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Электронно-микроскопический анализ зоны контакта плазменное

покрытие−подложка

© И.В. Баклушина 1, В.Е. Громов 1, Ю.Ф. Иванов 2, И.Ю. Литовченко 3, А.С. Чапайкин 1

1 Сибирский государственный индустриальный университет, Новокузнецк, Россия
2 Институт сильноточной электроники СО РАН, Томск, Россия
3 Институт физики прочности и материаловедения СО РАН, Томск, Россия

E-mail: gromov@physics.sibsiu.ru

Поступило в Редакцию 25 июня 2025 г.

В окончательной редакции 28 октября 2025 г.

Принято к публикации 28 октября 2025 г.

Методами современного физического материаловедения исследованы структурно-фазовые состояния

и элементный состав переходной зоны контакта плазменное покрытие (быстрорежущая молибденовая

сталь)−подложка (среднеуглеродистая сталь). Установлено, что переходный слой толщиной ∼ 100 µm

содержит α-фазу, γ-фазу, карбиды сложного состава M23С6, M6С, а также МоС и цементит.
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Для повышения износостойкости рабочих поверхно-

стей механизмов, машин и конструкций, работающих

в экстремальных условиях эксплуатации, применяется

плазменная наплавка покрытий с использованием со-

временных наплавочных материалов [1–3] и азота как

легирующего и защитного элемента, что обеспечивает

дополнительное значительное повышение эксплуатаци-

онных свойств [4–6]. Использование быстрорежущих

сталей в ресурсо- и энергосберегающей технологии

плазменной наплавки удовлетворяет высоким требова-

ниям машиностроительной, металлургической, горнодо-

бывающей и других отраслей промышленности [7,8].

Последняя четверть прошлого века отмечена широ-

ким использованием быстрорежущих сталей, содержа-

щих от 8 до 10wt.% молибдена [9]. По сравнению с

вольфрамом этот элемент менее дефицитен и дорог, но

обеспечивает лучшие функциональные свойства [10–12].

При создании покрытий актуальным остается во-

прос о состоянии переходной зоны системы покрытие–

подложка, поскольку демпфирующие и адгезионные

свойства этого объема покрытия отвечают за надежную

эксплуатацию деталей машин, механизмов и конструк-

ций с покрытием [13,14]. В зарубежной и отечественной

литературе крайне мало публикаций по этой тематике,

что ограничивает практическое применение покрытий

быстрорежущей молибденовой стали.

В связи с этим целью настоящей работы является

исследование структуры и свойств интерфейса системы

покрытие−подложка, сформированной плазменным ме-

тодом.

Образцы для исследований получали плазменной на-

плавкой в среде азота на сталь 30ХГСА. Режим форми-

рования наплавленного слоя: сварочный ток 145−150А,

напряжение на дуге 50−55V, скорость наплавки 18m/h,

скорость подачи проволоки 60m/h, длина дуги 20mm.

Для формирования наплавленного слоя толщиной

∼ 9mm использовалась порошковая проволока системы

MoCrCoC диаметром 4mm.

Химический состав стали 30ХГСА (wt.%): С — 0.3,

Cr — 0.9, Мn — 0.8, Si — 0.9, остальное — Fe.

Химический состав наплавленного слоя соответствует

стали М9 по SAE-AISI М9 (T11309) Molybdenum High-

Speed Steel (wt.%): С — 1−1.1, Mo — 8.85, Cr — 3.57,

Co — 2.12, V — 0.05, Si — 1.12, Mn — 0.56, Al — 1.05,

остальное — Fe. В качестве плазмообразующего газа

использовали аргон высшего сорта (ГОСТ 10157−79) с

расходом 0.1−0.13 l/s; в качестве защитного и легирую-

щего газа использовали технически чистый азот (ГОСТ
9293−74) с расходом 0.3−0.4 l/s. Режимы плазменной на-

плавки на установке УД-417 не отличались от описанных

в работах [13,14].

Фазовый состав системы покрытие−подложка изучали

методами рентгеноструктурного анализа с использова-

нием дифрактометра ДРОН-8Н.

