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4. Механизмы оже-рекомбинаци
в полупроводниковых
квантовых нитях

4.1. Введение

В настоящем разделе исследуются механизмы оже-

рекомбинации (ОР) неравновесных носителей заряда

в цилиндрических квантовых нитях. Показано, что в

последних присутствуют два различных механизма оже-

рекомбинации: квазипороговый и беспороговый. Оба

механизма, как и в случае квантовых ям (КЯ), связаны с

наличием гетеробарьеров, но имеют различную природу.

Квазипороговый механизм обусловлен пространствен-

ным ограничением волновых функций носителей заряда

областью квантовой нити, при этом нарушается за-

кон сохранения квазиимпульса. Беспороговый механизм,

аналогично КЯ, связан с рассеянием электрона (дырки)
на гетерогранице.

Для описания спектра и волновых функций носителей

в квантовой нити используется модель прямоугольной

цилиндрической потенциальной ямы конечной глубины

для электронов в зоне проводимости и для дырок в

валентной зоне. Принципиальное отличие от ситуации

в квантовых ямах появляется у беспорогового меха-

низма оже-рекомбинации. В квантовой нити имеются

два канала беспороговой оже-рекомбинации: 1) канал,

связанный с передачей большого квазиимпульса воз-

бужденному носителю заряда (как и в случае плоских

квантовых ям); 2) канал, связанный с передачей ему

большого момента импульса. Последний процесс также

является беспороговым механизмом оже-рекомбинации

в квантовых точках (см. разд. 5). Для электронов и дырок

∗ Первая часть Обзора опубликована в ФТП, 2025, том 59, вып. 9,

с. 540−561.

два канала беспороговой оже-рекомбинации имеют раз-

личные зависимости от высот гетеробарьеров, а также

от радиуса квантовой нити.

4.2. Основные уравнения

4.2.1. Уравнения Кейна

Для анализа процессов рекомбинации необходимо

знать волновые функции носителей заряда (см. разд. 3).
В случае цилиндрической симметрии естественно вы-

брать следующий базис [19]:

|s ↑〉, |s ↓〉, |p+ ↑〉, |p+ ↓〉,

|p− ↑〉, |p− ↓〉, |pz + ↑〉, |pz ↓〉, (72)

где
|p+〉 = 1/

√
2|(px + i py)〉,

|p−〉 = 1/
√
2|(px − i py)〉,

а |s〉 и |px〉, |py 〉, |pz 〉 — блоховские функции s - и p-

типа с угловым моментом 0 и 1 соответственно. Первые

описывают состояние зоны проводимости, а вторые —

состояние валентной зоны в Ŵ-точке. Стрелками обозна-

чено направление спина. Такой выбор отвечает базисным

функциям, имеющим определенное значение проекций

квазиимпульса и углового момента на ось нити, что со-

ответствует симметрии цилиндрической нити. В данном
базисе зависимость блоховских амплитуд от координаты

z (ось z параллельна оси нити) и от аксиального угла

принимает простой вид. Волновая функция носителей ψ,

как и в случае КЯ, может быть представлена в виде

ψ = ψs |s〉 + ψ|p〉,

где ψs и ψ — спиноры. Для нахождения волновых

функций и спектра носителей заряда мы используем

систему уравнений Кейна (23).
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Используя закон сохранения плотности потока веро-

ятности (см. (21)), можно получить граничные условия

для огибающих волновых функций на интерфейсе [30].
В приближении γ̃1, γ̃2 = const, учитывая, что эффек-

тивная масса тяжелых дырок намного больше массы

электронов, можно получить условие непрерывности

следующих функций:

ψ,
dψz

dρ
, m−1

l divψ, (73)

где

m−1
l =

2γ2

Eg − E
+ m−1

0 (γ̃1 + 4γ̃2).

4.2.2. Волновые функции в однородном

полупроводнике в цилиндрической

системе координат

В цилиндрической системе координат полученные из

уравнений Кейна (23) волновые функции тяжелых дырок

в базисе (72) могут быть представлены в виде

ψh1(ρ, φ, z ) = H1




0

0

−2iqJm−3/2(kh ρ)ei(m−3/2)φ

khJm−1/2(kρ)ei(m−1/2)φ

0

−khJm+3/2(kh ρ)ei(m+3/2)φ

0√
2khJm−1/2(kh ρ)ei(m−1/2)φ




eiqz ,

(74)

ψh2(ρ, φ, z ) = H2




0

0

−khJm−3/2(kh ρ)ei(m−3/2)φ

0

khJm+1/2(kρ)ei(m+1/2)φ

−2iqJm+3/2(kh ρ)ei(m+3/2)φ

0√
2khJm+1/2(kh ρ)ei(m+1/2)φ




eiqz ,

(75)
где Jm — функция Бесселя порядка m, H1 и H2 —

нормировочные константы, q и kh — параллельная и

перпендикулярная проекции аксиальной оси квазиим-

пульса, а m — проекция полного момента на аксиальную

ось, принимающая полуцелые значения. Внутри кван-

товых нитей волновые функции имеют вид линейной

комбинации (74) и (75). Если тяжелая дырка локали-

зована, то под барьером ее волновая функция имеет

вид, аналогичный (74), (75), за исключением того, что

функцию Бесселя Jm следует заменить на функцию

Макдональда Km с одновременной заменой kh на ikh. Для

легких и спин-отщепленных дырок можно записать

ψi1(ρ, φ, z ) = A1




√
2~(k2

i +q2)γ
Eg−E

Jm−1/2(kρ)ei(m−1/2)φ

0

−k i(1 + λi)Jm−3/2(khρ)ei(m−3/2)φ

2iqJm−1/2(kρ)ei(m−1/2)φ

k i(λi − 1)Jm+1/2(kρ)ei(m+1/2)φ

0√
2iqJm−1/2(kh ρ)ei(m−1/2)φ

−
√
2k iλi Jm+1/2(kh ρ)ei(m+1/2)φ




eiqz

(76)
и

ψi2(ρ, φ, z ) = A2




√
2~(k2

i +q2)γ
Eg−E

Jm+1/2(kρ)ei(m+1/2)φ

0

k i(λi − 1)Jm−1/2(kρ)ei(m−1/2)φ

2iqλi Jm+1/2(kρ)ei(m+1/2)φ

k i(1 + λi)Jm+3/2(kh ρ)ei(m+3/2)φ

0

−
√
2k iλiJm−1/2(kh ρ)ei(m−1/2)φ

√
2iqJm+1/2(kh ρ)ei(m+1/2)φ




eiqz ,

(77)
где i = l, s соответствует легким и спин-отщепленным

дыркам, A1, A2 — нормировочные константы,

λi = δ/(E + 4δ − ~
2(k2

i + q2)/2mh). Волновые функции

электронов имеют вид, полностью аналогичный виду

волновых функций легких и спин-отщепленных дырок,

необходимо лишь провести замену E → Eg + ε.

4.2.3. Состояния носителей в квантовой нити

Так как в выбранном базисе проекции импульса и мо-

мента импульса носителей на ось z имеют определенные

значения, то переменные z , ρ и φ в уравнении (23)
разделяются. Поэтому собственные состояния носителей

в квантовой нити определяются дисперсионным урав-

нением, имеющим радиальную зависимость волновых

функций при некоторых значениях q и m. В отличие

от квантовых ям [30], в квантовой нити состояния не

могут быть разделены по четности даже для тяжелых ды-

рок, поэтому дисперсионные соотношения получаются

чрезмерно громоздкими. Для тяжелых дырок последнее

имеет вид
(

Km−3/2(κhR)

Jm−3/2(khR)
− Km+1/2(κhR)

Jm+1/2(khR)

)

×
(

Km+3/2(κhR)

Jm+3/2(khR)
− Km−1/2(κhR)

Jm−1/2(khR)

)

=
4q2

κ2h k2
h

(
kh

Km−3/2(κhR)

Jm−3/2(khR)
− κh

Km−1/2(κhR)

Jm−1/2(khR)

)

×
(

kh

Km+3/2(κhR)

Jm+3/2(khR)
− κh

Km+1/2(κhR)

Jm+1/2(khR)

)
. (78)
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Здесь R — радиус нити, а kh, κ — модули нормальных

к интерфейсу составляющих квазиимпульса в яме и

в барьерной области соответственно. Квазиимпульсы

однозначно связаны друг с другом законом дисперсии.

В пределе бесконечно широкой или глубокой ямы

можно получить упрощенное уравнение дисперсии для

тяжелых дырок:
(

Jm(khR)

Jm−2(khR)
− 1

)(
Jm−1(khR)

Jm+1(khR)
− 1

)
=

4q2

k2
h

. (79)

Для легких дырок получается следующее дисперсионное

уравнение:

q2


ml

m̃l

(
κ2l + q2

k2
l + q2

)
−
(
2λ̃l − 1

2λl − 1

)2



=



κ2l

(
2λ̃l − 1

2λl − 1

)2

+ k2
l

(
ml

m̃l

)2 (
κ2l + q2

k2
l + q2

)2

− κlk l

ml

m̃l

(
κ2l + q2

k2
l + q2

)(
2λ̃l − 1

2λl − 1

)

×
(

K jz−1/2(κlR)

J jz−1/2(k lR)

J jz+1/2(k lR)

K jz+1/2(κlR)

+
K jz+1/2(κlR)

J jz+1/2(k lR)

J jz−1/2(k lR)

K jz−1/2(κlR)

)]
. (80)

Дисперсионное соотношение для электронов в зоне

проводимости выглядит несколько проще, так как оно

делится на два уравнения (в квантовых ямах такого

разделения не происходит [30]):

kc

√
λ2c − 1

Z

√
Km−1/2(κcR)Jm+3/2(kcR)

J2
m+1/2(kcR)

= κc

√
λ̃2c − 1

Z̃

√
Km−1/2(κcR)Jm+3/2(κcR)

J2
m+1/2(κcR)

(81)

или

kc

√
λ2c − 1

Z

√
Jm+1/2(kcR)Jm−1/2(kcR)

J2
m−1/2(kcR)

= κc

√
λ̃2c − 1

Z̃

√
Km+1/2(κcR)Km−3/2(κcR)

K2
m−1/2(κcR)

, (82)

где ε — энергия электрона, отсчитываемая от края зоны

проводимости внутри нити,

λc =
δ

Eg + 2δ + ε
,

Z =
ε2 + ε(2Eg + 3δ) + (Eg + 3δ)Eg

ε + Eg + 2δ
,

а λ̃, Z̃ — те же величины, но в подбарьерной области.

Волновые функции, соответствующие уравнению (81),

имеют четное значение проекции на ось z орбитального

момента блоховских огибающих, а в случае (82) —

нечетное значение. Дальнейшие расчеты матричных

элементов будут проводиться в предположении, что

электрон, локализованный в квантовой нити, находится

на основном уровне размерного квантования, энергия

которого определяется из уравнения

kc

√
λ2c − 1

Z

J1(kcR)

J0(kcR)
= κc

√
λ̃2c − 1

Z̃

K1(κcR)

K0(κcR)
. (83)

4.3. Матричный элемент оже-рекомбинации

4.3.1. Вероятность оже-рекомбинации

В рамках 1-го порядка теории возмущений по элек-

трон-электронному взаимодействию вероятность оже-

рекомбинации в единицу времени дается выражени-

ем (28), а матричный элемент выражением (29). С уче-

том антисимметризации волновых функций матричный

элемент оже-перехода можно представить в виде соглас-

но (30). Далее для простоты мы в основном ограничимся

рассмотрением CHCC-процесса оже-рекомбинации. При

выполнении условия Eg − 1so ≫ T , имеющего место для

большинства полупроводников типа AIIIBV, все каче-

ственные выводы будут справедливыми и для CHHS-

процесса.

4.3.2. Механизмы оже-рекомбинации
в квантовых нитях

Волновые функции носителей являются собствен-

ными функциями проекций операторов квазиимпульса

на ось z . Таким образом, матричный элемент оже-

рекомбинации автоматически удовлетворяет законам со-

хранения импульса и момента импульса и в цилиндриче-

ских координатах ρ, φ и z имеет вид

MI =
e2

κ∞

∞∫

0

ρ1dρ1

∞∫

0

ρ2dρ2

2π∫

0

dφ1

2π∫

0

dφ2

∞∫

−∞

dz 1

∞∫

−∞

dz 2

× eim(φ1−φ2)+iq(z 1−z 2)

|r1 − r2|
(
R∗

2(ρ1)R3(ρ1)
)(
R∗

1(ρ2)R4(ρ2)
)
,

(84)
где R1, R2, R3, R4 — радиальные части волновых

функций частиц, а

{
m = m2 − m3 = m4 − m1,

q = q2 − q3 = q4 − q1

— переданные аксиальные проекции момента импульса

и квазиимпульса. Матричный элемент MII получается из

MI перестановкой индексов 1 и 2 у волновых функций

R1 и R2. Функция R1 соответствует локализованному

носителю в начальном состоянии, а R4 — носителю в

возбужденном состоянии. Рекомбинирующей паре тяже-

лая дырка–электрон соответствуют волновые функции

Физика и техника полупроводников, 2025, том 59, вып. 10
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R2 и R3. Для CHCC-процесса функции R1 и R4 соответ-

ствуют электронам в зоне проводимости, при описании

CHHS-процесса R1 соответствует тяжелой, а R4 — спин-

отщепленной дырке. Проводя фурье-преобразование ку-

лоновского потенциала по координатам ρ и φ, получаем

2π∫

0

dφ

∞∫

−∞

dz
eimφ+iqz

|r1 − r2|
=

{
4πIm(qρ1)Km(qρ2), ρ1 ≤ ρ2,

4πIm(qρ2)Km(qρ1), ρ1 ≥ ρ2,

(85)
где Im — модифицированная функция Бесселя порядка

m. Так как масса тяжелой дырки велика (mh ≫ me),
ее волновая функция быстро затухает под барьером

по сравнению с волновой функцией электрона, и в

подбарьерной области перекрытием волновых функций

тяжелой дырки и электрона можно пренебречь. Следует

отметить, что это вовсе не означает, что задача решается

в приближении бесконечного потенциального барьера

для тяжелой дырки, так как ее энергетические уровни

находятся из точных граничных условий (73). Как уже

было отмечено выше, мы будем также предполагать,

что рекомбинирующий электрон находится на основном

уровне размерного квантования. Из-за сравнительно ма-

лой массы электронов это предположение оправдывает-

ся даже для достаточно широких квантовых нитей. При

этих условиях матричный элемент принимает вид

MI =
4πe2

κ0

R∫

0

ρ1 dρ1R
∗
2(ρ1)R3(ρ1)

×
∑

η=s ,p

[
a1ηa4η

ρ1∫

0

ρ dρKm(qρ1)Im(qρ)Jm4η
(k4ρ)Jm1η

(k1ρ)

+ a1ηa4η

R∫

ρ1

ρ dρIm(qρ1)Km(qρ)Jm4η
(k4ρ)Jm1η

(k1ρ)

+ b1ηb4η

∞∫

R

ρ dρIm(qρ1)Km(qρ)Jm(qρ1)Km(qρ)

× Jm4η
(κ4ρ)Km1η

(κ1ρ)

]
, (86)

где η соответствует номеру базисной функции и с

учетом спина принимает восемь значений, а a iη —

множители при функциях Бесселя для радиальных ком-

понент волновых функций

R1η(ρ) =

{
a1ηJm1η

(k1ρ), ρ ≤ R,

b1ηKm1η
(κ1ρ), ρ > R,

R4η(ρ) =

{
a4ηJm4η

(k4ρ), ρ ≤ R,

b4ηJm4η
(κ4ρ), ρ > R.

