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Оптические волноводы являются фундаментальным элементом для нанотехнологических приложений

благодаря их способности эффективно передавать световой сигнал в наноразмерных масштабах. Продемон-

стрированы плазмон-поляритонные волноводы, основанные на гиперболическом в ближнем инфракрасном

и видимом свете ван-дер-ваальсовом материале MoOCl2. В интервале 530−960 nm наблюдается величина

показателя качества волноводных мод FOM (figure of merit) около 40. Кроме того, наблюдается высочайшая

степень локализации волноводных мод, вплоть до q = 15. В дополнение рассчитана зависимость характери-

стик волноводов от угла между основной осью волновода и осью, вдоль которой может распространяться

возбуждение в кристаллическом слое.
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В последние годы поляритоны, представляющие собой

гибридные состояния света и вещества, возникающие

при связывании фотонов с квантовыми возбуждениями

кристаллов (например, оптическими фононами или плаз-

монами), стали главным инструментом для управления

светом на субволновых масштабах. Поляритонные моды

лежат в основе таких приложений, как плазмонный фо-

токатализ [1,2] и сенсоры [3], спектроскопия гигантского
комбинационного рассеяния [4], управление волновым

фронтом [5–7] и нелинейная оптика [8,9].

Чем выше эффективный показатель преломления по-

ляритонной моды, тем сильнее, т. е. на меньшем про-

странственном масштабе, в ней локализовано поле.

В диэлектриках, включая анизотропные, эффективный

показатель преломления распространяющейся волны

фундаментально ограничен наибольшей из компонент

тензора показателя преломления. Напротив, если в ани-

зотропном кристалле одно или два главных значения

диэлектрической проницаемости отрицательны, а другие

положительны, то он может поддерживать волны со

сколь угодно высоким эффективным показателем пре-

ломления. Такой материал называют гиперболическим,

поскольку изочастотные поверхности в пространстве

волновых векторов образуют гиперболоид, а поддержи-

ваемые им электромагнитные волны — гиперболиче-

скими поляритонами. За счет высокого эффективного

показателя преломления гиперболические поляритоны

позволяют локализовать свет в экстремально субволно-

вых масштабах [10,11]. Из гиперболических материалов,

особенно натуральных [12], удобно изготавливать такие

фотонные элементы, как резонаторы [13], фотонные

кристаллы [14] и волноводы [15].

Анализ геометрической и химической структуры кри-

сталлов [16] дает возможность открывать все новые

материалы для фотонных применений. Ван-дер-ваальсов

гиперболический материал MoOCl2 [17–19] уникален

тем, что является гиперболическим в широкой спек-

тральной полосе от видимого до ближнего инфракрас-

ного диапазона, а не в узких интервалах среднего

инфракрасного диапазона, как практически все ранее

известные аналоги.

В настоящей работе проведено численное исследова-

ние гиперболических волноводов на основе тонких пле-

нок кристалла MoOCl2. Были изучены степень локали-

зации мод и дальность их распространения с подбором

оптимальных параметров волноводов для достижения

максимальной дальности распространения. В отличие

от диэлектрических волноводов аналогичного размера,

поддерживающих одну или две волноводные моды, ги-

перболический волновод поддерживает формально бес-

конечное их количество, причем длина распространения

мод уменьшается по мере увеличения порядка моды [20].
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Рис. 1. Плазмон-поляритонные волноводы в MoOCl2. a — схема волновода, на которой отображается возможность ориентировать

волновод под произвольным углом к оптическим осям кристалла, и схема кристаллической решетки (голубым обозначены ядра

молибдена, красным — кислорода, желтым — хлора) с элементарной ячейкой (a, b) материала MoOCl2. b — зависимость

диэлектрических функций в плоскости от длины волны падающего света, голубым цветом отмечена область гиперболического

поведения материала. Цветной вариант рисунка представлен в электронной версии статьи.

Дана классификация волноводных мод и показана их

эволюция при изменении угла распространения вол-

ны в анизотропной пленке. В заключение проведе-

но сравнение полученных результатов со свойствами

металлических плазмонных волноводов. В настоящей

работе продемонстрированы волноводы, поддерживаю-

щие сверхлокализованные моды с малыми потерями на

распространение, что открывает новые возможности для

приложений в высокочастотной двумерной оптоэлектро-

нике.

На рис. 1 можно видеть, что волновод был смодели-

рован таким образом, чтобы компонента диэлектриче-

ского тензора [100] была соосна главной оси волновода

(рис. 1, a), поскольку в диапазоне длин волн 530−960 nm

мы наблюдаем гиперболический закон распространения

волн, при котором волна идет либо вдоль направления

[100], либо под некоторым острым углом к нему. Это

явление обусловлено тем, что Reε100 < 0 и Reε001 > 0

в данном частотном диапазоне (рис. 1, b), что в свою

очередь обусловлено химическим составом и геометри-

ческими свойствами кристаллической решетки. В нашем

случае ширина волновода составляет 100 nm, а высо-

та — 50 nm.

