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Исследовано динамическое рентгеновское рассеяние в секционной клиновой многослойной структуре

в случае Лауэ. Получены новые рекуррентные соотношения, описывающие дифракцию пространственно

ограниченных рентгеновских пучков в периодической градиентной системе. Вычислены карты распределения

интенсивности рассеяния в обратном пространстве для клиновой многослойной структуры W/Si в случае гео-

метрической оптики и приближения Френеля. Показано, что расчетные qx -сечения карт для геометрической

оптики и приближения Френеля совпадают, при этом qz -сечения существенно различаются.
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В работе [1] показано, что предложенные в [2]
многослойные лауэ-линзы не позволяют фокусировать

синхротронное излучение до размеров пятна в несколько

нанометров. Это находится в противоречии с резуль-

татами исследований других научных коллективов [3,4].
Спорным является также мнение, что лучшие фокусиру-

ющие свойства обеспечивают клиновые лауэ-линзы [5].
Вычисление карт распределения интенсивности рентге-

новского рассеяния в обратном пространстве (reciprocal
space maps, RSM) от многослойных лауэ-линз является

весьма сложной задачей, тем более от линз с клино-

вым распределением периода многослойной системы.

Поэтому первым шагом в решении данной проблемы

является исследование дифракции от секционной клино-

вой многослойной структуры (МС), в которой в каждой

локальной точке по глубине системы (в горизонтальном

направлении по оси x , рис. 1) период линейно изменя-

ется, а в направлении по толщине остается постоянным

(в вертикальном направлении по оси z ).

Для падающей плоской рентгеновской волны на сек-

ционную клиновую МС в геометрии Лауэ численно ис-

следованы кривые дифракционного отражения [6]. Пока-

заны профили коэффициентов отражения и прохождения

в зависимости от градиента изменения периода в глубь

многослойной системы вдоль оси x . Однако плоской,

бесконечно широкой рентгеновской волны в природе

не существует. В реальном эксперименте рентгенов-

ские пучки ограничены щелями, коллиматорами или

фокусирующей оптикой. Кроме того, в рамках модели

плоской рентгеновской волны невозможно выполнить

вычисления карт RSM [7]. Отметим, что лауэ-дифракция

ограниченных рентгеновских пучков в многослойной

системе Mo/Si с постоянным вдоль оси x периодом рас-

смотрена в [8]. С другой стороны, угловое распределение

интенсивности рассеяния ограниченных рентгеновских

пучков в обратном пространстве от клиновых МС в

геометрии Лауэ ранее не исследовалось. Поэтому цель

настоящей работы состоит в разработке вычислительно-

го алгоритма для расчетов карт RSM от многослойных

систем с градиентом изменения периода по глубине

структуры в рамках геометрической оптики (ГО) и

приближения Френеля (ПФ).

При прохождении излучения через щель или какой-

либо другой оптический элемент, ограничивающий

фронт волнового поля, различают три функции пропус-

кания, относящиеся к геометрической оптике, а также к

приближению Френеля и Фраунгофера. В случае ГО не
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Рис. 1. Схема лауэ-дифракции в клиновой МС глубиной Lx .

E in
0,1 — амплитуда падающей рентгеновской волны, E0,1 —

амплитуды прошедшей и дифракционной волны, w1 и w2 —

размеры падающего и дифракционного пучка соответственно,

L1 — расстояние от щели S1 до входной поверхности мно-

гослойной структуры. Щель S2 находится близко к выходной

грани МС. L2 — расстояние от выходной поверхности до

позиционно-чувствительного детектора (PSD).
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учитывается дифракция на краях щели, излучение рас-

пространяется прямолинейно, без изменения направле-

ния. Поэтому такая функция пропускания неприменима

к узким щелям. Наиболее полное описание прохождения

излучения через щель дается в ПФ.

В рамках ГО для щели размером w функция пропуска-

ния (граничное условие для падающего пучка) в прямом

пространстве имеет вид

Y (z , l(in)
z ) =







1, −l
(in)
z /2 ≤ z ≤ l

(in)
z /2,

0, otherwise,
(1)

где l
(in)
z — ширина засветки поверхности периоди-

ческой структуры падающей рентгеновской волной,

которая связана с размером щели соотношением

l
(in)
z = w/ cos θB . Поскольку в случае лауэ-дифракции

на МС угол Брэгга мал (cos θB ≈ 1), можно считать

l
(in)
z ≈ w .