В матричном элементе (86) можно выделить два раз-

личных вклада. Первый из них связан с наличием

разрывов волновых функций и их производных на ге-

терогранице (в точке ρ = R). Процесс, определяемый

этим вкладом, соответствует рассеянию на гетероба-

рьере. Такое рассеяние в случае одиночного барье-

ра приводит к появлению беспорогового канала оже-

рекомбинации [13]. Аналогичная ситуация присутствует

и в квантовых ямах [30,15,16,]. Скорость беспорогового

процесса оже-рекомбинации стремится к нулю в пределе

нити бесконечного радиуса.

Второй вклад в (86) связан с рассеянием на корот-

кодействующем кулоновском потенциале [30]. В случае

CHCC-процесса оже-рекомбинации происходит возбуж-

дение электрона или в непрерывную, или в дискретную

часть спектра, соответствующего ε ≈ Eg . В первом слу-

чае электрон приобретает либо большой квазиимпульс,

перпендикулярный интерфейсу, либо бо́льшую величину

проекции углового момента на ось z . Во втором случае

электрон приобретает большой квазиимпульс, направ-

ленный вдоль оси нити. Последний процесс, очевидно,

является пороговым, так как требует наличия у дырки

такого же квазиимпульса.

В квантовых ямах только переход в дискретный

спектр отвечает пороговому процессу [30], однако для

квантовых нитей такое утверждение несправедливо. При

переходе в непрерывный спектр с увеличением углового

момента снятия порога не происходит. По этой причине

нет смысла рассматривать пороговый процесс отдельно.

Его удобнее считать составной частью квазипорогового

процесса. Таким образом, разделяя беспороговый и ква-

зипороговый механизмы оже-рекомбинации в квантовых

нитях, запишем матричный элемент оже-рекомбинации

в виде

MI = M(1) + M(2). (87)

Здесь M(1) — беспороговый, а M(2) — квазипороговый

матричные элементы. В пределе нити большого радиуса

квазипороговый механизм оже-рекомбинации переходит

в пороговый.

4.3.3. Матричный элемент беспорогового
процесса

Беспороговый оже-процесс связан с рассеянием но-

сителей на гетерогранице. Соответствующий матричный

элемент определяется разрывами волновых функций

и их производных при ρ = R. Подробное вычисление

беспорогового матричного элемента приведено в При-

ложении IV, где получен следующий результат:

M(1) =
8πe2

κ0(q2 + k2
4)

R1s(R)R4s(R)

×
{

qRKm−1(qR)

[
3Vc + Vυ

4Eg

]
+ mKm(qR)

3Vc

4Eg

}

×
R∫

0

(
R∗

2(ρ)R3(ρ)
)
Im(qρ)ρdρ. (88)
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Первое слагаемое в фигурных скобках пропорционально

q и соответствует беспороговому процессу в квантовой

яме [30], второе — пропорционально m и соответствует

каналу беспороговой оже-рекомбинации в квантовых

точках [44]. Из (88) видно, что два вклада в M(1) имеют

различную зависимость от высоты барьеров для элек-

тронов в зоне проводимости и для дырок в валентной

зоне.

4.3.4. Матричный элемент квазипорогового
оже-процесса

Квазипороговый процесс связан с ограничением обла-

сти перекрытия волновых функций объемом квантовой

нити. Это в соответствии с принципом неопределен-

ности Гейзенберга ведет к замене δ-функции в законе

сохранения квазиимпульса функцией, стремящейся к ней

в пределе R → ∞. В Приложении V приводится вы-

числение квазипорогового матричного элемента, причем

окончательное выражение для M(2) имеет вид

M(2) =
4πe2

κ0(q2 + k2
4)

R∫

0

(
R∗

2(ρ)R3(ρ)
)(
R∗

1(ρ)R4(ρ)
)
ρdρ.

(89)
В пределе R → ∞ и при условии, что k1, k2 ≪ k3, k4,

этот матричный элемент становится пропорциональным

δ(k4 − k3), т. е. квазипороговый процесс переходит в

пороговый процесс оже-рекомбинации. Действительно,

квазипороговый матричный элемент пропорционален

интегралу от четырех функций Бесселя:

M(2) ∝
R∫

0

J0(k1ρ)J0(k2ρ)Jm(k3ρ)Jm(k4ρ)ρdρ. (90)

Считая, что k3, k4 ≫ k1, k2, можно разложить этот инте-

грал в ряд по первообразным Jm(k3ρ)Jm(k4ρ). Оставляя
первый член ряда, получим

M(2) ∝ R

k2
4 − k2

3

J0(k1R)J0(k2R)(k3Jm−1(k3R)

× Jm(k4R) − k4Jm(k3R)Jm−1(k4R)). (91)

Для больших R можно заменить функции Бесселя их

асимптотическими приближениями для большого аргу-

мента

Jm(z ) ≈
√

2

πz
cos
(

z − πm

2
+
π

4

)
. (92)

Подставляя это выражение в(91), окончательно получим

M(2) ∝ sin
(
(k4 − k3)R

)

k4 − k3

. (93)

В пределе R → ∞ это выражение, возведенное в квад-

рат, дает δ-функцию, умноженную на радиус квантовой

нити:
sin2
(
(k4 − k3)R

)

(k4 − k3)2
→ πR

2
δ(k4 − k3).

4.4. Коэффициент оже-рекомбинации

Скорость ОР вычисляется аналогично случаю кванто-

вой ямы согласно выражению (44). Вклады в скорость

оже-рекомбинации от квазипорогового и беспорогового

процессов нельзя разделить, так как они интерферируют.

При малых значениях радиуса нити эта интерференция

особенно существенна, так как оба процесса являются

беспороговыми [30]. Для квантовых нитей большого

радиуса интерференцией между M(1) и M(2) можно

пренебречь, так как основные квазипороговые переходы,

в отличие от беспороговых, происходят с участием

тяжелых дырок, имеющих большой продольный момент

импульса или квазиимпульса. С учетом изложенного

выше, что пренебрежение интерференцией дает почти

точный результат для квантовых нитей большого радиу-

са, а для тонких нитей приводит к правильному по по-

рядку величины результату. Полученная таким образом

скорость рекомбинации имеет правильные зависимости

от параметров квантовой нити (от ее радиуса, высоты

барьеров для дырок и электронов) и от температуры.

Введем коэффициент оже-рекомбинации C, связанный со

скоростью G соотношением

G = Cn2p,

где n и p — одномерные концентрации электронов и

дырок. Пренебрегая интерференцией между вкладами от

различных процессов, запишем

C = C(1) + C(2), (94)

где коэффициенты C(1) и C(2) соответствуют беспорого-

вому и квазипороговому оже-процессам с матричными

элементами M(1) и M(2) соответственно. Выражение для

беспорогового коэффициента оже-рекомбинации может

быть получено подстановкой (88) в (44). В результате

имеем

C1 ≈
24e4

κ2∞

~
3γ4

E5
g

F(1so/Eg)

R5

× k2
cJ4

0(kcR)

(J2
0(kcR) + J2

1(kcR) + K2
0(κcR) + K2

1(κcR))2

×
〈([

3Vc + Vv

4Eg

]2
+

m2

q2R2

[
3Vc

4Eg

]2)
k2

hq2

(q2 + k2
4)

3k f (q)

〉
,

(95)
где

F(x) =
(1 + x/3)(1 + x)

(1 + 2x/3)(1 + x/2)

1 + 7x/9 + x2/6

1 + x/4 + x2/6
,

k f (q) =

√
2E2

g

~2γ2
1 + 1so/2Eg

1 + 1so/3Eg

− q2.

Угловые скобки означают усреднение по функции рас-

пределения тяжелых дырок. В случае распределения
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Больцмана, которое обычно имеет место в случае дырок,

это усреднение имеет вид

〈 f (qh, kmn)〉 =
1

Z

∑

n,m

∞∫

0

dqh f (qh, kmn) exp

(
−k2

mn + q2
h

q2
T

)
,

где

Z =
qT

√
π

2

∑

n,m

exp

(
−k2

mn

q2
T

)
,

n — номер уровня дырок, m — проекция момента

импульса, ke, κe — перпендикулярные интерфейсу ква-

зиимпульсы электрона в основном состоянии над и под

барьером, qT — тепловой импульс тяжелых дырок,

qT =

√
2mhT

~2
,

kmn — квазиимпульс, соответствующий уровню раз-

мерного квантования дырок, который для бесконечно

глубокой квантовой ямы для тяжелых дырок имеет

значение

kmn = R/γmn,

где γmn — n-ый корень функции Бесселя Jm. Для

коэффициента квазипорогового оже-процесса мы имеем

C2 ≈
6e4

κ2∞

~
3γ4

E5
g

F(1so/Eg)

R5

× k2
cJ4

0(kcR)

(J2
0(kcR) + J2

1(kcR) + K2
0(κcR) + K2

1(κcR))2

×
〈

k2
h

(q2
h + k2

h)k f

sin2 (k f − kh)R

(k f (q) − kh)2

〉
. (96)

В пределе нити бесконечного радиуса коэффициент

квазипорогового процесса оже-рекомбинации переходит

в выражение для коэффициента оже-рекомбинации в од-

нородном полупроводнике. Считая, что уровни размер-

ного квантования носителей сливаются в непрерывный

спектр, и проводя по ним интегрирование, получаем

C2π
2R4 → 16

√
2π5/2

3

e4~3

κ2∞

F(1so/Eg)

E
5/2
g T

1/2
m

1/2
e m

3/2
e

exp

(
−Eth

T

)
,

(97)
где Eth — пороговая энергия CHCC-процесса в од-

нородном полупроводнике, которая в модели Кейна

примерно равна Eth ≈ (2me/mh)Eg . Заметим, что для

широких ям необходимо учитывать не только процесс

с k f = kh + kc1 + kc2, но и еще три процесса, соот-

ветствующие k f = kh + ke1 − ke2, k f = kh − ke1 + ke2 и

k f = kh − ke1 − ke2. Выражение (97) можно сравнить с

известным результатом [10], полученным для коэффи-

циента оже-рекомбинации в однородном полупроводни-

ке (см. (57)). Небольшое отличие в численном коэффи-

циенте связано со сделанным в работе [10] предположе-
нием, что 1so ≫ Eg .
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Рис. 10. Зависимость коэффициента оже-рекомбинации для

CHCC-процесса от температуры для двух механизмов оже-

рекомбинации: беспорогового (C1π
2R4, штриховая линия) и

квазипорогового (C2π
2R4, пунктир) для тонкой нити с ради-

усом R = 50 �A. Сплошная линия соответствует суммарному

коэффициенту оже-рекомбинации (C1 + C2)π
2R4.

4.5. Обсуждение результатов

Анализ процессов оже-рекомбинации в полупроводни-

ковых структурах с квантовыми нитями показал, что су-

ществуют два различных механизма оже-рекомбинации,

беспороговый и квазипороговый. Беспороговый процесс

имеет два канала, связанных с рассеянием продольной

компоненты квазиимпульса и момента импульса. Первый

канал аналогичен беспороговому оже-процессу в кван-

товых ямах, а второй аналогичен беспороговому каналу

оже-рекомбинации в квантовых точках. Коэффициенты,

соответствующие этим каналам, имеют различную зави-

симость от высоты барьеров для электронов и дырок.

Это обстоятельство, в частности, препятствует по-

давлению оже-рекомбинации в полупроводниковых ге-

тероструктурах второго типа с квантовыми нитями в

отличие от структур с квантовыми ямами [45]. В кванто-

вых ямах пороговый CHCC-процесс оже-рекомбинации

соответствовал переходу возбужденного электрона в

дискретный спектр. Для нитей, как показано выше, суще-

ствует также пороговый процесс с переходом электрона

в непрерывный спектр. По этой причине в нитях нет

смысла разделять квазипороговый и пороговый процес-

сы на два отдельных процесса.

Для анализа коэффициентов оже-рекомбинации взя-

та типичная гетероструктура на основе соединения

InGaAsP с энергией запрещенной зоны Eg = 1 эВ. Как

видно из рис. 10 и 11, коэффициент C1, соответ-

ствующий беспороговому процессу оже-рекомбинации,

является слабой функцией от температуры для тонких

квантовых нитей и убывает с температурой для широких

нитей. Квазипороговый коэффициент оже-рекомбинации

C2, наоборот, возрастает с ростом температуры. Для

тонких нитей C2 также является слабой функцией тем-

пературы (рис. 10). С ростом радиуса нити R зависи-

мость C2 от температуры усиливается и приближается к
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Рис. 11. Зависимость коэффициента оже-рекомбинации для CHCC-процесса для двух механизмов оже-рекомбинации: беспоро-

гового (C1π
2R4, штриховые кривые) и квазипорогового (C2π

2R4, пунктирные кривые) для широких нитей при R = 150�A (a) и

R = 250�A (b). Сплошная линия соответствует суммарному коэффициенту оже-рекомбинации ((C1 + C2)π
2R4).

пороговой (экспоненциальной) зависимости в объемных

полупроводниках (рис. 11). При этом количественное

соотношение между C1 и C2 также меняется: C1 убывает

с ростом R быстрее, чем C2, так что эффективный

трехмерный коэффициент C
(1)
3D = C1(πR2)2 обращается в

нуль при R → ∞, а C
(2)
3D = C2(πR2)2 приближается к объ-

емному коэффициенту оже-рекомбинации C3D (рис. 12).
Для тонких квантовых нитей оже-коэффициенты ква-

зипорогового и беспорогового процессов значительно

превышают трехмерный коэффициент C3D, отнесенный

к квадрату площади цилиндрического сечения нити

(πR2)2. Коэффициент оже-рекомбинации является немо-

нотонной функцией радиуса нити в широком диапазоне

температур (рис. 13).

