̄) [01̄0]

2.2 {101} 〈101̄〉 (101) [101̄], (1̄01̄) [1̄01]

3.1 {3̄1̄0} 〈001〉 (3̄1̄0) [001], (3̄10) [001], (31̄0) [001̄], (310) [001̄]

3.2 {3̄1̄0} 〈13̄0〉 (3̄1̄0) [13̄0], (3̄10) [130], (31̄0) [1̄3̄0], (310) [1̄30]

3.3 {3̄1̄0} 〈13̄2〉 (3̄1̄0) [13̄2], (3̄10) [132], (31̄0) [1̄3̄2̄], (310) [1̄32̄]

4.1 {3̄10} 〈001〉 (3̄10) [001], (3̄1̄0) [001̄], (31̄0) [001], (310) [001̄]

4.2 {3̄10} 〈130〉 (3̄10) [130], (3̄1̄0) [13̄0], (310) [1̄30], (31̄0) [1̄3̄0]

4.3 {3̄10} 〈132〉 (3̄10) [132], (3̄1̄0) [13̄2], (310) [1̄32̄], (31̄0) [1̄3̄2̄]

5 {001} 〈01̄0〉 (001) [01̄0], (001) [010], (001̄) [01̄0], (001̄) [010]

6 {102̄} 〈201〉 (102̄) [201], (1̄02) [2̄01̄]

7 {100} 〈001〉 (100) [001], (1̄00) [001̄]

1. Algorithm for calculating tangential
stresses in slip systems for ribbon
crystals of monoclinic syngony

Let the slip system {n1, n2, n3}〈l1, l2, l3〉 be selected in

the crystallographic coordinate system. Here n1, n2, n3 are

the crystallographic indices of the slip plane corresponding

to the indices of the normal to it in the reciprocal lattice,

and l1, l2, l3 are the indices of the slip direction specified

in the direct lattice. It should be noted that for crystals

of monoclinic syngony, to which gallium oxide belongs,

the crystallographic coordinate system is not Cartesian.

Let’s denote the vector perpendicular to the slip plane

as n = (n1, n2, n3)
T , and the vector of the slip direc-

tion as l = (l1, l2, l3)
T . Further, let us denote the compo-

nents of these vectors in the crystallophysical coordinates as

N = (N1, N2, N3)
T and L = (L1, L2, L3)

T , respectively, and

express them in the crystallographic coordinates accoding

to [10,11]:

N =
En

H∗(n1, n2, n3)
, L =

(A)T l

R(l1, l2, l3)
,

where E is the decomposition matrix of unit vectors of the

crystallophysical coordinate system in basis vectors of the

crystal lattice:

E =





a
∗ 0 −c

∗ cos β

0 b
∗ 0

0 0 c
∗ sin β



 ;

A is the decomposition matrix of the vector basis of a

crystal lattice in unit vectors of a crystallophysical coordinate

system:

A =





a sinβ 0 a cos β

0 b 0

0 0 c



 ;

H
∗ is the vector length n in an reciprocal lattice for crystals

of monoclinic syngony:

H
∗(n1, n2, n3) =

(

n
2
1(a

∗)2 + n
2
2(b

∗)2 + n
2
3(c

∗)2

+ 2n1n3a
∗

c
∗ cos(β∗)

)0.5
;

R is the length of the vector l in a direct lattice:

R(l1, l2, l3) = (l21a
2 + l

2
2b

2 + l
2
3c

2 + 2l1l3ac cos β)0.5,

A, E,H
∗, R are determined by the parameters of the

direct and reciprocal crystal lattice. For monoclinic

β−Ga2O3 [12] — a = 12.214 Å; b = 3.037 Å; c = 5.798 Å;

α=γ=π/2; β∼1.812 rad; a
∗=0.084 Å

−1; b
∗=0.329 Å

−1;

c
∗ = 0.178 Å

−1; α∗ = γ∗ = π/2; β∗ = π−β .
Let’s find the matrix C0 connecting the slip system

and the crystallophysical coordinate system. This matrix

is expressing in terms of the components of the vectors

N = (N1, N2, N3)
T and L = (L1, L2, L3)

T as follows:

C0 = C0(n1, n2, n3, l1, l2, l3)

=





N1 N2 N3

L1 L2 L3

N2L3 − N3L2 N3L1 − N1L3 N1L2 − N2L1



 .