Фурье-образ функции (1) запишется как

Ŷ
(

κ, l(in)
z

)

=

+∞
∫

−∞

dx exp(−iκx)Y
(

z , l(in)
z

)

=
sin(κl

(in)
z /2)

κ/2
.

(2)
В приближении Френеля функция пропускания зави-

сит не только от размера щели, но и расстояния L от

щели до входной поверхности МС

Y (z , l(in)
z , L) =

1√
iλL

l(in)
z /2
∫

−l
(in)
z /2

exp

(

iπ
(z ′ − z )2

λL

)

dz ′. (3)

Фурье-преобразование (3) приводит к выражению вида

Ŷ (κ, l(in)
z , L) = P(κ, L)

sin(κl
(in)
z /2)

κ/2
, (4)

где P(κ, L) = exp
(

−iλ Lκ2

4π(cos θB )2

)

— пропагатор в фурье-

пространстве [9] в ПФ.

Приближение Фраунгофера является частным слу-

чаем приближения Френеля, когда расстояние L от

щели до входной поверхности МС становится очень

большим. Функция пропускания излучения через щель

в приближении Фраунгофера запишется как

Y (z , l(in)
z , L) =

1√
iλL





sin
(

πz l
(in)
z /(λL)

)

πz/(λL)



 . (5)

Фурье-образ этой функции соответствует выраже-

нию (4).
На рис. 1 показана схема лауэ-дифракции рентге-

новского пучка в клиновой МС. У клиновой МС пе-

риод изменяется по глубине структуры вдоль оси x .

К сожалению, уравнения, описывающие лауэ-дифракцию

в системе с постоянным периодом, для клиновых

МС использовать нельзя. В этом случае клиновую

МС необходимо представить в виде секционной си-

стемы, состоящей из элементарных вертикальных по-

лос. Период в отдельной вертикальной полосе в пре-

делах элементарной глубины lp = x p − x p−1 считает-

ся постоянной величиной, при этом p = 1, 2, . . ., P

определяет номер полосы. Если для первой поло-

сы период МС равен d, то для полосы с номе-

ром p с рассогласованием 1dp период запишется как

dp = d − 1dp.

Для описания дифракции в периодической структу-

ре можно воспользоваться уравнениями для медленно

меняющихся рентгеновских амплитуд в периодической

структуре в условиях дифракции [10,11]. В фурье-

пространстве эти уравнения в пределах p-й полосы

имеют вид







∂Ê
p

0
(κ,ηp ;x)

∂x
=i(a0−κtanθB)Ê p

0 (κ, ηp; x)+ia1Ê
p

1 (κ, ηp; x),

∂Ê
p

1
(κ,ηp ;x)

∂x
=i(a0+ηp+κtanθB)Ê p

1(κ, η
p; x)+ia1Ê

p

0(κ, η
p; x).

(6)
Здесь Ê

p

0,1(κ, η; x) — амплитуды проходящей

и дифракционной волны, a0 = πχ0/(λ cos θB),
a1 = Cπχ1/(λ cos θB), λ — длина волны рентгеновского

излучения в вакууме, C — поляризационный фактор.

В системе уравнений (6) присутствует угловой параметр

для p-й полосы ηp = η − hεx
p, где η = 4π sin(θB)ω/λ,

ω = θ − θB — отклонение падающего пучка от

угла Брэгга θB , h = 2π/d, εx
p = 1dptanθB/d . Фурье-

коэффициенты рентгеновской поляризуемости в

направлении прохождения χ0 и дифракции χ1 для МС с

двухслойным периодом запишутся как [1]:

χ0 =
χtdt + χbdb

d
, χ1 =

χt − χb

π
sin

(

π
dt

d

)

.

Здесь χt,b и dt,b — фурье-коэффициенты поля-

ризуемостей и толщины верхнего (t) и нижне-

го (b) слоев периода структуры. Рентгеновские по-

ляризуемости химических элементов χ j = 2(δ j + iβ j),
j = t, b, вычисляются с использованием табличных

значений оптических констант δ j = r0
N jλ

2

2π
(Z j + 1 f ′

j),

β j = −r0
N jλ

2

2π
(1 f ′′

j ), r0 = e2/mc2 — классический радиус

электрона, e, m — заряд и масса электрона, N j —

атомная плотность, Z — число электронов в атоме, 1 f ′

j

и 1 f ′′

j — дисперсионные поправки к атомной амплитуде.