Для тонких квантовых нитей малость оже-коэффици-

ента связана в первую очередь со слабым перекрытием
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Рис. 12. Зависимость коэффициента оже-рекомбинации для

беспорогового (C1π
2R4, штриховая линия) и квазипорогового

(C2π
2R4, пунктир) процессов от радиуса квантовой нити

при температуре T = 300K. Сплошная линия соответствует

суммарному коэффициенту оже-рекомбинации (C1 + C2)π
2R4,

а горизонтальная штрихпунктирная линия соответствует трех-

мерному коэффициенту CHCC-процесса.
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Рис. 13. Температурная зависимость суммарного коэффициен-

та оже-рекомбинации при различных радиусах квантовой нити.

волновых функций электронов и дырок, находящихся

в связанном состоянии. С увеличением радиуса нити

ослабляется влияние гетеробарьеров на процессы оже-

рекомбинации, при этом проявляется пороговая природа

этих процессов. Таким образом, для нитей большого

радиуса происходит уменьшение коэффициента оже-

рекомбинации до значения, соответствующего трехмер-

ному оже-коэффициенту однородного полупроводника.

Как следует из проведенного анализа, механизмы

оже-рекомбинации в квантовых нитях в целом схожи

с такими же механизмами в квантовых ямах [30],
имеется лишь количественное различие. Для однород-

ных полупроводников 1-ый порядок теории возмущений

по межэлектронному взаимодействию недостаточен для

расчета коэффициента оже-рекомбинации. Это связано с

тем, что при оже-рекомбинации существенное влияние

на пороговый процесс оказывают процессы электрон-

фононной и электрон-электронной релаксации, частично

снимающие порог оже-рекомбинации. Однако 1-ый по-

рядок теории возмущений дает качественно правиль-
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ный результат для полупроводниковых гетероструктур

с квантовыми нитями и квантовыми ямами, так как

влияние гетеробарьеров на процессы оже-рекомбинации

играет более важную роль, чем процессы релаксации,

если характерные размеры гетероструктуры меньше

длины свободного пробега носителей заряда [46].

5. Механизмы оже-рекомбинации
в полупроводниковых
квантовых точках

5.1. Введение

Полупроводниковые квантовые точки все больше и

больше привлекают внимание исследователей в связи

с тем что, во-первых, их физические свойства прин-

ципиально отличаются от свойств однородных (массив-
ных) полупроводников и, во-вторых, возможностью их

использования в различных оптоэлектронных устрой-

ствах — от лазеров до квантовых компьютеров [47–50].
В последнее время полупроводниковые квантовые точки

широко используются в биологии и медицине в каче-

стве меток [51–53] и для диагностики биологических

объектов [54,55]. В связи с тем, что интерес к кван-

товым точкам все больше возрастает, важно понять,

какие физические процессы влияют на их оптические и

электрические свойства.

В работах [56–58] представлены детальные экспе-

риментальные исследования времени жизни носителей

заряда и пороговых токов в лазерах на квантовых

точках. Показано, что при высоких уровнях возбуждения

процессы безызлучательной оже-рекомбинации вносят

существенный вклад в величину порогового тока лазера.

Анализ механизмов оже-рекомбинации в квантовых

точках на основе CdS впервые выполнен в работе [50].
В работе [60] представлен обзор экспериментальных и

теоретических работ, посвященных исследованию оже-

рекомбинации в полупроводниковых кристаллах нано-

метровых размеров. Так, в работе [61] характерное

время оже-рекомбинации в квантовых точках было изу-

чено экспериментально. Показано, что для квантовых

точек малого радиуса скорость оже-рекомбинации суще-

ственно больше скорости излучательной рекомбинации.

Экспериментально измеренное время безызлучательной

рекомбинации составляет величину ∼ 10−100 пс, тогда

как время излучательной рекомбинации ∼ 1 нс. Однако

в теоретических работах, представленных в обзоре [60],
отсутствует детальный анализ зависимости скорости

оже-рекомбинации от температуры и параметров кван-

товых точек: от радиуса квантовой точки и от глубины

квантовых ям для электронов и дырок.

Для полупроводниковых квантовых точек на ос-

нове соединений AIIIBV анализ механизмов оже-

рекомбинации был выполнен в работах [44,62,63]. В этих

работах рассматривается беспороговый процесс oже-

рекомбинации, связанный с рассеянием носителей заря-

да на гетерогранице, который впервые был предсказан в

работе [13]. Качественный анализ зависимости скорости

беспороговой оже-рекомбинации от радиуса квантовых

точек выполнен в работах [58,60,62–64]. Как будет

показано далее, беспороговый канал оже-рекомбинации

существен для квантовых точек малого радиуса. С ро-

стом радиуса квантовых точек скорость беспорогового

процесса оже-рекомбинации убывает очень резко и в

пределе, когда радиус квантовой точки стремится к бес-

конечности, стремится к нулю. Поэтому беспороговый

канал оже-рекомбинации — это не единственный безыз-

лучательный процесс оже-рекомбинации в квантовых

точках.

В работе [62] впервые была предпринята попыт-

ка классифицировать механизмы оже-рекомбинации в

квантовых точках. Показано, что для локализованных

носителей заряда в квантовых точках возможны два

механизма оже-рекомбинации: беспороговый и квазипо-

роговый процессы. Квазипороговый процесс обуслов-

лен пространственным ограничением волновых функций

носителей заряда областью квантовой точки. Данный

механизм оже-рекомбинации аналогичен квазипорогово-

му процессу в квантовых ямах [30,65] и в квантовых

нитях [66]. Беспороговый механизм связан с рассея-

нием электрона (дырки) на гетерогранице, при этом

возбужденному носителю передается большой момент

импульса и большой квазиимпульс аналогично процессу

ОР в квантовых нитях.

В работе [67] показано, что в квантовых точках

при больших уровнях возбуждения возможен еще один

канал оже-рекомбинации, который связан с кулоновским

взаимодействием носителей заряда, локализованных в

квантовой точке, с носителями заряда в барьерной

области.

5.2. Уравнения Кейна и основные соотношения

Базисные функции в случае сферической симметрии

выбираем по аналогии с квантовыми нитями (см. (72)),
но здесь мы не будем учитывать спин частиц [19]:

|s〉 , |p+〉 , |p−〉 , |pz 〉 , (98)

|p+〉 = 1/
√
2 |px + i py〉 ,

|p−〉 = 1/
√
2 |px − i py〉 .

(99)

В (98) |s〉 и |p〉 — это блоховские функции s - и p-типа,

соответствующие собственным значениям углового мо-

мента 0 и 1 оператора L̂2
1. Первые функции s -типа опи-

сывают состояние зоны проводимости, а p-типа — состо-

яние валентной зоны в Ŵ-точке. В дальнейшем, однако,

мы будем использовать разложение по этому базису с

помощью шаровых векторов, являющихся собственными

функциями операторов Ĵ2, Ĵz , L̂
2 и L̂2

1. Полный момент

частиц равен Ĵ = L̂ + L̂1, где L̂ — оператор орбиталь-

ного момента, действующего на огибающие волновые

функции (отвечает за момент электрона в сферической
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квантовой точке), а L̂1 — угловой момент, действующий

на блоховские функции. При этом для удобства мы не

включаем сюда спин электрона, так как в данном разделе

спин-орбитальное взаимодействие не учитывается. Тогда

без учета спина полный момент электрона будет целым

числом. Сохраняющимися величинами, описывающими

поведение частиц в рамках симметрии задачи, будут

квадрат полного момента и его проекция на ось z .

В дальнейшем для обозначения собственных значений

полного момента и его проекции на ось z мы будем

использовать обозначения j и m.

Далее, мы будем рассматривать уравнения Кейна без

учета спин-орбитального взаимодействия. Как показано

в работах [65,66], учет спин-орбитального взаимодей-

ствия при расчете скорости оже-рекомбинации приводит

к умножению скорости на функцию F(1so/Eg). При

любых соотношениях между 1so и Eg функция F(x)
меняется мало, максимальное значение равно F(x) = 1,

а минимальное значение равно F(x) ≈ 0.9, т. е. в об-

щем виде F(x) ≤ 1. При этом пренебрежение спин-

орбитальным взаимодействием дает возможность суще-

ственно упростить уравнения и получить аналитические

выражения для вероятности оже-рекомбинации (речь не

идет об оже-рекомбинации дырок с переходом в SO-

зону).
Волновая функция носителей заряда может быть пред-

ставлена в виде 9 = 9s |s〉 +9 |p〉. Перепишем урав-

нения Кейна для огибающих 9s и 9 в сферическом

приближении согласно (5) без учета спин-орбитального

взаимодействия:






(Eg − E)9s − i~γ∇9 = 0,

− E9− i~γ∇9s +
~
2

2m
(γ1 + 4γ2)∇(∇9) −

− ~
2

2m
(γ1 − 2γ2) (∇× (∇×9)) = 0.

(100)

Фурье-преобразование уравнений системы (100) поз-

воляет получить спектры для электронов и тяжелых

дырок:

k2 =
E(E + Eg)

~2γ2
, электроны,

Eh = −~
2k2

2mh

, тяжелые дырки.

(101)

Для дырок энергия E отсчитывается от вершины валент-

ной зоны, а энергия электронов E — от дна зоны прово-

димости. Здесь k — значение квазиимпульса носителей

и

m−1
h = m−1(γ1 − 2γ2). (102)

В данном случае mh совпадает с массой тяжелой

дырки, а масса легкой дырки равна m−1
l = 2γ2

Eg−E

+ m−1(γ1 + 4γ2).
Выражение для ml совпадает с массой легкой дырки,

так как константа спин-орбитального взаимодействия

равна нулю. В дальнейшем нам понадобятся граничные

условия для волновых функций на гетерогранице. Из

системы уравнений (100) можно получить уравнения

Кейна, которые могут быть проинтегрированы через

интерфейс (см. (23)):





(Eg − E)9s − i~γ∇9 = 0,

− E9− i~γ∇9s +
~
2

2m
∇[6γ2∇9]

+
~
2

2m

∂

∂x k

(γ1 − 2γ2)
∂

∂x k

9 = 0.

(103)

5.3. Волновые функции носителей заряда
в квантовой точке

Волновые функции и спектр носителей заряда могут

быть получены из решения системы уравнений (100).
Состояния электронов и дырок удобно рассматривать

отдельно.

5.3.1. Состояния электронов в квантовой точке

Для электронов, как уже было отмечено выше, урав-

нения Кейна (103) упрощаются, принимая вид

{
− E9s − i~γ∇9 = 0,

− (E + Eg)9− i~γ∇9s = 0.
(104)

Выражая из второго уравнения 9 через 9s и подстав-

ляя результат в первое уравнение, получаем уравнение

для 9s . Запишем его в сферической системе координат.

Переменные разделяются и волновая функция может

быть представлена в виде

9s = R(r)Ylm(θ, φ). (105)

Здесь Yjm(θ, φ) — сферические функции. Для радиаль-

ной части волновой функции R(r) имеет место уравне-

ние

1

r2
∂

∂r

(
r2
∂R

∂r

)
− j( j + 1)

r2
R + k2R = 0, (106)

где k2 дается уравнением (101) для электронов. Ре-

шение уравнения (106) известно и представляет собой

сферические функции Бесселя [R ∝ j j(kr)]. Тогда для

волновых функций электронов внутри квантовых точек

(при r < R) получаем

9s = A j j(kr)Yjm(θ, φ), 9 =
−i~∇9s

(E + Eg)
,

∇9s = Ak

(√
j + 1

2 j + 1
j j+1(kr)Y j+1

lm (θ, φ)

+

√
j

2 j + 1
j j−1(kr)Y j−1

jm (θ, φ)

)
, (107)
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где A — нормировочная константа. Аналогично, волно-

вая функция электронов под барьером при r > R имеет

вид

9s = Bk j(κr)Yjm(θ, φ), 9 =
−i~∇9s

(Ẽ + Ẽg)
,

∇9s = Bκ

(
−
√

j + 1

2 j + 1
k j+1(κr)Y j+1

jm (θ, φ)

+

√
j

2 j + 1
k j−1(κr)Y j−1

jm (θ, φ)

)
. (108)

Здесь B — нормировочная константа,

κ2 = − Ẽ(Ẽ + Eg)

~2γ2
=

(Vc − E)(E + Eg + Vv)

~2γ2
(109)

и k j(x) — модифицированная сферическая функция

Бесселя, связанная с цилиндрической соотношением

k j(x) =
√

π
2x

K j+1/2(x). Граничные условия для огибаю-

щих волновых функций можно получить путем интегри-

рования уравнений Кейна (103) через интерфейс. Ис-

пользуя закон сохранения плотности потока вероятности

(см. (21) и (22)) и приближение γ = const, что явля-

ется хорошим приближением для полупроводниковых

структур AIIIBV, получаем непрерывность следующих

функций:

[9s ]R = 0,
(

1

E + Eg

∂9<
s

∂r

)

R

=

(
1

E + Eg + Vv

∂9>
s

∂r

)

R

. (110)

Здесь значки
”
<“ и

”
>“ означают, что величины бе-

рутся слева и справа от гетерограницы. Из граничных

условий (110) следуют дисперсионные соотношения для

электронов

j j(kR)

[
κZ̃

(
jk j(κR)

κR
− k j+1(κR)

)]

= k j(κR)

[
kZ

(
j j j(kR)

kR
− j j+1(kR)

)]
. (111)

Полагая в (111) j = 0, получаем для дырок и электронов

j0(kR)

j1(kR)
=

kZ

κZ̃

k0(κR)

k1(κR)
, (112)

где Z = 1
E+Eg

, и аналогично Z̃ = 1
E+Eg+Vv

справа от

барьера.