Let us consider the ribbon β−Ga2O3 grown in the

crystallographic direction [010]. The orientation of the
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ribbon, in which the axis x3 coincides with the direction

of growth [010], and the axis x1 is directed perpendic-

ular to the plane of the ribbon and coincides with the

direction (100), is considered the initial crystallophysical

orientation of the plate. We construct a transition matrix

from a working coordinate system to a crystallophysical

system. As a working coordinate system, we choose

the coordinate system obtained from the original crystal-

lophysical system by rotating around the axis x1 at an

angle 90◦ counterclockwise, followed by rotating around

the new axis x3 (around the direction [010]) at an angle

of ψ counterclockwise. Then the transition matrix from the

working coordinate system to the initial crystallophysical

system will take the form

C0R =





cosψ 0 sinψ

sinψ 0 − cosψ

0 1 0





−1

.

The transition matrix from the working coordinate system

to the slip coordinate system can be written as C = C0C0R .

Then the tangential stresses acting in the selected slip system

are determined by the following formula:

τ12 = C1αC2βσαβ , α, β = 2, 3,

where σαβ is the tensor of thermoelastic stresses corre-

sponding to the plane stress state. When the working

coordinate system is rotated, not only the components of

the matrix C0R change, but also the components of the

thermoelastic stress tensor σαβ , due to the anisotropy of

the thermal and elastic properties of the ribbon material.

2. Calculation of tangential stresses
in slip systems for ribbon crystals
of gallium oxide

We find tangential stresses in a thin crystal

plate β−Ga2O3 of length l, rectangular section

� = [−b, b] × [−h, h] (2b — width of the ribbon, 2h —
its thickness). Let’s use the Cartesian coordinate system

(x̄1, x̄2, x̄3). The dimensional values are indicated by a bar

at the top. The axis x̄1 is orthogonal to the ribbon plane,

the axes x̄2 and x̄3 lie in the median plane, and the axis x̄3

coincides with the direction of growth. Let’s proceed to

dimensionless coordinates: x̄1 = hx1, x̄2 = bx2, x̄3 = lx3.

Next, we proceed to the dimensionless coefficients of

thermal conductivity, thermal expansion, and elastic com-

pliance by normalization to the corresponding invariants.

To calculate the thermoelastic stresses in the ribbon, we

use approximate formulas for the components σ̄33, σ̄23, and

σ̄22 of the thermoelastic stress tensor describing the plane

stress state in a thin anisotropic plate. These formulas

were obtained in Ref. [13] by the method of asymptotic

integration of the thermoelasticity equations under the

assumption of small parameters δ = h/b, ε = b/l and weak

heat transfer at the faces x1 = ±1. The case of growing

a rectangular plate with a length of 0.1, width of 0.02

and thickness of 0.002m by the Stepanov method (EFG)
is considered. The direction of growth is [010], the normal

to the plane is [100]. To study the effect of the anisotropy of

gallium oxide properties on the magnitude and distribution

of tangential stresses in slip systems, the rotation of the plate

around the growth axis by an angle of ψ counterclockwise

was considered. Thermoelastic stresses were taken at a

point with coordinates (x2 = 0.5, x3) located in the middle

part of the ribbon along its length.

3. Calculation results

All equivalent slip systems were found for the main

systems listed in the following table. It was taken into

account that this crystal belongs to the symmetry class 2/m

of the of the monoclinic syngony and contains 2 symmetry

elements: the second-order axis of symmetry and the plane

of symmetry m perpendicular to it, and the effect of each

symmetry element on an arbitrary crystallographic direction

is described by its rotation matrix.

The results of calculations of tangential stresses for vari-

ous slip systems when the plate is rotated by an angle of ψ

around the growing direction [010] are shown in Fig. 1−3.