Идентификация фазового состава, качественный и

количественный фазовый анализ, а также уточнение

параметров структуры выполнены с помощью про-

граммного комплекса
”
КДА — Кристаллография и ди-

фракционный анализ“ со встроенной картотекой по-

рошковых стандартов (АО ИЦ
”
Буревестник“, версия

2023-01-24-144022.8dec10c0f). Структуру и элементный

состав системы покрытие−подложка изучали метода-

ми сканирующей электронной микроскопии (прибор
KYKY-EM6900). Дефектную субструктуру, элементный

и фазовый состав системы покрытие–подложка иссле-

довали методами просвечивающей электронной дифрак-

ционной микроскопии (ПЭМ) тонких фольг в режиме
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Рис. 1. Структура переходного слоя, формирующаяся в ре-

зультате наплавки стали М9 на сталь 30ХГСА. Сканирующая

электронная микроскопия травленого шлифа. Стрелками ука-

заны прослойки эвтектики.

на просвет и в режиме сканирования (прибор JEOL

JEM-2100, Япония) [15–17].
Методами сканирующей электронной микроскопии

травленого шлифа установлено, что формирование плаз-

менно наплавленного покрытия сопровождается созда-

нием переходного слоя толщиной до 100 µm, структу-

ра которого отличается от состояния стали в объеме

наплавки (рис. 1). Методами микрорентгеноспектраль-

ного анализа было установлено, что кроме химических

элементов проволоки, использованной при формирова-

нии поверхностного слоя, в переходном слое системы

покрытие−подложка присутствуют атомы кислорода,

что, по всей видимости, указывает на присутствие

атомов кислорода на поверхности (в поверхностном

слое) подложки. Необходимо отметить снижение отно-

сительного содержания легирующих элементов (Al, Cr,
Co, Mo) и увеличение содержания Si и Mn по мере

приближения к переходному слою со стороны наплавки.

Визуализация распределения элементного состава си-

стемы покрытие−подложка (метод картирования) по-

казала, что атомы молибдена и хрома сосредоточены

преимущественно в поверхностном покрытии, переход-

ный слой обогащен атомами алюминия и кислорода,

формирующими, по всей видимости, оксиды алюми-

ния. Это может быть связано с недостаточно хорошей

подготовкой поверхности подложки после шлифования

корундом. Слой подложки, прилегающий к переходному

слою, обогащен атомами кислорода.

Анализ результатов исследования методами рентге-

нофазового анализа свидетельствует о формировании в

наплавленном слое многофазной структуры, представ-

ленной α-фазой, γ-фазой, карбидами сложного состава

M23C6 и M6C и карбидом железа состава Fe2C (рис. 2).

Как и следовало ожидать, основной фазой является

твердый раствор на основе α-Fe (65wt.%), в существен-

но меньшем количестве присутствуют твердый раствор

на основе γ-Fe (12wt.%), относительное содержание

карбидных фаз достигает 23wt.%, при этом преобладаю-

щими являются карбиды сложного состава M23C6 и M6C.

Следует отметить, что параметры кристаллических ре-

шеток α- и γ-фаз значительно превышают табличные

значения параметров кристаллических решеток α- и

γ-Fe [18]. Это указывает на формирование в наплавлен-

ном слое твердых растворов замещения и внедрения на

основе железа. Основной фазой переходного слоя по

результатам рентгенофазового анализа является, как и

ожидалось, α-фаза, в небольшом количестве присутству-

ют γ-фаза и карбид сложного состава M6C.

Методами сканирующей электронной микроскопии

при анализе зоны контакта покрытие−подложка бы-

ло установлено отсутствие микропор и микротрещин.

Подложка (сталь 30ХГСА) имеет поликристаллическую

структуру, представленную зернами феррита и зерна-

ми перлита пластинчатой морфологии. Размер зерен

изменяется в пределах 5.2−12.3 µm. Следует отметить,

что переходный слой, примыкающий непосредственно к

зоне контакта, имеет пластинчатую структуру, что мо-

жет свидетельствовать о сдвиговом (мартенситном либо

бейнитном) механизме формирования данной области

материала. При большем удалении от зоны контакта в

переходном слое выявляются протяженные прослойки.