5.3.2. Волновые функции дырок

Волновые функции легких дырок можно не выписы-

вать. Достаточно заметить, что они аналогичны по виду

волновым функциям электронов и отличие проявляется

лишь в эффективной массе. Волновые функции тяжелых

дырок отличаются по виду от волновых функций элек-

тронов. Для их нахождения сначала проводится преоб-

разование Фурье уравнений Кейна (100). Из решения

уравнения Кейна при 9s ≡ 0 получаем две функции

тяжелых дырок (имеется вырождение):

9<
h1 = A1 j j(khr)Y j

jm(θ, φ),

9<
h2 = A2

(√
j

2 j + 1
j j+1(khr)Y j+1

jm (θ, φ)

−
√

j + 1

2 j + 1
j j−1(khr)Y j−1

jm (θ, φ)

)
при r < R,

9>
h1 = B1k j(κhr)Y j

jm(θ, φ),

9>
h2 = B2

(√
j

2 j + 1
k j+1(κhr)Y j+1

jm (θ, φ)

+

√
j + 1

2 j + 1
k j−1(κhr)Y j−1

jm (θ, φ)

)
при r > R,

(113)

где κh =
√

2mh(Vv−E)
~2 , Ai и B i — нормировочные кон-

станты. Видно, что две волновые функции для тяжелых

дырок имеют разную поляризацию. Как будет показано

далее, первая волновая функция не дает вклада в оже-

процесс. Для вывода граничных условий необходимо

проинтегрировать уравнения Кейна для тяжелых дырок

через интерфейс. Это дает два граничных условия:

[9r ]R = 0,

[
d9⊥
dr

]

R

= 0, (114)

где 9⊥ — огибающая p-компонента волновой функции,

перпендикулярная радиус-вектору r. При выводе (114)
считается, что масса тяжелой дырки не меняется при

переходе через барьер и что mh ≫ ml . Тогда можно

пренебречь смешиванием функций для легкой и тяжелой

дырок. Окончательно для тяжелых дырок имеем следу-

ющее дисперсионное соотношение:

j j(khR)
κh

kh

[
j

(
( j + 1)k j+1(κhR)

κhR
− k j+2(κhR)

)

+ ( j + 1)

(
( j − 1)k j−1(κhR)

κhR
− k j(κhR)

)]

= k j(κhR)
kh

κh

[
j

(
( j + 1) j j+1(khR)

khR
− j j+2(khR)

)

− ( j + 1)

(
( j − 1) j j−1(khR)

khR
− j j(khR)

)]
.

(115)
Это выражение в пределе бесконечно широкой или

бесконечно глубокой квантовой точки переходит в сле-

дующее уравнение:

j j(khR) = 0. (116)
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Решениями уравнения (116) являются

(kh) jn =
γ jn

R
, (117)

где γ jn — n-й корень сферической функции Бессе-

ля j j(x).

5.4. Вероятность оже-рекомбинации

Вероятность оже-рекомбинации в единицу времени,

согласно золотому правилу Ферми, в рамках 1-го по-

рядка теории возмущений имеет вид (28), а матричный

элемент кулоновского взаимодействия с учетом анти-

симметризации волновых функций, аналогично случаю

квантовых ям, равен

M f i = MI − MII, (118)

где

MI =

〈
93(r1)94(r2)

∣∣∣∣
e2

κ0|r1 − r2|

∣∣∣∣91(r1)92(r2)

〉
, (119)

MII получается из MI заменой r1 ↔ r2.

Здесь и далее мы будем считать функции с индек-

сами 1 и 2 функциями локализованных электронов,

функцию с индексом 3 — функцией тяжелой дырки,

а функцию с индексом 4 — функцией возбужденного

электрона. Далее для простоты будем считать, что

у локализованных электронов момент импульса равен

нулю, j = 0. В квантовых точках, как и в квантовых ямах

и в квантовых нитях, основной вклад в вероятность оже-

рекомбинации вносят процессы CHCC и CHHS. Далее

мы ограничимся рассмотрением только CHCC-процесса

оже-рекомбинации. Все зависимости для CHHS-процесса

при 1so < Eg имеют качественно такой же вид, как и для

CHCC-процесса.

5.5. Матричный элемент оже-рекомбинации

Волновые функции носителей заряда являются соб-

ственными функциями операторов полного момента Ĵ

и его проекции Ĵz на ось z . В этом случае матрич-

ный элемент оже-рекомбинации удовлетворяет закону

сохранения момента импульса и его проекции на ось z

автоматически. Как было показано выше, для тяжелых

дырок существуют две волновые функции, имеющие

разную поляризацию (113). Первая волновая функция

не дает вклада в матричный элемент оже-процесса. Это

следует из того, что для шаровых векторов имеет место

соотношение [68]

1∑

µ=−1

Y∗
1µ(θ, φ)(Y j

jm(θ, φ))µ = 0. (120)

Так как такая комбинация обязательно войдет в про-

изведение первой функции тяжелой дырки и функции

электрона, то первая функция не даст вклада в процесс

оже-рекомбинации. Рассмотрим теперь произведение

волновой функции тяжелой дырки и волновой функции

электрона, которые войдут в выражение для матричного

элемента (119) оже-процесса,

9∗
3(r1)91(r1) = (−1)m i~γ

E1 + Eg

A1A3k1

×
√

j3( j3 + 1)

4π

(
j j(k3r1)

k3r1

)
j1(k1r1)Yjm(θ1, φ1).

(121)

В интеграл перекрытия между состояниями, локализо-

ванными в квантовой точке, и состоянием непрерывно-

го спектра входит произведение следующих волновых

функций электронов:

9∗
4(r2)92(r2)

<≈A2A4 j0(k2r2) j j4(k4r2)Y
∗
j4m4

(θ2, φ2)
1√
4π

,

9∗
4(r2)92(r2)

>≈B2B4k0(κ2r2) j j4(κ4r2)Y
∗
j4m4

(θ2, φ2)
1√
4π

.

(122)

В (122) мы пренебрегли слагаемым, содержащим ска-

лярное произведение векторных частей волновых функ-

ций, так как отношение его к первому слагаемому про-

порционально k2/k4. Состояние ”
4“ — это возбужденное

состояние электрона, поэтому k4 ≫ k2. (Напомним, что

k4 ≈
√

2mEg

~
, а k2 ≈

√
2mE2

~
, где E2 — энергия перво-

го уровня размерного квантования электрона, поэтому

E2 ≪ Eg). Матричный элемент кулоновского взаимодей-

ствия в случае сферической симметрии удобнее всего

вычислять, используя разложение кулоновского потен-

циала по мультиполям. Вводя обозначение r = |r1 − r2|,
запишем

1

r
=





4π

r2

∞∑

j=0

1

2 j + 1

(
r1

r2

) j

(Yj(�1) · Yj(�2))

=

∞∑

j=0

F>
j (r1, r2)(Yj(�1) · Yj(�2)) при r1 < r2,

4π

r1

∞∑

j=0

1

2 j + 1

(
r2

r1

) j

(Yj(�1) · Yj(�2))

=
∞∑

j=0

F<
j (r1, r2)(Yj(�1) · Yj(�2)) при r2 < r1,

(123)

где

Yj(�1) · Yj(�2) =

j∑

m=− j

Y ∗
jm(�1)Yjm(�2). (124)
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Тогда матричный элемент можно будет представить в

виде

MI = (−1)m3
e2

κ

∫
dV1

∫
dV2(R

∗
3(r1)R1(r1))

× (R∗
4(r2)R2(r2))Yj3m3

(θ1, φ1)Y
∗
j4m4

(θ2, φ2)
1

r
,

(125)
гле R1, R2, R3, R4 — радиальные части волновых

функций частиц. Матричный элемент MII получается из

MI перестановкой индексов у волновых функций R1 и R2.

Функция R1 отвечает локализованному состоянию элек-

трона, а R4 — электрона в возбужденном состоянии. Ре-

комбинирующей паре электрон–тяжелая дырка отвечают
функции R2 и R3. Проинтегрировав выражение (125) по

углам, получим следующее выражение:

MI = (−1)m3

∞∫

0

r21dr1

∞∫

0

r22dr2Fj3(r1, r2)δ j4 j3δm4,−m3
.

(126)
Таким образом, для процесса оже-рекомбинации мы

получили закон сохранения момента импульса и его

проекции на ось z :

m = m4 = −m3, j = j4 = j3. (127)

Выражение (127) было получено в пренебрежении мо-

ментом импульса для локализованных электронов. Мы

считаем, что полный момент импульса у электронов в

начальном состоянии равен нулю. Такое предположе-

ние существенно упрощает аналитические выражения

и незначительно влияет на результат. Вследствие того,

что эффективная масса дырки mh ≫ me , волновая функ-

ция дырки быстро затухает под барьером, и тогда в

матричном элементе можно пренебречь подбарьерной

областью перекрытия волновых функций тяжелой дырки

и электрона.

Нужно отметить, что это вовсе не означает, что задача

решается для тяжелой дырки в приближении бесконеч-

ного потенциального барьера, поскольку ее спектр нахо-

дится из точных граничных условий (114). Как уже было

отмечено выше, будем также предполагать, что электрон

имеет нулевой полный момент. Это оправданно, так как

у электрона сравнительно маленькая масса. При таких

предположениях матричный элемент принимает вид

MI =

R∫

0

r21dr1
(
R∗

3(r1)R1(r1)
)

×
[ r 1∫

0

r22dr28
<F<

j +

R∫

r 1

r22dr28
<F>

j +

∞∫

R

r22dr28
>F>

j

]
.

(128)
В матричном элементе (128) можно выделить два

различных вклада. Первый из них связан с наличием

гетерограницы. Процесс, определяемый этим вкладом в

матричный элемент, соответствует рассеянию возбуж-

денного электрона на гетерогранице. В этом случае

возбужденный электрон приобретает большую величину

нормальной к интерфейсу компоненты квазиимпульса и

момента импульса. Такое рассеяние в случае одиночного

гетеробарьера [13], квантовой ямы [65] и квантовых

нитей [66] приводит к появлению беспорогового канала

оже-рекомбинации. В пределе квантовой точки беско-

нечного радиуса скорость беспорогового процесса оже-

рекомбинации стремится к нулю быстрее, чем 1/R6.

Второй вклад в (128) связан с рассеянием элек-

трона на короткодействующем кулоновском потенци-

але [30,65]. В случае CHCC-процесса оже-рекомбина-

ции происходит возбуждение электрона в непрерывную

часть спектра, соответствующее энергии E4 ≈ Eg и ква-

зиимпульсу k4 ≈
√

2me Eg

~
. В этом случае электрон приоб-

ретает бо́льшую величину проекции углового момента

на ось z . При переходе локализованного электрона в

непрерывный спектр с увеличением углового момента

для процесса оже-рекомбинации не происходит снятия

энергетического порога. Этот механизм оже-рекомбина-

ции переходит в пороговый оже-процесс рекомбинации

при стремлении радиуса квантовой точки к бесконечно-

сти.

Разделяя беспороговый и квазипороговый механизмы

оже-рекомбинации в квантовых точках, запишем матрич-

ный элемент оже-рекомбинации (128) в виде

MI = M(1) + M(2), (129)

где M(1) — беспороговый, а M(2) — квазипороговый

матричные элементы. Они равны

M(1) =

R∫

0

r21dr1
(
R∗

3(r1)R1(r1)
)

×
[ ∞∫

R

r22dr28
>F>

j −
∞∫

R

r22dr28
<F>

j

]
,

M(2) =

R∫

0

r21dr1
(
R∗

3(r1)R1(r1)
)

×
[ r 1∫

0

r22dr28
<F<

j +

∞∫

r 1

r22dr28
<F>

j

]
, (130)

где

8< = A2A4 j0(k2r) j j(k4r),

8> = B2B4k0(κ2r) j j (κ4r). (131)

Отметим, что для квантовых точек и M(1), и M(2), а

следовательно, и MI по сути дела являются беспорого-

выми матричными элементами. Действительно, на них

не распространяются ограничения, накладываемые на

начальные квазиимпульсы и угловые моменты электро-

нов. Однако механизмы, приводящие к несохранению
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квазиимпульса в этих слагаемых, различны. В M(1)

несохранение нормальной к интерфейсу компоненты

квазиимпульса связано с рассеянием электронов на

гетерогранице, а в M(2) причиной нарушения закона

сохранения квазиимпульса является ограничение объема

интегрирования по r областью квантовой точки. Это

приводит к появлению функции вида sin(kR)/k вместо

δ-функции δ(k). Итак, указанные выше различия между

M(1) и M(2) физически означают, что матричный элемент

M(1) соответствует истинному беспороговому процессу,

а матричный элемент M(2) соответствует квазипорогово-

му процессу.

5.5.1. Матричный элемент квазипорогового
оже-процесса

Рассмотрим матричный элемент квазипорогового оже-

процесса M(2). Проинтегрируем M(2) по частям и ограни-

чимся первым членом разложения по параметру k2/k4,

тогда первый интегргал в M(2) равен

r 1∫

0

r22dr2 j0(k2r2) j j(k4r2)
r

j

2

r
j+1
1

≈ j0(k2r1)

r
j+2
1

×
r 1∫

0

j j(k4r2)r
j+1
2 dr2 = j0(k2r1) j j+1(k4r1)

(
r1

k4

)
.

(132)
Аналогично для второго интеграла в M(2) получаем

∞∫

r 1

r22dr2 j0(k2r2) j j (k4r2)
r

j

1

r
j+1
2

≈ r
j

1 j0(k2r1)

×
∞∫

r 1

j j(k4r2)

r
j−1
2

dr2 = j0(k2r1) j j−1(k4r1)

(
r1

k4

)
.

(133)
Сложив эти два вклада, получаем выражение для M(2) в

виде

M(2) =

√
4π

k2
4

e2

κ

R∫

0

r21dr1
(
R∗

3(r1)R1(r1)
)(
R∗

4(r1)R2(r1)
)
.

(134)
Подставляя в (134) явные выражения для радиальных

компонент волновых функций, получаем, что матричный

элемент пропорционален интегралу от четырех функций

Бесселя:

M(2) = (−1)m e2

κ

1

k2
4

i~γ

E1 + Eg

A1A2A3A4

k1

k3

√
j( j + 1)

×
R∫

0

r21dr1( j j(k3r1) j j(k4r1))

(
j1(k1r1)

r1
j0(k2r1)

)
.

(135)

Далее, учитывая, что k3, k4 ≫ k1, k2, можно разложить

подынтегральное выражение в ряд по быстроосцилли-

рующим функциям. Разложение ведется по следующей

первообразной:

F =

R∫

0

r21dr1 j j(k3r1) j j(k4r1)

=
R2

k2
3−k2

4

[
k4 j j−1(k4R) j j(k3R)−k3 j j−1(k3R) j j(k4R)

]
.