Fig. 1, a shows a scheme of the crystal lattice of a β−Ga2O3

crystal with the orientation of the growing direction [010].
The ribbon plane in the scheme coincides with the slip

plane (2̄10). The following scheme shows other possible

slip planes: (101), (3̄1̄0), (100), and (001). Fig. 1, b shows

the plot of the dependence of tangential stresses in system

1.1 (the numbering of the systems is given in table) from

the rotation angle ψ around the direction [010] in polar

coordinates for four equivalent systems. Calculations have

shown that two of the four systems match in pairs and

have a different sign when the rotation angle is changed ψ.

The maximum values of tangential stresses (up to 0.7MPa)
in this system are reached when the plane of the ribbon

coincides with the crystallographic plane(2̄01), i.e. with the

slip plane under consideration. Calculations in the system

1.2 also demonstrate a strong orientation dependence, but

the level of tangential stresses is lower (up to 0.26MPa).
Dependence of tangential stresses on the rotation angle ψ

in systems 2.1 and 2.2 are shown in Fig. 2. These systems

differ in the number of equivalent slip systems (in the first

one there are four, in the second two), in addition, in the

second system the stress is seven times less. It can be seen

that in one slip plane, the nature of the angular dependence

and the magnitudes of the tangential stresses depend on the

slip direction.

Systems 3 and 4 turned out to be identical. The

planes {3̄1̄0} and {3̄10} differ from the others in that they

are inclined relative to the direction of growth. Despite

this, the polar graphs and maximum stress values for the

3.1 system (up to 0.7MPa when rotated by 15◦) turned

out to be similar to the graphs and stress values in the 1.1

system (Fig. 3, a). The tangential stress level is significantly
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Figure 1. a — scheme of the ribbon and crystal cell of the crystal β−Ga2O3 with orientation of the growing direction [010]. The plane of

the ribbon coincides with the slip plane (2̄01). The following scheme also shows other possible slip planes: (101), (3̄1̄0), (100) and (001);
b — dependence of tangential stresses in the system {2̄01} 〈010〉 on rotation angle ψ around the direction [010] in polar coordinates for

four equivalent systems: 1 — slip systems (2̄01) [010] and (2̄01) [01̄0], 2 — ( 201̄) [010] and (201̄) [01̄0].
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Figure 2. Dependence of tangential stresses on the angle of rotation ψ around the direction [010] in polar coordinates in systems:

a —- {101} 〈010〉 (1 — slip system (101) [010], 2 — (101) [01̄0]); b — {101} 〈101̄〉.
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Figure 3. Dependence of tangential stresses on the angle of rotation ψ around the direction [010] in polar coordinates in systems:

a — {3̄1̄0} 〈001〉 (1 — slip system: (3̄1̄0) [001], 2 – (3̄10) [001]); b — {001} 〈01̄0〉 (1 — (001) [01̄0], 2 — (001) [010]).
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lower (up to 0.1MPa) in systems 3.2 and 3.3. System

5 can be distinguished among the last three systems,

which gives the maximum level of tangential stresses (up
to 0.74MPa) when the ribbon plane coincides with the

crystallographic plane (001) (Fig. 3, b). The tangential

stresses are small (0.1MPa) in systems 6 and 7.

Comparison of the calculation results with experimental

data on the distribution of defects in crystals requires

separate consideration. However, it can be said in advance

that the calculated stresses in 1.1 and 5 systems can lead

to the formation of screw dislocations found in the gallium

oxide ribbons in Ref. [2].

Conclusion

An algorithm for calculating tangential stresses in slip

systems for ribbon crystals of monoclinic syngony has

been developed. The dependence of these stresses on

the rotation of the crystallographic plane of the ribbon

around the growth axis [010] for gallium oxide crystals has

been studied. The calculations performed show that the

magnitude and orientation of the tangential stresses in the

operating slip systems depend on the initial components of

the thermoelastic stress tensor and on the crystallographic

structure of the crystal. In the case when there is one

component in the tensor σ33, it is projected only on

the plane {3̄10} and {3̄1̄0}, and when the three components

of the stress tensor are taken into account, all slip systems

work. The maximum amount of tangential stresses is

observed when the belt plane coincides with the slip plane.
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