В результате изучения элементного и фазового соста-

ва, морфологии фаз и дефектной субструктуры методами

просвечивающей электронной дифракционной микро-

скопии было подтверждено, что структура подложки

сформирована зернами перлита и зернами феррита.
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Рис. 2. Фрагменты рентгенограмм наплавки стали М9 (1)
и интерфейса системы наплавка (М9)/подложка (сталь
30ХГСА) (2).
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Рис. 3. ПЭМ-изображение структуры подложки в зоне контакта с наплавленным металлом. а — зерна феррита микронных

размеров; b — прослойки второй фазы по границам зерен (прослойки указаны стрелками).

Перлит имеет пластинчатую морфологию и сформиро-

ван чередующимися пластинками цементита и α-железа.

В зернах переходного слоя наблюдается пластинчатая

структура, что может свидетельствовать о мартенситной

природе формирования структуры α-фазы. По границам

зерен наблюдаются протяженные прослойки, имеющие

строение, характерное для эвтектического превращения.

В зоне контакта со стороны подложки структура со-

храняет феррито-перлитное состояние, однако наблюда-

ется существенное (до 1.5−2.3µm) снижение размеров

зерен феррита (рис. 3, а). По границам зерен выявляются

протяженные прослойки второй фазы (рис. 3, b, про-

слойки указаны стрелками). Методами просвечивающей

электронной дифракционной микроскопии установлено,

что пластины переходного слоя сформированы сдвиго-

вым механизмом, и по морфологическому признаку они

были идентифицированы как пластинчатый и пакетный

мартенсит. По границам пластин и границам пакетов

располагаются наноразмерные (15−32 nm) частицы кар-

бида железа — цементита. Одновременно с этим вдоль

границ кристаллов мартенсита располагаются протяжен-

ные прослойки остаточного аустенита. Таким образом,

в процессе формирования наплавки в переходном слое

в зоне контакта со стороны подложки формируется

многофазная структура, представленная мартенситом,

остаточным аустенитом и карбидами железа.

Переходный слой, непосредственно примыкающий к

наплавке, содержит протяженные прослойки с включе-

ниями второй фазы (рис. 3, b), представленные α-фазой

и карбидами состава M6С, M23С6 и МоС (рис. 4). Можно

предположить, что данные прослойки сформировались

по эвтектическому механизму при кристаллизации рас-

плавленного металла покрытия.

Таким образом, выполненные исследования позволяют

констатировать, что формирование наплавки сопровож-

дается созданием переходного слоя толщиной до 100 µm,

имеющего многофазное строение на основе α-фазы и

содержащего остаточный аустенит, частицы цементита

и карбиды состава M6C, M23C6 и МоС.

Установлено, что плазменно наплавленное покрытие

быстрорежущей молибденовой стали имеет поликри-

сталлическую структуру и сформировано зернами на

основе α-фазы и зернами эвтектики. Формирование

покрытия сопровождается созданием переходного слоя

толщиной до 100 µm. Показано, что основной фазой

переходного слоя, непосредственно примыкающего к

наплавке, является α-фаза, в небольшом количестве

присутствует γ-фаза, карбиды сложного состава M6C

и M23C6, а также МоС и цементит. Обнаружено, что

переходный слой в зоне контакта со стороны подложки

имеет закалочную структуру, представленную пласти-

нами и пакетами мартенсита, прослойками остаточно-

го аустенита и наноразмерными частицами цементита.

Установлено, что зона контакта покрытия и подложки

не содержит микротрещин и микропор.

Впервые установленные структурно-фазовое состоя-

ние и элементный состав интерфейса системы плазмен-

ное покрытие (быстрорежущая молибденовая сталь)–
подложка (среднеуглеродистая сталь) свидетельствуют о
высоком уровне работоспособности системы и перспек-

тивах ее практического применения.
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Рис. 4. ПЭМ-изображение структуры интерфейса системы покрытие−подложка. а — светлое поле; b — микроэлектронограмма;

c, d — темнопольные изображения, полученные в рефлексах (024) M23С6 + (103) η-МоС (c) и (115) M23С6 (d).
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