(136)
В результате для матричного элемента получаем окон-

чательное выражение

M(2) ≈ (−1)m e2

κ

1

k2
4

i~γ

E1 + Eg

A1A2A3A4

× k1

k3R

√
j( j + 1)F j0(k2R) j1(k1R). (137)

Для больших значений радиуса квантовой точки R

можно заменить функции Бесселя их асимптотическими

приближениями для большого аргумента. Тогда при

больших радиусах квантовых точек R получаем следую-

щее выражение для асимптотики матричного элемента:

M(2) ≈ e2

κ

1

k2
4

~γ

E1 + Eg

1

R5

2kc

k3

√
j( j + 1)

× sin((k4 − k3)R)

k4 − k3

. (138)

Итак, мы получили, что

M(2) ∝ sin∗
(
(k4 − k3)R

)

k4 − k3

. (139)

В пределе R → ∞ это выражение, возведенное в квад-

рат, дает δ-функцию, умноженную на радиус квантовой

точки:

|M(2)|2 ∝ sin2
(
(k4 − k3)R

)

(k4 − k3)2
→ πR

2
δ(k4 − k3). (140)

Из этой формулы видно наличие закона сохранения

квазиимпульса, т. е. порога в этом пределе, и поэто-

му эффективный коэффициент оже-рекомбинации C(2)

после умножения на V 2 переходит в трехмерное вы-

ражение для коэффициента оже-рекомбинации. Здесь

V = 4π
3

R3 — объем квантовой точки.

5.5.2. Матричный элемент беспорогового
оже-процесса

Беспороговый оже-процесс связан с рассеянием но-

сителей на гетерогранице. Это означает, что величина

M(1) определяется значениями волновых функций и

их производных на гетерогранице; следовательно, при
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R → ∞ имеем M(1) → 0. Рассмотрим подробнее беспо-

роговый матричный элемент M(1). Из (130) следует, что

в него входит также и произведение волновых функций

носителей под барьером, которое имеет следующий вид:

8> = B2k0(κ2r2)
(

B
(1)
4 j j(κ4r2) + B

(2)
4 n j(κ4r2)

) 1√
4π

,

(141)
где сферическая функция Неймана n j(x) связана

с цилиндрической функцией N j(x) соотношением

n j(x) =
√

π
2x

N j+1/2(x). Так как при беспороговом про-

цессе κ4 ≫ κ2, интегралы можно разложить в ряд:

∞∫

R

r22dr2k0(κ2r2) j j(κ4r2)
r

j

1

r
j+1
2

≈k0(κ2R)r j

1 j j−1(κ4R)
R1− j

κ4
.

(142)
Сложив оба вклада в выражении (130) для беспорогово-

го матричного элемента, получаем

M(1) =

R∫

0

r21dr1
(
R∗

3(r1)R1(r1)
)
r

j

1

√
4π

2 j + 1
R2s(R)R1− j

×
{

B
(1)
4 j j−1(κ4R) + B

(2)
4 n j−1(κ4R)

κ4
− A4 j j−1(k4R)

k4

}
.

(143)
Из граничных условий для волновых функций и их

производных (110) имеем





A4 j j(k4R) = B
(1)
4 j j(κ4R) + B

(2)
4 n j(κ4R),

k4ZA4

[
j j j(k4R)

k4R
− j j+1(k4R)

]

= κ4Z̃

{
B

(1)
4

[
j j j(κ4R)

κ4R
− j j+1(κ4R)

]

+ B
(2)
4

[
jn j(κ4R)

κ4R
− n j+1(κ4R)

]}
.

(144)

Считая, что Vc,Vv ≪ Eg , разложим выражение (144)
по малым параметрам Vc

Eg
и Vv

Eg
. В этом случае также

учтем, что величина κ4 мало отличается от k4, поэтому

будем раскладывать выражение (144) и по параметру

η = κ4 − k4. Тогда величины η и Z̃ связаны с Vc и Vv
соотношениями

2
η

k4

=
E(Vv −Vc) −VcEg

E(E + Eg)
,

Z̃ ≈ Z(1−VvZ). (145)

Разложение в (144) и в (143) ведется только до 1-го

порядка по η и соответственно по Vc

Eg
и Vv

Eg
. Таким обра-

зом можно получить матричный элемент беспорогового

процесса. Подставляя соотношения (145) для η и Z̃ через

высоты гетеробарьеров в (143), для M(1) получаем

M(1) =

R∫

0

r21dr1
(
R∗

3(r1)R1(r1)
)
r

j

1

√
4π

2 j + 1
R2s(R)R1− j A4

k4

×
{

j + 1

k4R
j j(k4R)

Vv

E4 + Eg

+ j j−1(k4R)
Vc

E4

}
.

(146)
Как и в случае M(2), проводя аналогичную процедуру

интегрирования по быстроосциллирующей функции, по-

лучаем окончательное выражение для матричного эле-

мента беспорогового процесса:

M(1) = (−1)m+1 e2

κ

i~γ

E1 + Eg

A1A2A3A4

k1

k2
3

×
√

j( j + 1)

2 j + 1
j1(k1R) j0(k2R) j j+1(k3R)

R

k2
4

×
[
( j + 1)

Vv

E4 + Eg

j j(k4R) + (k4R)
Vc

E4

j j−1(k4R)

]
.

(147)
Итак, из выражений для M(1) и M(2) следует, что в

обоих матричных элементах для оже-процесса отсут-

ствует закон сохранения квазиимпульса. Однако меха-

низмы, приводящие к снятию запрета на несохране-

ние квазиимпульса, для двух процессов, как уже было

отмечено выше, разные. Следует отметить, что для

сферической ямы конечной глубины существует кри-

тический радиус R∗, при котором связанное состояние

для носителей заряда исчезает. Рассмотрим поведение

матричных элементов для кулоновского взаимодействия

вблизи критического радиуса. При радиусах квантоввх

точек R > R∗ волновая функция носителей заряда ло-

кализована в основном в области под барьером. Это

значит, что нормировочные коэффициенты для волновых

функций электронов A1 и A2 стремятся к нулю. При этом

вовсе не нарушается предположение о том, что можно

пренебречь перекрытием волновой функцией тяжелой

дырки и локализованного электрона. Действительно, для

электронов связанное состояние в квантовых точках

исчезнет гораздо раньше, чем для тяжелых дырок, так

как mh ≫ me . Тогда M(i) ∝ (R − R∗), где i = 1, 2.

5.6. Скорость и коэффициент
оже-рекомбинации

Для нахождения скорости оже-рекомбинации необ-

ходимо просуммировать вероятность оже-перехода в

единицу времени по всем начальным и конечным состо-

яниям носителей заряда (см. (44)):

G =
2π

~

∑

k1,k2,k3,k4

|M f i |2 f 1 f 2(1− f 3)(1 − f 4)

× δ(E3 + E4 − E1 − E2). (148)

Здесь f 1, f 2 — степени заполнения электронного уров-

ня в начальном состоянии, f 3, f 4 — степени заполнения
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в конечном состоянии. В (148) подразумевается также

суммирование и по j , и по m. Для высоковозбужденных

состояний функцию распределения f 4 можно положить

равной нулю. Далее, вместо 1− f 3 можно записать f̃ 3,

где f̃ 3 — степень заполнения дырочного уровня; E1 и

E2 — энергии электронов в начальном состоянии, E3 —

энергия дырки в начальном состоянии, E4 — энергия

электрона в конечном состоянии. Нужно отметить, что

скорость ОР (148) имеет размерность обратного вре-

мени (с−1). Вклады в скорость ОР от беспорогового

и квазипорогового матричных элементов M(1) и M(2)

нельзя разделить, так как между ними имеет место ин-

терференция. При малых значениях радиуса квантовой

точки эта интерференция особенно существенна, так как

оба процесса являются беспороговыми.

Для квантовых точек большого радиуса интерфе-

ренцией между M(1) и M(2) можно пренебречь, так

как основные квазипороговые переходы в отличие от

беспороговых происходят с участием тяжелых дырок с

большим значением момента импульса. С учетом этих

замечаний становится ясным, что для квантовых точек

большого радиуса пренебрежение интерференцией дает

почти точный результат, а для квантовых точек малого

радиуса приводит к результату, правильному по поряд-

ку величины. Полученная таким образом скорость ОР

имеет правильную зависимость от температуры и от

параметров квантовой точки: от ее радиуса и высоты

барьеров для электронов и дырок.

Введем коэффициент ОР, связанный со скоростью

следующим соотношением:

G = Cn2p, (149)

где n и p — число электронов и дырок в квантовой

точке. Пренебрегая интерференцией между вкладами

от различных процессов, представим коэффициент оже-

рекомбинации в виде

C = C(1) + C(2), (150)

где коэффициенты C(1) и C(2) соответствуют беспорого-

вому и квазипороговому оже-процессам с матричными

элементами M(1) и M(2), которые даются выражения-

ми (147) и (137). Выражение для коэффициента оже-

рекомбинации может быть получено при подстановке

матричного элемента M f i в (148). Согласно опре-

делению коэффициента оже-рекомбинации, для кван-

товой точки (149) мы перенормируем функции рас-

пределения f i , где i = 1, 2, 3, на единицу, тогда для

квантовых точек мы получим нуль-мерный коэффици-

ент оже-рекомбинации. Нуль-мерный коэффициент оже-

рекомбинации C, так же, как и G, имеет размерность

с−1.

В дальнейшем мы будем вычислять коэффициент оже-

рекомбинации.

Эффективное число состояний для возбужденных

электронов имеет вид

dŴ4 =
Rdk4

π
. (151)

Согласно дисперсионному уравнению (101), волновой

вектор возбужденного электрона равен

k2
4 =

E4(E4 + Eg)

~2γ2
. (152)

Поскольку энергия возбужденного электрона E4 ≈ Eg ,

из (152) получаем

dk4 ≈
dE4

~γ
. (153)

Подставляя все это в (148), мы можем произвести ин-

тегрирование по k4 с помощью δ-функции. В результате

для коэффициента оже-рекомбинации получаем

C =
2

~

∑

k1,k2,k3

R

~γ
f 1 f 2 f̃ 3|M f i |2. (154)

Выражение для беспорогового коэффициента оже-

рекомбинации может быть получено подстановкой мат-

ричного элемента (147) в (154). В результате получаем

C(1) ≈
∑

k1,k2,k3

2R

~2γ
f 1 f 2 f̃ 3

×
[

e2

κ0

~γ

Eg

4

R3

(
j0(kcR) j1(kcR)

j2
0
(kc R)

k2
0
(κcR)

k1(κcR)k−1(κcR)− j1(kcR) j−1(kcR)

)

× k1

k2
3

√
j( j + 1)

2 j + 1

(
j + 1

k4R

Vv

E4 + Eg

+ j j−1(k4R)
Vc

E4

)]2
,

(155)
где

k4 ≈
√

4meEg

~2
+ 3

(
k2
1 + k2

2 +
me

mh

k2
3

)
. (156)

Выражение для C(1) можно упростить, переписав его в

виде

C(1) ≈ 128

π3

EB

~

(
ER

Eg

)3/2 ∑

k1,k2,k3

f 1 f 2 f̃ 3

k2
1

R2k4
3

j( j + 1)

(2 j + 1)2

×



 j0(kcR) j1(kcR)
j2
0
(kc R)

k2
0
(κc R)

k1(κcR)k−1(κcR) − j1(kcR) j−1(kcR)




2

×
(

j + 1

k4R

Vv

E4 + Eg

+ j j−1(k4R)
Vc

E4

)2

.

(157)

Здесь EB = mee4

2~2κ2
0

— характерная (боровская) энергия

межэлектронного взаимодействия, а ER = ~
2π2

2meR2 — ха-

рактерная энергия размерного квантования в квантовых

точках. При выводе (157) мы учли, что γ =
√

Eg

2me
.

Следует отметить, что при больших радиусах квантовых
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точек, в пределе R → ∞, беспороговый коэффициент

оже-рекомбинации стремится к нулю, как 1/R7. Поэтому

даже после умножения на R6, т. е. на V 2, C(1) остается

убывающей функцией радиуса квантовой точки. Поэтому

беспороговый процесс оже-рекомбинации может быть

преобладающим только для квантовых точек малого

радиуса.

Из (157) отчетливо видно, что беспороговый процесс

оже-рекомбинации связан с рассеянием носителей заря-

да на гетерогранице, так как C(1) пропорционален Vc

и Vv . Для коэффициента квазипорогового оже-процесса

после подстановки матричного элемента (147) в (154)
имеем

C(2) ≈
∑

k1,k2,k3

2R

~2γ
f 1 f 2 f̃ 3

[
e2

κ0

~γ

Eg

2

R5

×
(

j0(kcR) j1(kcR)
j2
0
(kc R)

k2
0
(κc R)

k1(κcR)k−1(κcR) − j1(kcR) j−1(kcR)

)

× k1

k3k
2
4

√
j( j + 1)

sin
(
(k4 − k3)R

)

k4 − k3

]2
. (158)

По аналогии с C(1) можно упростить выражение и для

C(2):

C(2) ≈ 8

π7

EB

~

(
ER

Eg

)7/2 ∑

k1,k2,k3

f 1 f 2 f̃ 3

k2
1

k2
3

×
(

j0(kcR) j1(kcR)
j2
0
(kcR)

k2
0
(κc R)

k1(κcR)k−1(κcR) − j1(kcR) j−1(kcR)

)2

× j( j + 1)
sin2
(
(k4 − k3)R

)

(k4 − k3)2R2
. (159)

Как и следовало ожидать, C(2) отличается от C(1).

Отличие между двумя разными процессами рекомби-

нации выражается разными множителями: в C(1) вхо-

дит отношение (Vc,v/Eg)
2
, что связано с рассеянием

электрона на гетерогранице, а в C(2) входит множитель

sin2kR/(kR)2, что является причиной нарушения закона

сохранения квазиимпульса электрона из-за его локали-

зации в пределах квантовой точки. Следует отметить,

что коэффициент C(2), как и C(1), пропорционален ве-

личине полного момента j . В пределе квантовой точки

бесконечного радиуса выражение для квазипорогового

коэффициента оже-рекомбинации переходит в выраже-

ние для коэффициента оже-рекомбинации в однородном

полупроводнике. Чтобы перейти в (158) к пределу при

R → ∞, следует перейти от суммирования по дискрет-

ным состояниям к интегрированию по непрерывным

состояниям, так как в этом случае уровни размерного

квантования сливаются в непрерывный спектр. Кроме

того, при R → ∞ в (158) можно произвести замену

sin2((k4 − k3)R)

(k4 − k3)2
→ πR

2
δ(k4 − k3). (160)

Из этого выражения явно видно наличие порога в этом

пределе, когда имеет место закон сохранения квазиим-

пульса. В результате для коэффициента квазипорогового

процесса получаем

C(2) =
4
√
π

R6

e4

κ20

~
3

m
1/2
e m

3/2
h E

5/2
g T 1/2

exp

(
−Eth

T

)
, (161)

где Eth — пороговая энергия CHCC-процесса в однород-

ном полупроводнике (в модели Кейна Eth ≈ 2me

mh
Eg [13]).