В ходе исследования мод, возникающих в волноводе,

была сделана классификация по количеству осцилляций

y -компоненты электрического поля вдоль вертикально-

го и вдоль горизонтального направлений в сечении

волновода (рис. 2, а). При построении дисперсии q(λ)

(волновое число q = |k|
k0
, k0 = 2π

λ
, k — волновой вектор)

было замечено, что начиная с моды M10 появляется

новое семейство дисперсионных кривых M1i (рис. 2, b),
которые пересекают дисперсионные кривые из нулевого

семейства M0i . Изучив подробнее точки пересечения, мы

выявили, что при совпадающей действительной части

волнового числа Req у них отличается мнимая часть

Imq, что объясняется увеличением потерь при увели-

чении количества осцилляций i вдоль горизонтального

направления в поперечном сечении волновода. Здесь

встает вопрос о добротности разных мод.

Для того чтобы оценить характеристики качества раз-

личных мод, посчитаем длину пробега моды в волноводе

(рис. 3, b)

Ldecay =
1

Imk
. (1)

Помимо этого для каждой моды вычислим отношение

действительной и мнимой частей модуля волнового

вектора FOM (figure of merit) (рис. 3, а), которое пропор-
ционально отношению длины пробега Ldecay поляритона

к его длине волны λpol :

FOM =
Rek

Imk
= 2π

Ldecay

λpol

. (2)

На основе представленных на рис. 3 зависимостей

можно сделать неожиданный вывод, что добротность бо-
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Рис. 2. Классификация волноводных мод. a — распределение действительной части вертикальной компоненты электрического

поля Ey для мод M i j (i — строка, j — столбец) волновода сечением 100× 50 nm на длине волны 570 nm (цветной вариант рисунка

представлен в электронной версии статьи). b — дисперсия волноводных мод в волноводе сечением 100× 50 nm.
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Рис. 3. Качественные характеристики волноводных мод. a — FOM волноводных мод в волноводе сечением 100× 50 nm,

ориентированном вдоль оси [100]. b — зависимость длины затухания от длины волны для разных мод.
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Рис. 4. Сравнительная характеристика мод M04 (1, 2) и M10 (3, 4) для волноводов, ориентированных вдоль оси [100] и под

углом 5◦ к ней, а также симметричной моды в металле (5, 6). a — дисперсии мод M04 и M10 для угла 0◦, а также металлической

моды (сплошные линии, шкала слева), FOM мод M04 и M10 для угла 0◦, а также металлической моды (штриховые линии, шкала

справа). b — дисперсии мод M04 и M10 для угла 5◦ (сплошные линии, шкала слева), FOM мод M04 и M10 для угла 5◦ (штриховые
линии, шкала справа).

лее локализованной первой моды M10 выше, чем у фун-

даментальной M00, которая при этом распространяется

дальше. Таким образом, применение материала MoOCl2
решает задачу информационных приложений фотоники:

уместить как можно большее количество информации на

минимальном пространстве с минимальными потерями

при распространении сигнала.

Анизотропия материала в плоскости дает дополни-

тельную степень свободы исследуемому объекту, что

позволяет сделать вывод о характере влияния угла

между основной осью волновода и направлением рас-

пространения волн в кристалле, отвечающим самому

короткому из возможных волновых векторов — вдоль

кристаллической оси [100], на степень локализации мод

в волноводе. Взяв для сравнения моды M04 и M10

(см. вставку на рис. 4, a), можно увидеть, что с увеличе-

нием угла уменьшается степень локализации для обеих

мод (рис. 4, a, b, левая шкала, сплошные линии) в проти-

воположность тому, что наблюдается в пленке. Кроме

того, падает и добротность мод (рис. 4, a, b, правая

шкала, штриховые линии). Наблюдаемая зависимость

будет иметь место и при дальнейшем увеличении угла

вследствие монотонности функции, задающей волновое

число, по углу распространения волны. Данное наблю-

дение позволяет сделать вывод, что имеет практический

смысл изготавливать волноводы соосно с [100] в данном

гиперболическом кристалле.

В заключение отметим, что в настоящем исследо-

вании наблюдается высочайшая степень локализации

волноводных мод, вплоть до q = 15, что заметно больше,

чем в металлических волноводах аналогичного размера.

Для сравнения в прямоугольном золотом волноводе

сечением 100× 50 nm величина локализации составляет

всего q = 4. При этом добротность моды M10 превышает

добротность моды в золотом волноводе (рис. 4, a, ли-
нии 5 и 6).
Таким образом, представлена модовая структура вол-

новода на основе гиперболического материала, каче-

ственно отличающаяся от обычного диэлектрического

волновода наличием все более высоких степеней ло-

кализации с увеличением порядка моды. Кроме того,

было выявлено, что высшие моды не только более

локализованы, но и обладают большей добротностью по

сравнению с низшими, что не может не вдохновлять

исследователей на применение материала MoOCl2 для

изготовления оптических волноводов самого высокого

класса.
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[12] W. Ma, P. Alonso-González, S. Li, A.Y Nikitin, J. Yuan,

J. Martı́n-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li,
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