Для пространственно ограниченных пучков уравне-

ния (6) должны быть дополнены граничными усло-

виями. В фурье-пространстве для падающего рент-

геновского пучка граничное условие имеет вид

Ê1
0(κ, η

1; x1) = Ŷ (κ, l
(in)
z , L1). Для дифракционной волны

выполняется второе граничное условие Ê1
1(κ, η

1; x1) = 0.

Используя граничные условия дифракции для каждой

полосы клиновой МС, получаем рекуррентные соотно-
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шения для амплитуд рентгеновских полей

Ê
p+1
0 (κ, ηp; x p+1) =

[

B0
1 exp

(

i ζ̂
p

1 lp

)

− B0
2 exp

(

i ζ̂
p

2 lp

)]

Ŷ (κ, l(in)
z , L1),

Ê
p+1
1 (κ, ηp; x p+1) =

[

B1
1 exp

(

i ζ̂
p

1 lp

)

− B1
2 exp

(

i ζ̂
p

2 lp

)]

Ŷ (κ, l(in)
z , L1), (7)

где

B0
1,2 = φ0

1,2Ê
p

0 (κ, ηp; x p) + a1Ê
p

1 (κ, ηp; x p)/ζ̂
p,

B1
1,2 = φ1

1,2Ê
p

1 (κ, ηp; x p) + a1Ê
p

0 (κ, ηp; x p)ζ̂
p,

φ0
1,2 = (a0 − κ tan θ − ζ̂

p

2,1)/ζ̂
p,

φ1
1,2 = (a0 + ηp + κtanθB − ζ̂

p

2,1)/ζ̂
p,

ζ̂ p =
√

(ηp + 2κtanθB)2 + 4a2
1,

ζ̂
p

1,2 = (2a0 + ηp ± ζ̂ p)/2.

В трехосевой схеме дифракции, которая применяет-

ся для измерения карт RSM, помимо монохромато-

ра и образца имеется анализатор (или позиционно-

чувствительный детектор). Угловое положение анализа-

тора ε определяется как ε = ω̄ + ω, где ω̄ — отклонение

дифрагированного пучка от угла Брэгга θB [12]. В сим-

метричной лауэ-геометрии угловые отстройки ω и ε

связаны с проекциями отклонения вектора дифракции

в горизонтальном qx = k sin θB(2ω − ε) и вертикальном

qz = −k cos θBε направлении. Угловой параметр в обрат-

ном пространстве выражается через эти проекции как

η = qx − qz tanθB . В результате решения для амплитуды

проходящей и дифрагированной волны запишутся в виде

E0(qx , qz ) =
1

2π

+∞
∫

−∞

dκÊ
p

0 (κ, qx−qz tan θB−hεx
px p)

× Ŷ (κ, l(in)
z , L1)Ŷ (κ − qz , l(ex)

z , L2),

E1(qx , qz ) =
1

2π

+∞
∫

−∞

dκÊ
p

1 (κ, qx−qz tan θB−hεx
p, x p)

× Ŷ (κ, l(in)
z , L1)Ŷ (κ − qz , l(ex)

z , L2), (8)

где Ŷ (κ − qz , l
(ex)
z , L2) = P([κ − qz ], L2)

sin([κ−qz ]l
(ex)
z /2)

[κ−qz ]/2
—

граничное условие для рентгеновских полей на выход-

ной грани, L2 — расстояние от близко расположенной

к боковой поверхности МС щели S2 до анализатора

(позиционно-чувствительного детектора PSD, рис. 1).
Моделирование карт распределения интенсивности

рассеяния рентгеновских лучей в обратном простран-

стве выполнено для МС W/Si. Во всех случаях па-

дающая интенсивность синхротронного излучения на

клиновую МС нормировалась на единицу. Засветка

падающим рентгеновским пучком многослойной систе-

мы вдоль оси z равна w1 ≈ Lz = 14µm, секционная

глубина Lx = 7µm. В численных расчетах использова-

лось σ -поляризованное излучение (фактор поляризации

C = 1) с длиной волны λ = 0.062 nm. Период системы

W/Si равен d = dW + dSi = 6 nm, где dW = dSi = 3 nm,

угол Брэгга θB = 5.17mrad. Оптические констан-

ты для МС равны χ0 = (−9.35 + i0.68) · 10−6 и

χ1 = (−4.6 + i0.43) · 10−6 . Период клиновой МС изме-

няется по глубине x с 6 до 5.97 nm, общее рассогласова-

ние периода равно 0.03 nm.