Выражение (161) можно сравнить с известными резуль-

татом для коэффициента оже-рекомбинации в однород-

ном полупроводнике [10]. Для этого домножим (161)
на квадрат объема квантовой точки V 2. Тогда наше

предельное выражение и выражение из работы [10]
практически совпадают:

V 2C(2) =
64

9
π5/2 e4

κ20

~
3

m
1/2
e m

3/2
h E

5/2
g T 1/2

exp

(
−Eth

T

)
,

(162)

C3D = 6
√
2π5/2 e4

κ20

~
3

m
1/2
e m

3/2
h E

5/2
g T 1/2

exp

(
−Eth

T

)
. (163)

Небольшое отличие в численном коэффициенте связано,

главным образом, с тем, что в работе [10] сделано

предположение, что 1so ≫ Eg , а в нашем случае мы

положили 1so = 0.

5.7. Обсуждение результатов

На рис. 14 представлена зависимость пороговой энер-

гии от радиуса квантовых точек для двух механизмов

оже-рекомбинации C(1) и C(2) в отдельности и для сум-

марного процесса оже-рекомбинации C = C(1) + C(2),

0

100 200
R, Å

E
th

, e
V

150 2500 50

Eth1
Eth2
Eth

–0.04

0.04

0.08

0.12

0.16

0.20

0.24

Рис. 14. Зависимость пороговой энергии для оже-процесса

от радиуса квантовой точки при температуре T = 300K для

структуры InGaAsP/GaAs. Eth1 соответствует беспороговому

процессу, Eth2 соответствует квазипороговому, Eth — сум-

марному процессу. Горизонтальная штриховая линяя отвечает

пороговой энергии для трехмерного оже-процесса E3D
th .
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Рис. 15. Зависимость суммарного оже-коэффициента от радиуса квантовой точки и парциальные вклады при температурах T = 50

и 150K. При этих температурах скорость оже-процесса для однородного полупроводника на несколько порядков меньше, чем

скорость оже-процесса в квантовой точке.

определенной по формуле

E i
th = T 2 d lnC(i)

dT
, i = 1, 2. (164)

Горизонтальная штрихпунктирная линия на рис. 14 со-

ответствует пороговой энергии E3D
th для трехмерного

оже-процесса [10]. Для беспорогового оже-процесса по-

роговая энергия убывает с ростом радиуса квантовой

точки и при определенном значении радиуса становится

отрицательной. Такое поведение связано с тем, что для

достаточно больших радиусов квантовой точки коэф-

фициент оже-рекомбинации C(1) становится убывающей

функцией температуры (см. далее). Пороговая энергия

для квазипорогового процесса положительна и мень-

ше трехмерного значения E3D
th , но c ростом радиуса

квантовой точки пороговая энергия для суммарного

коэффициента оже-рекомбинации стремится к своему

предельному значению E3D
th .

На рис. 15 и 16 приведены зависимости коэффициен-

тов оже-рекомбинации C(1) и C(2) от радиуса квантовых

точек при различных температурах для структуры на

основе InGaAsP/InP (с шириной запрещенной зоны в

области квантовой точки 1 эВ). Во-первых, суммарный
коэффициент оже-рекомбинации является немонотонной

функцией радиуса квантовых точек в широком диапазоне

температур, когда имеется резко выраженный максимум.

Важно отметить, что положение максимума слабо зави-

сит от температуры. Во-вторых, как видно из рисунка,

с ростом температуры возрастает относительная роль

квазипорогового процесса оже-рекомбинации.

Немонотонная зависимость коэффициента оже-

рекомбинации от R имеет следующее объяснение: для

малых значений радиуса квантовых точек малость

оже-коэффициента связана в первую очередь со слабым

перекрытием волновых функций электронов и дырок,

находящихся в связанных состояниях, во-вторых, при

R = R∗ связанное состояние вообще отсутствует и

интеграл перекрытия равен нулю.

10–32

10–31

10–30

10–29

100 300
R, Å

C
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m
/s6

200 400

T = 300 K

C1
C2
C C1 2+

C3D

Рис. 16. Зависимость суммарного оже-коэффициента от ра-

диуса квантовой точки и парциальные вклады при темпе-

ратуре T = 300K. Горизонтальная линяя соответствует оже-

коэффициенту в однородных полупроводниках C3D .

При дальнейшем увеличении радиуса квантовых точек

коэффициент оже-рекомбинации достигает максимума

и затем начинает убывать. С увеличением радиуса

квантовых точек уменьшается влияние гетеробарьеров

на процессы оже-рекомбинации, при этом проявляется

пороговая природа этих процессов. Таким образом, для

квантовых точек большого радиуса происходит умень-

шение коэффициента оже-рекомбинации до значения,

соответствующего трехмерному оже-коэффициенту од-

нородного полупроводника C3D.

На рис. 16 представлена зависимость коэффициентов

оже-рекомбинации беспорогового (C(1)V 2) и квазипоро-

гового (C(2)V 2) процессов от радиуса квантовой точ-

ки при температуре T = 300K. Сплошная кривая на

этом рисунке соответствует суммарному коэффициенту

оже-рекомбинации, горизонтальная линия соответствует

трехмерному коэффициенту CHCC-процесса C3D. Из

анализа следует, что в широком интервале значений
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Рис. 17. Температурная зависимость оже-коэффициентов при различных радиусах для структуры InGaAsP/GaAs: R,�A: а — 50,

b — 100, c — 200, d — 300.

радиуса R оже-рекомбинация в квантовых точках уси-

лена по сравнению с оже-рекомбинацией в однородном

полупроводнике.

На рис. 17 представлена температурная зависимость

суммарного коэффициента оже-рекомбинации и парци-

альные вклады беспорогового и квазипорогового ме-

ханизмов при различных радиусах квантовых точек.

Из анализа выражения для C(1) (155) следует, что

беспороговый процесс имеет слабую неэкспоненциаль-

ную зависимость от температуры. Температуру, при

которой начинается спад для C(1), можно оценить из

равенства энергии размерного квантования дырок темпе-

ратуре, T m ≈ ~
2π2

2mhR2 . Квазипороговый коэффициент оже-

рекомбинации C(2), наоборот, с ростом температуры

возрастает. Для квантовых точек малого радиуса C(2)

также является слабой функцией температуры. С ростом

радиуса квантовых точек зависимость C(2) от темпера-

туры усиливается и приближается к пороговой (экспо-
ненциальной) зависимости в объемных полупроводниках

(рис. 16, 17). При этом количественное соотношение

между C(1) и C(2) также меняется: C(1) убывает с ростом

R быстрее, чем C(2), так что эффективный трехмерный

коэффициент C
(1)
3D = C(1) ·V 2 обращается в нуль при

R → ∞, а C
(2)
3D = C(2) ·V 2 приближается к объемному

коэффициенту оже-рекомбинации C3D (рис. 16). При

малых значениях радиуса квантовой точки коэффици-

енты ОР для беспорогового и квазипороговго процес-

сов, умноженные на квадрат объема квантовой точки

( 4π
3

R3)2, значительно превышают трехмерный коэффи-

циент C3D (см. рис. 16).
Из рис. 17 видно, что для достаточно больших значе-

ний радиуса квантовых точек при низких температурах

преобладает беспороговый оже-процесс (C(1) > C(2)),
а при высоких, наоборот, доминирует квазипороговый

процесс (C(1) < C(2)). Поэтому зависимость суммарного

коэффициента оже-рекомбинации от температуры имеет

характерный вид с максимумом и минимумом. С увели-

чением радиуса квантовой точки минимум суммарного

коэффициента оже-рекомбинации слабо смещается в

сторону высоких температур и в пределе квантовых

точек бесконечного радиуса совсем исчезает. Таким об-

разом, в случае однородного полупроводника коэффици-

ент оже-рекомбинации представляет собой монотонную

функцию температуры.

5.8. Заключение

Отметим, что весь анализ зависимостей коэффици-

ентов оже-рекомбинации C(1)и C(2) от температуры

и параметров квантовых точек качественно применим

в равной мере и к CHCC- и CHHS-процессам. Мы
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проиллюстрировали получение всех зависимостей на

примере CHCC-процесса. Для CHHS-процесса подроб-

ный анализ коэффициентов C(1) и C(2) выполнен в

работе [69]. Отметим, что полное подавление процессов

оже-рекомбинации в квантовых точках возможно при

выполнении условий (Vc,Vv) > Eg и E2 − E1 > Eg (E1 и

E2 — энергии первого и второго уровней размерного

квантования носителей), когда энергии возбужденной

частицы недостаточно для перехода в непрерывный

спектр или на следующий уровень размерного квантова-

ния. Для выполнения этих условий необходимо создание

квантовых точек с глубокими и узкими потенциальными

ямами как для электронов, так и для дырок.

В конце списка литературы мы приводим ссылки [76–
99] на статьи, посвященные оже-рекомбинации в кванто-

вых гетероструктурах, в которых используется подход,

развитый в настоящем обзоре.
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Приложение I
Влияние электрон-электронной
релаксации на оже-рекомбинацию
прямозонных полупроводников

Расчет коэффициентов оже-рекомбинации

Хорошо известно, что внутризонная релаксация но-

сителей заряда играет существенную роль в рекомби-

национных процессах [70,27]. Было, в частности, по-

казано, что релаксация приводит к уширению излу-

чательных спектров полупроводниковых лазеров [70].
В объемных полупроводниках релаксационные процессы

оказывают более фундаментальное влияние на оже-

рекомбинацию. Коэффициент оже-рекомбинации, рас-

считанный в 1-ом порядке теории возмущений по

электрон-электронному взаимодействию. как было от-

мечено выше, представляет собой экспоненциальную

функцию от температуры для СНСС- и CHHS-

процессов [7,10]. В работах [71–73] были изучены оже-

процеесы в однородных полупроводниках AIIIВV, стиму-

лированные фононами и примесями. Как было показано

в работе [70], основной вклад в уширение излучатель-

ных спектров полупроводников дает электрон(дырочно)-
электронный(дырочный) механизм релаксации. Влия-

ние релаксационных процессов на механизм оже-

рекомбинации впервые рассмотрен в работе [5]. Так

как при высоких концентрациях электронов и дырок

оже-процесс доминирует над другими механизмами ре-

комбинации и при возрастании концентрации носите-

лей роль электрон(дырочно)-электронного(дырочного)
рассеяния носителей на носителях возрастает, можно

ожидать, что при расчете скорости оже-рекомбинации

оно будет играть главную роль. Далее будет показало,

что в однородных полупроводниках эффекты релаксации

носителей на носителях изменяют не только величину

коэффициента оже-рекомбинации, но и его зависимость

от температуры и концентрации носителей заряда.

Далее мы исследуем зависимость оже-коэффициентов

от температуры и от концентрации носителей в при-

сутствии и в отсутствие электрон(дырочно)-электрон-
ных(дырочных) релаксационных процессов. Для расчета

коэффициента оже-рекомбинации используется метод

функций Грина. Волновые функции и энергетические

спектры электронов и дырок определяются на основе

kp-метода 8× 8 в его варианте, предложенном в ра-

боте [30] (см. разд. 3). Проводится сравнение меха-

низмов оже-рекомбинации с участием фононов и оже-

рекомбинации с учетом процессов релаксации носителей

заряда для двух каналов оже-рекомбинации СНСС- и

CHHS-процессов.

Для расчета скорости оже-рекомбинации в рабо-

тах [71,72] было разработано общее приближение тем-

пературных функций Грина. Разработанный в этих ра-

ботах формализм основан на использовании линейных

характеристик в приближении среднего поля. Было по-

казано, что релаксационные процессы устраняют порог,

предсказываемый теорией возмущений в 1-ом порядке

по кулоновскому взаимодействию, и повышают скорость

оже-рекомбинации. В работах [71,72] изучались оже-

процессы, сопровождаемые релаксацией на фононах и

примесях. Однако волновые функции и интегралы пе-

рекрытия были определены феноменологически. В ра-

боте [73] была предложена модель, которая позволя-

ет наиболее точно рассчитать фонон-стимулированную

оже-рекомбинацию. Правда, авторы этой работы в четы-

рехзонной модели Кейна не учли более высокие зоны,

и это привело к тому, что спектр и волновые функции

тяжелых дырок оказались неправильными.

В прямозонных полупроводниках AIIIBV эффективная

масса электрона обычно значительно меньше эффек-

тивной массы тяжелой дырки. Это позволяет прене-

бречь процессами рассеяния электронов по сравнению

с процессами рассеяния дырок [70] и использовать

для расчета этих процессов невозмущенные функции

Грина. Следуя [10], мы также пренебрегаем импуль-

сами и энергиями электронов в начальном состоянии.

Благодаря своей относительно большой массе дырки

обычно подчиняются статистике Больцмана, поэтому

все выражения для оже-коэффициента будут вычислены

с использованием больцмановских функций распреде-

ления дырок. Это позволяет получить все конечные

выражения в аналитическом виде, хотя здесь, очевидно,

требуется произвести обобщение на случай статистики

Ферми–Дирака.
Используя приближение, развитое в работах [71,72], и

волновые функции, построенные для модели Кейна 8× 8
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(см. разд. 3), мы получаем выражение для коэффициента

Оже СНСС-процесса:

C ≈ 32
√
2π5e4~2〈Ec〉

9m
3/2
h T 3/2Egǫ2∞

(1 + 21so/3Eg)

(1 + 1so/Eg)

×
∞∫

∞

dE

k2
c(E + Eg)

dkc

dE
exp

(
−E

T

)
D[kc(E + Eg)E].

(5.I,1)
Здесь 〈Ec〉 — средняя энергия электронов, равная
3
2

T , если они описываются распределением Больцмана,

ǫ∞ — высокочастотная диэлектрическая проницаемость,

kc(E) — волновой вектор как функция энергии в зоне

проводимости, D(k, E) — спектральная функция, связан-

ная с мнимой частью собственной энергии для тяжелой

дырки Ŵ(k, E) соотношением

D(k, E) =
1

π

Ŵ(k, E)

(Ŵ(k, E))2 + (E − Eh(k))2
,

где Eh(k) — закон дисперсии тяжелых дырок.

Высокочастотная диэлектрическая постоянная ǫ∞ не

входит в подынтегральное выражение ввиду малости

эффектов экранирования свободных носителей и их

слабого влияния на оже-процесс [74]. В (5.I,1) мы

пренебрегли реальной частью собственной энергии, так

как у полупроводников она обычно мала. Следует заме-

тить, что, хотя формально пределы интегрирования по

энергии здесь считаются бесконечными, в действитель-

ности в запрещенной зоне энергия дырок отрицательна

(E < 0), функция Ŵ сильно затухает и основной вклад в

интеграл дают положительные значения энергии дырок.

Неучет релаксационных процессов позволяет полу-

чить для оже-коэффициента хорошо известные выраже-

ния [10,74]:

C ≈ 8
√
2π5e4~3〈Ec〉

3m
3/2
h m

1/2
e T 3/2E

5/2
g ǫ2∞

exp

(
−Eth

T

)
F

(
−1so

Eg

)
.

(5.I,2)
где F(x) — множитель, приблизительно равный едини-

це,

F(α) =

(
1 + α

1 + 2α/3

)3/2 (
1 + α/3

1 + α/2

)1/2

.

Точно таким же образом можно получить выражение для

оже-процесса CHHS:

C =
16π2e4~5

3ǫ2∞m3
hT 3

〈Ec〉
Eg

3Eg + 21so

Eg + 1so

∞∫

0

∞∫

0

dk1dk2

1∫

−1

d cos(ϑ)

× (1 + λso)
2

1+2λ2so+
1so

3(Eg−Eso)
2λ2so+λso−1

λso

cos2(ϑ)k2
1

(k1 + k2)2

[
1+

1

2

k2

k1

sinϑ

]

×
∞∫

−∞

dED(k1, E)D(k2, Eso − Eg − E) exp

(
Eg − Eso

T

)
,

(5.I,3)

где Eso ≡ Eso(|k1 + k2|) — энергия спин-отщепленной

дырки, ϑ — угол между волновыми векторами k1 и k2 и

λso =
1so

3
(

Eso + 4/31so +
~2k2

so(Eso)
2mh

) .

Присутствие в подынтегральном выражении множи-

теля (1 + λso)
2 означает, что вблизи точки Ŵ (в центре

зоны Бриллюэна), где Eso ≈ 1so и λso ≈ 1, отсутствует

перекрытие волновых функций между тяжелыми и спин-

отщепленными дырками [72]. Заметим, что для процесса

CHHS член, описывающий обменное взаимодействие, не

равен нулю, как и в случае процесса СНСС. За это

взаимодействие здесь отвечает второй член, стоящий в

квадратных скобках подынтегрального выражения урав-

нения (5.I,3). Если спектральную функцию заменить на

δ-функцию, то (5.I,1) переходит в выражение, получен-

ное Гельмонтом и др. [10,71,72].

Влияние взаимодействия между частицами
на процессы оже-рекомбинации

Теперь мы рассмотрим релаксационные процессы бо-

лее подробно. В этом разделе мы будем изучать два

основных механизма рассеяния, характерных для неле-

гированных полупроводников: (i) рассеяние на поляр-

ных оптических фононах и (ii) рассеяние на электрон-

дырочной плазме. Для первого из этих механизмов

рассеяния выражение для мнимой части собственно

энергетической функции, полученное с учетом сложной

зонной структуры (в рамках четырехзониой модели

Кейна), имеет вид

Ŵph(k, E) =
mhe2ωlo

4~ǫk

[
1

exp ~ωlo

7T
− 1

(1+11(k,E))2∫

(1−11(k,E))2

dξ

× 3(11(k, E)2 + 1− ξ)2 + 411(k, E)2

1611(k, E)2ξ
+

exp ~ωlo

T

exp ~ωlo

T
− 1

×
(1+12(k,E))2∫

(1−12(k,E))2

3(12(k, E)2 + 1− ξ)2 + 412(k, E)2

1612(k, E)2ξ
dξ

]
,

(5.I,4)
где ωlo — частота оптических фононов, которая счита-

ется не зависящей от волнового вектора.

11(k, E) =

√
2mh(E − ~ωlo)

~2k2
, если E > ~ωlo, и 0 в осталь-

ных случаях,

12(k, E) =

√
2mh(E + ~ωlo)

~2k2
, если E > −~ωlo, и 0 в осталь-

ных случаях,
1

ǫ
=

1

ǫ∞
− 1

κ0
,

гле κ0 — низкочастотная диэлектрическая постоянная.

Первому и второму членам в (5.I,4) соответствуют

поглощение п излучение фононов соответственно. Что-

бы учесть эффект экранирования, необходимо в обоих
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членах выражения (5.I,4) заменить ξ на ξ/(ξ + λ2TF)
2/k2,

где λTF — экранирующий импульс Томаса-Ферми. Инте-

грирование в (5.I,4) может быть произведено в явном

виде, однако результирующее выражение получается

достаточно громоздким. В работе [73] было получено

выражение, похожее на (5.I,3), но в этой работе были

использованы неправильные выражения для волновых

функций и для энергетического спектра тяжелых дырок.

Рассмотрим более подробно релаксацию, обязанную

своим происхождением рассеянию дырок на равновес-

ной электрон-дырочной плазме. Наиболее существенный

вклад в мнимую часть собственной энергии Ŵ, связанный

с рассеянием носителей на носителях, дается кольцевы-

ми диаграммами [73]

Ŵe(k, E) = − me2

ǫ0πk

×
∞∫

0

dE

qmax∫

qmin

dq

q


 1

exp
(

E−µv
T

)
+ 1

+
1

exp
(
E−E

T

)
− 1




× δǫ′′(q, E − E)

(1 + δǫ′(q, E − E))2 + (δǫ′′(q, E − E))
2

×
[
1− 3

4

(Eh(q) − Eh(qmin))(Eh(qmax) − E)

4Eh(k)E

]
.

(5.I,5)
Здесь δǫ — вклад в диэлектрическую постоянную от

свободных носителей. Два штриха относятся к мнимой

части, а один штрих — к реальной части величины δǫ.

Последний множитель в (5.I,5) обязан своим происхож-

дением сложной зонной структуре тяжелых дырок,

qmin =

∣∣∣∣∣

√
2mhE

~2
− k

∣∣∣∣∣ и qmax =

√
2mhE

~2
+ k.

Диэлектрическая постоянная δǫ рассчитывается в так

называемом приближении случайных фаз [73]. В част-

ности,

δǫ′′(k, E) = −2m2
he2

ǫ20k3

∞∫

(Eh(k)−E)2

4Eh(k)

dEq( f h(Eq) − f h(Eq + E))

×


1− 3Eh(k)

4Eq

Eq − (Eh(k)−E)2

4Eh(k)

Eq + E


 , (5.I,6)

где

f h(E) =
1

exp
(

E−µh

T

)
+ 1

представляет собой функцию распределения тяжелых

дырок. И снова в (5.I,6) появляется множитель, обуслов-
ленный сложной структурой волновых функций тяжелых

дырок. В пределе k → 0 этот множитель стремится к

единице, и тогда интегрирование может быть произве-

дено в явном виде. Выражение для реальной части δǫ

G
, e

V

4

0 15.
0

0.05 0 10.

2

1
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3 G
e

Gph
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G
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Рис. 5.I,1. Мнимая часть собственной энергии при рассеянии

тяжелой дырки на электрон-дырочной плазме (Ŵe) и продоль-

ных оптических фононах (Ŵph) как функция импульса тяжелой

дырки (k) при E = 0. Сплошные линии — для n = 1018 см−3,

штриховые — для n = 1019 см−3, T = 300K.

получается довольно сложным [30]. Однако, как пока-

зывает точный расчет в рамках экранирования Томаса–
Ферми, мы получаем очень разумное приближение.

В рамках такого приближения функция δǫ′′, стоящая в

знаменателе выражения (5.I,5), должна быть положена

равной нулю и

δǫ′ = λ2TF/q2, (5.I,7)

где λTF — обратная длина экранирования Томаса–
Ферми [71], равная

λTF =

√
4
√
2e2

√
T

π~3ǫ0

(
m

3/2
h J(µh/T ) + m

3/2
c J(µe/T )

)
,

(5.I,8)
где

J(x) =

∞∫

0

dy

exp(y2 − x) + 1
.

Подстановка (5.I,6) и (5.I,7) в (5.I,5) дает оконча-

тельное выражение для времени жизни дырок в случае

рассеяния носителей на носителях.

Мнимая часть собственной энергии Ŵe(k, E) сильно

зависит от обоих своих аргументов, имеет резкий мак-

симум при Eh(k) = E , но сильно падает, когда это ра-

венство нарушается. Существуют две основные причины

уменьшения Ŵe при Eh(k) 6= E : (i) при больших переда-

ваемых импульсах кулоновское взаимодействие является

относительно слабым и (ii) в равновесной электрон-

дырочной плазме имеется экспоненциально малое число

носителей с большими импульсами. С другой стороны,

рассеяние на фононах почти не зависит от переда-

ваемого импульса, и поэтому Ŵph представляет собой

гладкую функцию всех своих аргументов. На рис. 5.I,1

приведены соответствующие зависимости Ŵe и Ŵph(k)
при постоянном значении E = 0. При малых значени-

ях k и относительно высоких плотностях носителей
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Рис. 5.I,2. Зависимость коэффициента оже-рекомбинации для CHHS-процесса от температуры: а : n = 1019 см−3, Eg = 0.8 эВ,

b : n = 5 · 1018 см−3, Eg = 1 эВ. Без учета релаксации (1), с учетом электрон-электронной релаксации (2), электронно-фононной
релаксации (3) и всех механизмов релаксации (4).

величина Ŵe больше величины Ŵph, тогда в рамках

экранирования Томаса–Ферми при больши́х k или при

малых концентрациях носителей заряда эти величины

находятся в обратном соотношении. Роль рассеяния

носителей на носителях, очевидно, возрастает с ростом

концентрации носителей заряда и температуры. При

оже-рекомбинации роль больши́х передаваемых импуль-

сов в процессах релаксации является решающей [10,74].
Поэтому роль механизма рассеяния носителей на но-

сителях здесь не так важна, как при излучательной

рекомбинации. Тем не менее при высоких темпера-

турах и плотностях носителей этот релаксационный

процесс продолжает оставаться эффективным (рис. 5.I,2,
5.I,3). Для иллюстрации полученных результатов ис-

пользовались параметры решетки типичного соединения

InGaAsP.

Пороговая энергия оже-рекомбинации для процесса

CHCC значительно выше пороговой энергии процесса

CHHS, поэтому процессы релаксации имеют большое

значение для первого из этих процессов вплоть до очень

высоких температур T (рис. 5.I,1), тогда как для второго
процесса они обычно существенны только при малых

T (рис. 5.I,2). При T , близких к нулю, преобладает

фонон-стимулированная оже-рекомбинация, а при более

высоких T снова становится существенной релаксация

носителей на носителях (рис. 5.I,1). Этот процесс отве-

чает за более сильную зависимость коэффициента оже-

рекомбинации от концентрации носителей (рис. 5.I,2).

В заключение отметим, что благодаря релаксацион-

ным процессам оже-рекомбинация становится беспо-
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Рис. 5.I,3. Зависимость коэффициента оже-рекомбинации для

CHHS-процесса от концентрации носителей заряда для разных

механизмов релаксации. T = 300K, Eg = 0,8 эВ. Остальные

обозначения те же, что и на рис. 5.I,2.

роговой, так как процессы релаксации снимают огра-

ничения, налагаемые законами сохранения энергии и

импульса. В объемном полупроводнике релаксационные

процессы играют такую же роль, как и гетерограницы в

гетероструктурах (см. разд. 2 и 3). В разд. 3 показано,

что в случае CHCC имеет место предельный переход от

2D-процесса к 3D-процессу при a ≫ ac , где a — ширина

квантовой ямы,

ac = λEg

(
T

Eth

)3/2

exp

(
Eth

T

)
, λEg

=
2π

kc(Eg)
.
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Для большинства полупроводников ac превышает длину

свободного пробега электронов и дырок. Это означает,

что релаксационные процессы приобретают большое

значение в тех случаях, когда ширина квантовой ямы

становится сравнимой с длиной свободного пробега, и

их влияние с ростом ширины усиливается. Поэтому для

правильного описания оже-рекомбинации объемных по-

лупроводников учет релаксационных процессов играет

решающую роль. В случае процесса CHCC, если длина

свободного пробега равна λ ≫ ãc , где

ãc = λEg

(
T

Eth

)
exp

(
Eth

T

)
,

релаксационные процессы несущественны, а в осталь-

ных случаях они играют очень большую роль.

Приложение II
Волновые функции носителей
в прямоугольной потенциальной яме

Дырки

Выбирая систему координат так, чтобы продольная

компонента волнового вектора совпадала с осью y ,

и производя преобразование Фурье в этой плоскости,

можно получить следующие выражения для волновых

функций носителей.

Тяжелые дырки:

ψh(q, x) = H1




q cos khx ξ

−ikh sin khx ξ

−kh sin khx ξ + q cos khx η




+ H2




q sin khx η

ikh cos khx η

−q sin khx ξ − kh cos khx η


 .

(5.II,1)
Здесь q, kh — y - и x -компоненты квазиимпульса

тяжелых дырок, ξ = 1√
2

(
1

−1

)
, η = 1√

2

(
1
1

)
, H1 и H2 —

нормировочные константы.

Легкие дырки:

ψl(q, x) = L1




k l sin k lx η − λlq cos k lx ξ

−iq cos k lx η + iλlk l sin k lx ξ

−λlk l sin k lx ξ + λlq cos k lx η




+ L2




−k l cos k lx ξ − λlq sin k lx η

−iλlk l cos k lx η − iq sin k lx ξ

−λlq sin k lx ξ − λlk l cos k lx η


 .

(5.II,2)

ψs l =
i~γ(k2

l + q2)

Eg + δ − E

[
L1 cos k lx η + L2 sin k lx ξ

]
. (5.II,3)

λl =
δ

E + 2δ − ~2k2
l /2mh

,

Волновые функции спин-отщепленных дырок анало-

гичны волновым функциям легких дырок.

Переход к функциям другой симметрии в приве-

денных выше выражениях может быть осуществлен

путем формальной замены ξ ↔ η для |s〉-, |x〉-, |y〉-
компонент и ξ ↔ −η для |z 〉-компонент. В области

барьера можно получить волновые функции аналогично

уравнениям (5.II,1)−(5.II,3).