На рис. 2, a показана расчетная карта RSM в ло-

гарифмическом масштабе от клиновой многослойной

структуры W/Si в приближении геометрической оптики.

В вычислениях как в случае ГО, так и в приближении

Френеля размеры падающего и дифрагированного пучка

равны: w1 = w2 = 14.0µm. Для ГО расстояния от эле-

ментов, ограничивающих ширину падающего пучка до

клиновой МС и дифрагированного пучка до детектора,

не влияют на распределение интенсивности рассеяния в

обратном пространстве. Расчетные карты распределения

интенсивности рентгеновского рассеяния в геометрии

Лауэ в приближении Френеля зависят от расстояний, на

которых установлены щели, ограничивающие падающий

и дифрагированный пучок. На рис. 2, b представлена

дифракционная картина, вычисленная в ПФ, расстояние

от входной щели до МС L1 = 2m. Такое же расстояние

L2 = 2m от выходной поверхности до детектора. Рис. 2, c

показывает распределение интенсивности рассеяния в

обратном пространстве для случая L1 = L2 = 0.8m. Со-

гласно данным рис. 2, контуры равной интенсивности

на расчетных картах RSM для геометрической опти-

ки и разных схем в приближении Френеля визуально

различаются.

Сечения расчетных карт RSM демонстрирует рис. 3.

Вычисленные qx -сечения (дифракционные профили

главных пиков в геометрии Лауэ) для ГО и разных

случаев приближения Френеля совпадают (рис. 3, a).
С другой стороны, qz -сечения имеют заметные раз-

личия (рис. 3, b). Следовательно, искажения, возника-

ющие в структуре рентгеновского волнового фронта

при прохождении щелей, ограничивающих поперечные

размеры пучков, влияют на форму qz -сечений карт RSM.

На профилях qz -сечений наблюдается периодическое

распределение дифракционной интенсивности. При этом

период осцилляций для трех рассмотренных случаев

различен. К сожалению, аналитический анализ возник-

новения осцилляций интенсивности рассеяния в общем

случае невозможен из-за сложных уравнений дифракции,

тем более в рамках рекуррентных соотношений. В наи-

более простом случае ГО период осцилляций интенсив-

ности qz -сечений карт RSM обратно пропорционален

размеру окна детектора w2 = l
(ex)
z cos θB . Отметим, что

в приближении Френеля период осцилляций зависит

Письма в ЖТФ, 2026, том 52, вып. 4
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Рис. 2. Расчетные карты RSM в логарифмическом масштабе от клиновой МС W/Si, l
(in)
z = 14.0 µm и l

(ex)
z = 14.2 µm, a —

геометрическая оптика; b — приближение Френеля, расстояние от входной щели и от выходной щели до детектора одинаково,

L1 = L2 = 2m; с — приближение Френеля, L1 = L2 = 0.8m.
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Рис. 3. Расчетные qx -сечения (a) и qz -сечения (b) карт RSM клиновой МС W/Si. 1 — приближение Френеля, L1 = L2 = 0.8m;

2 — приближение Френеля, L1 = L2 = 2m; 3 — геометрическая оптика.

не только от w2, но и от расстояния L2 от выходной

поверхности МС до детектора.

Таким образом, разработанный метод может быть ре-

ализован для рентгенодифракционной лауэ-диагностики

произвольных градиентных МС. Он также применим

для исследований кристаллов с различной деформацией

решетки, например, в результате упругого изгиба или

наличия градиента температуры. Метод также может

быть использован для изучения слоистых структур,

содержащих малоугловые клинья, широко применяемых
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в качестве линейных переменных фильтров в микро-

спектрометрах, датчиках и гиперспектральных системах

визуализации.
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