Если рассматривать одновременно волновые функции

двух и более частиц, то невозможно одновременное об-

ращение в нуль z -компонент их квазиимпульса. Переход

к функции с произвольным направлением квазиимпульса

осуществляется при помощи матрицы вращения

Dϕ = Rϕ ⊗ Sϕ, (5.II,4)

где Rϕ действует на координатные компоненты волновой

функции, а Sϕ — на спинорные компоненты. Углы

Эйлера при вращении в плоскости yz на угол ϕ равны

8 = −π/2, 2 = ϕ, 9 = π/2.

Таким образом,

Rφ =




1 0 0 0

0 1 0 0

0 0 cosϕ sinϕ

0 0 − sinϕ cosϕ


 ,

Sϕ =

[
cosϕ/2 −i sinϕ/2

i sinϕ/2 cosϕ/2

]
. (5.II,5)

Если вектор q имеет компоненты q (0, cosϕ, sinϕ) в

системе координат x , y , z , то волновая функция может

быть записана в виде

ψq ≡ ψϕ = D−ϕψ0. (5.II,6)

Найденная ранее волновая функция помечена нулевым

индексом. Мы здесь приведем волновую функцию тяже-

лых дырок, найденную ранее с использованием (5.II,6),
так как она понадобится далее:

ψh(q, x , φ) = H1




q cos khxe−iφ ξ

−ikh sin khx ξ − q cos khx sinφ η

−kh sin khx ξ + q cos khx cosφ η




+ H2




q sin khxeiφ η

ikh cos khx η + q sin khx sinφ ξ

−kh cos khx η − q sin khx cosφ ξ


 .

(5.II,7)

Граничные условия для дырочных волновых функций

могут быть выведены с помощью интегрирования урав-

нений Кейна через интерфейс (см. разд. 3.1). Мы также
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для простоты будем считать модифицированные пара-

метры Латтинжера γ̃1 и γ̃2 непрерывными. Учитывая, что

m−1
l ≈ 2γ2

Eg+δ−E
≫ m−1

h , мы получаем условия непрерыв-

ности на гетерогранице для следующих величин:

1) ψ,

2)
∂

∂x
ψ⊥,

3)
1

Eg + δ − E
divψ.

(5.II,8)

Вообще говоря, волновые функции дырок в квантовой

яме являются суперпозицией трех ветвей валентной зо-

ны: тяжелых, легких и спин-отщепленных дырок. Однако

последняя из ветвей сильно, экспоненциально, затухает

при удалении от интерфейса с показателем экспоненты,

равным κso ≈
√
4mh1so/3~2. Как следствие, эта ветвь

влияет главным образом на значение производной вол-

новой функции вблизи гетерограницы, а ее влияние на

значение самой волновой функции пренебрежимо мало.

Подчеркнем, что такое приближение не эквивалентно

использованию гамильтониана 4× 4 с самого начала.

Мы будем искать волновую функцию как суперпо-

зицию ветвей для тяжелых и легких дырок. Вблизи

верхнего края валентной зоны |λso| ≈ mh/ml ≫ 1. Это

означает, что могут быть применены только первое и

третье граничные условия (5.II,8). В этом приближении

легкие и тяжелые дырки не смешиваются и имеют

различные спектры.

Спектр тяжелых дырок совпадает с квантово-

механическим спектром частицы в прямоугольной кван-

товой яме. Для состояний с четной и нечетной |x〉-
компонентой волновой функции тяжелых дырок диспер-

сионное уравнение принимает вид

tg kha/2 =
κh

kh

— для четных состояний и

ctg kha/2 = −kh

κh

— для нечетных состояний. (5.II,9)

Для легких дырок состояния с различной четностью

уже не разделяются, и дисперсионное уравнение стано-

вится несколько более громоздким:

[
Eg + δ + Vc − E

Eg + δ − E

k2
l + q2

κ2l − q2
κl cot k la/2 + k l

2λl − 1

2λ̃l − 1

]

×
[

Eg + δ̃ + Vc − E

Eg + δ − E

k2
l + q2

κ2l − q2
κl tan k la/2− k l

2λl − 1

2λ̃l − 1

]

=q2

[
2λl − 1

2λ̃l − 1
+

Eg + δ̃ + Vc − E

Eg + δ − E

k2
l + q2

κ2l − q2

]2
.

(5.II,10)

Здесь κl и κh обозначают модули x -компоненты квази-

импульса легкой и тяжелой дырок в области барьера

соответственно,

λ̃i =
δ̃

Uv + E + 2δ̃ + ~2κ2l /2mh

, δ̃ =
1̃so

3
.

Отметим, что при q = 0 состояния легких дырок так-

же расщепляются на состояния с различной четностью.

Постоянные Hi и Li в (5.II,1), (5.II,2) определяются

условиями нормировки. В частности,

Hi =
1√

q2 + k2
h

1√
a + 1

κh

q2

q2+k2
h

.

Для so-дырок картина противоположная. Компоненты

волновых функций легкой и тяжелой дырок быстро

осциллируют, и вклад от них в интегралы перекры-

тия пренебрежимо мал. Аналогично легко проверить,

что для so-компоненты ψx и divψ/(Eg + δ − E) можно

считать непрерывными. Вид волновых функций для so-

дырок подобен виду волновых функций легких ды-

рок (5.II,2), (5.II,3). Строго говоря, если выполнено

условие Eg − 1so > Uv , спектр спин-орбитально отщеп-

ленных дырок непрерывен. Однако если пренебречь

быстро осциллирующими вкладами подзон легких и

тяжелых дырок, спектр может быть как непрерывным,

так и дискретным. В общем случае около такого квази-

дискретного уровня существует пик плотности состоя-

ний с малым импульсом дырки в направлении, перпен-

дикулярном гетерогранице. Дисперсионное уравнение

для локализованных so-дырок подобно уравнению для

легких дырок.

Электроны

Электроны подчиняются тем же правилам симметрии,

что и дырки. Их волновые функции имеют вид, аналогич-

ный виду волновых функций легких дырок, и могут быть

записаны в виде

ψsc = A1 cos kcx η + A2 sin kcx ξ, (5.II,11)

ψc =
i~γ

Z
A1




kc sin kcx η − λcq cos kcx ξ

−iq cos kcx η + iλckc sin kcx ξ

−λckc sin kcx ξ + λcq cos kcx η




+
i~γ

Z
A2




−kc cos kcx ξ − λcq sin kcx η

−iλckc cos kcx η − iq sin kcx ξ

−λcq sin kcx ξ − λckc cos kcx η


 ,

(5.II,12)
где

Z =
E
2 + E(2Eg + 2δ) + (Eg + 3δ)Eg

E + Eg + 2δ
(5.II,13)

λc =
δ

E + Eg + 2δ
.
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Здесь q и kc обозначают y - и x -компоненты квазиим-

пульса электронов в квантовой яме. Функции с другой

симметрией могут быть выведены путем использова-

ния такой же процедуры, как и в случае дырок. Из

граничного условия следует, что 9s и 9x должны

быть непрерывными. Это приводит к дисперсионному

уравнению:

(
kc tg kca/2− Z

Z̃
κc

)(
kc ctg kca/2 +

Z

Z̃
κc

)

= −q2

(
λc − λ̃c

Z

Z̃

)2

, (5.II,14)

где κc — модуль x -компонента квазиимпульса электрона

в барьерной области,

Z̃ =
E
2 + E(2Eg + 2Uv + 2δ̃) + (Eg + Uv + 3δ̃)(Eg + Uv)

E + Eg + Uv + 2δ̃
,

λ̃c =
δ̃

E + Eg + Uv + 2δ̃
.

Спектр расщепляется на четные и нечетные состоя-

ния, если продольный волновой вектор q мал или если

выражение в скобках в правой части уравнения (5.II,14)
близко к нулю. Последнее условие обычно выполняется,

поскольку, как правило, Uv ≪ Eg , что соответствует по-

лупроводникам с близкой зонной структурой. Отметим,

что в случае, когда кейновский параметр терпит разрыв

γ 6= const, следует использовать непрерывность γψx и

ψs [21].

Приложение III
Кулоновский потенциал в присутствии
гетерограниц

В квантовой яме кулоновский потенциал заряженной

частицы отличается от потенциала в однородном по-

лупроводнике вследствие разных диэлектрических по-

стоянных в областях ямы и барьера [75]. Аналогичная

картина имеет место при наличии двух интерфейсов,

поэтому в КЯ потенциал электрона имеет вид

8(r0, r) =
e

κ0|r− r0|
+ 8̃(r0, r), (5.III,1)

где r0 — координата частицы и r — координата точки,

в которой наблюдается потенциал. Первое слагаемое

в (5.III,1) — это потенциал поля заряда, а второе — его

изображение. Мы рассмотрим лишь случай, когда части-

ца находится внутри КЯ (|x0| < a/2). Используя метод

изображений (см., например, [75]), можно получить

8̃ =
∑

n≥1

e

κ0

(
κ0 − κ̃0

κ0 + κ̃0

)2n−1
(

1√
(x +x0−(2n−1)a)2+ρ2

+
1√

(x + x0 + (2n − 1)a)2 + ρ2

)

+
∑

n≥1

e

κ0

(
κ0 − κ̃0

κ0 + κ̃0

)2n
(

1√
(x − x0 − 2na)2 + ρ2

+
1√

(x − x0 + 2na)2 + ρ2

)
при |x | < a/2,

8̃ =
e

κ0
√

(x−x0)2+ρ2
κ0 − κ̃0

κ0 + κ̃0
+

2e

κ0+κ̃0

∑

n≥1

(
κ0 − κ̃0

κ0 + κ̃0

)2n

× 1√
(x − x0 + 2na)2 + ρ2

+
2e

κ0 + κ̃0

∑

n≥1

(
κ0 − κ̃0

κ0 + κ̃0

)2n−1

× 1√
(x + x0 + (2n − 1)a)2 + ρ2

при x > a/2.

Здесь ρ2 = (y − y0)
2 + (z − z 0)

2, a — ширина КЯ. Эти

потенциалы имеют довольно сложный вид. Однако их

можно упростить, если диэлектрические постоянные κ0
и κ̃0 близки друг к другу. После фурье-преобразования

по поперечным координатам (y и z ) получаем

φ(x , x0, q) ≈ e

2qκ0

×
(

e−q|x−x0|+2
κ0−κ̃0
κ0+κ̃0

ch(q(x+x0))e
−qa

)
при |x | < a/2,

φ(x , x0, q) ≈ e

q(κ0 + κ̃0)

×
(

e−q(x−x0) +
κ0 − κ̃0

κ0 + κ̃0
e−q(x+x0+a)

)
при x > a/2.

Видно, что хотя сам потенциал непрерывен вдоль интер-

фейса, разность между его левой и правой производны-

ми пропорциональна (κ0 − κ̃0)/(κ0 + κ̃0).

Приложение IV
Вычисление беспорогового
матричного элемента

Беспороговый матричный элемент может быть запи-

сан в виде

M(1) =
4πe2

κ∞

R∫

0

ρ1 dρ1Jm(qρ1)R
∗
2(ρ1)R3(ρ1)J

(1),

(5.IV,1)
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где

J(1) =
∑

η=s ,p

[
a1ηa4η

R∫

0

ρ dρKm(qρ)Jm4η
(k4ρ)Jm1η

(k1ρ)

+ b1ηb4η

∞∫

R

ρ dρKm(qρ)Jm4η
(κ4ρ)Km1η

(κ1ρ)

]
,

(5.IV,2)

η соответствует номеру базисной функции и с учетом

спина пробегает восемь значений. Так как при беспоро-

говом процессе k4 ≫ k1, интегралы можно разложить в

ряд по первообразным Km(qρ)Jm4η
(k4ρ). Оставляя только

члены, линейные по Vc/Eg ,Vν/Eg , разложим (5.IV,2) в

ряд по q и m. Предположение (Vc ,Vν) ≪ Eg обычно

справедливо для широкого класса гетероструктур. При

таких предположениях можно записать

J(1) = [F1
4s R1s ]R − [F2

4ρR∗′

1ρ]R + [F3
4s R′′

1s ]R. (5.IV,3)

Здесь нижний индекс нумерует частицу и базисное

состояние (s, p), квадратные скобки обозначают раз-

рыв функции в точке ρ = R. Первообразная от про-

изведения Km(qρ)Jm4η
(k4ρ) порядка n обозначена как

Fn
4. Компонента ρ в используемом базисе (72) имеет

вид Fρ =
√
−2Fp+Fp−. Подставляя в (5.IV,3) волновые

функции конкретного вида (76), получаем (88).

Приложение V
Вычисление квазипорогового
матричного элемента

Квазипороговый матричный элемент оже-рекомби-

нации имеет вид

M(2) =
4πe2

κ∞

R∫

0

ρ1 dρ1R
∗
2(ρ1)R3(ρ1)

∑

η=s ,p

a1ηa4η

×
[ ρ1∫

0

ρ dρKm(qρ1) + Im(qρ)Jm4η
(k4ρ)Jm1η

(k1ρ)

+

∞∫

ρ1

ρ dρIm(qρ1)Km(qρ)Jm4η
(k4ρ)Jm1η

(k1ρ)

]
.

(5.V,1)

При выполнении условия k2
4 + q2 ≫ k2

1 можно считать,

что хотя бы одна из функций Jm(k4ρ), Im(qρ) быстро

меняется по сравнению с J0(k1ρ). Тогда, как легко

показать, первый неисчезающий член разложения по

параметру k1/(k
2
4 + q2)1/2 дает

M(2) =
4πe2

κ∞
a1s a4s

R∫

0

ρ1 dρ1R
∗
2(ρ1)R3(ρ1)

× ρ1

k2
4 + q2

J0(k1ρ1)

[
Km(qρ1)

(
qIm−1(qρ1)Jm(k4ρ1)

− k4Im(qρ1)Jm−1(k4ρ1) −
m

ρ1
Im(qρ1)Jm(k4ρ1)

)

+ Im(qρ1)

(
qKm−1(qρ1)Jm(k4ρ1) + k4Km(qρ1)

× Jm−1(k4ρ1) −
m

ρ1
Km(qρ1)Jm(k4ρ1)

)]
.

(5.V,2)
Используя соотношение

Km(qρ1)Im−1(qρ1) + Km−1(qρ1)Im(qρ1) =
2

qρ1
(5.V,3)

(которое можно легко получить дифференцированием

его левой части), получаем для матричного элемента

выражение(93).
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Abstract The Second part of the Review is devoted to a

macroscopic theory of Auger-recombination mechanisms in semi-

conductor quantum wires and quantum dots. For convenience, the

numbering of chapters, figures and formulas in Parts 1 and 2 is

continuous.
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