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Разработана модель фотохимических процессов в молекулярных димерах (бихромофорах), принимающая
во внимание электронные взаимодействия между компонентами димера, ведущие к внутримолекулярному

переносу энергии и заряда. Исследована энергетика низших возбужденных состояний димера, рассчитаны ди-

польные моменты оптических переходов. Исследовано влияние матричных элементов электронного переноса

и параметров взаимодействия со средой на спектральный профиль поглощения бихромофора. Показано, что

разработанная модель описывает некоторые особенности поглощения производных перилендиимида (tpPDI)
в полярных растворителях.

Ключевые слова: бихромофорные соединения, спектр поглощения, экситонные и цвиттерионные состоя-

ния, дипольный момент оптического перехода.

DOI: 10.61011/OS.2025.11.62154.7999-25

Явления фотоиндуцированного внутримолекулярного

переноса энергии и электрона лежат в основе механиз-

мов преобразования солнечной энергии как в природных

фотосистемах, так и в синтетических фотовольтаических

устройствах [1–3]. Одним из перспективных материалов

для таких устройств являются органические бихро-

мофоры — молекулярные соединения, включающие в

себя два светопоглощающих центра и демонстрирующие

высокую эффективность фотохимического разделения

зарядов [4,5]. Природным аналогом этих соединений

является димер бактериохлорофилла, входящий в состав

реакционных центров растений и бактерий и выступаю-

щий в качестве первичного донора электрона в цепочке

фотоиндуцированных реакций [2,3].

Экспериментальные исследования фотопроцессов в

бихромофорах традиционно проводятся с использовани-

ем методов оптической спектроскопии с фемто- и пико-

секундным временным разрешением [1,4–7]. Эти методы

позволяют регистрировать сверхбыструю химическую

динамику системы, однако детальный анализ спектро-

скопических данных зачастую возможен только в рам-

ках определенных математических моделей [8]. Данное
исследование посвящено разработке теоретических под-

ходов к описанию спектральных профилей поглощения

бихромофора в полярном растворителе и интерпретации

результатов соответствующих экспериментов. Применя-

емый подход основан на использовании функционала

свободной энергии для системы
”
бихромофор+ внешняя

среда“ в приближении линейного отклика [9].

В работе анализируются механизмы формирования

спектрального профиля поглощения димера, в част-

ности, роль цвиттерионных состояний молекулы. Ис-

следуется влияние межхромофорных взаимодействий и

молекулярной структуры агрегата на сдвиг спектра,

интенсивность отдельных полос и их ширину. В отсут-

ствие механизмов внутримолекулярного переноса заряда

разработанная модель воспроизводит результаты класси-

ческой теории Каша, в которой спектральный профиль

димера состоит из двух узких полос, соответствующих

оптическим переходам в нижнее и верхнее экситонные

(френкелевские) состояния.

Основные результаты и обсуждение

Фотопроцессы в димерах характеризуются участием

не только локально возбужденных, но и цвиттерионных

состояний (рис. 1). В одноэлектронном приближении

энергии этих состояний совпадают, хотя в реальных

системах расщепление может составлять величину по-

рядка 0.1 eV. Мультиплетная структура низших возбуж-

денных состояний порождает их сложную фотодинами-

ку. В настоящей работе для описания фотопроцессов в

димерах используем диабатический базис с фиксирован-

ными электронными конфигурациями хромофоров Ch1 и

Ch2:

|ϕ1〉 ≡ |Ch∗1Ch2〉, |ϕ2〉 ≡ |Ch1Ch
∗
2〉,

|ϕ3〉 ≡ |Ch−1 Ch
+
2 〉, |ϕ4〉 ≡ |Ch+

1 Ch
−
2 〉, (1)

Возбужденное состояние молекулы в базисе |ϕk〉 пред-
ставимо вектором |91〉 = (a1, a2, a3, a4)

T с комплексно-

значными коэффициентами ak , а гамильтониан изолиро-
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Рис. 1. Схема одноэлектронных состояний и квантовых

переходов в димерах. Горизонтальными линиями отмечены

энергетические уровни высших занятых молекулярных орби-

талей (ВЗМО, HOMO) и низших вакантных молекулярных

орбиталей (НВМО, LUMO) не взаимодействующих хромо-

форов. Vext , Vet, Vht и Vceht — матричные элементы переноса

энергии и заряда, соответствующие им электронные переходы

обозначены стрелками.

ванного (не взаимодействующего с окружением) димера
может быть записан в следующем общем виде [9,10]:

Ĥ0 =















0 Vext Vht Vet

Vext 0 Vet Vht

Vht Vet 1Ecs Vceht

Vet Vht Vceht 1Ecs















. (2)

Здесь 1Ecs — энергетический зазор между локально

возбужденными и цвиттерионными состояниями, мат-

ричный элемент Vext описывает перенос энергии возбуж-

дения между хромофорами (excitation transfer), Vet и Vht

ответственны за перенос электрона и дырки (electron and

hole transfer), а Vceht контролирует когерентный перенос

электрона и дырки (coherent electron-hole transfer).
Влияние полярного растворителя на энергетику си-

стемы учитывалось с помощью метода, разработанного

ранее в [9,11–13]. Основным механизмом влияния среды

является взаимодействие зарядов на хромофорах Ch1 и

Ch2 с электрическими дипольными моментами молекул

окружения. Рассматривая растворитель как сплошную

среду, гамильтониан системы
”
фотовозбужденный би-

хромофор + растворитель“ может быть представлен в

виде

Ĥ = Ĥ0 − λorDmD̂ +
λor

2
D

2
mÊ, (3)

где λor — энергия реорганизации растворителя при

внутримолекулярном переносе электрона между Ch1 и

Ch2, D̂ — оператор дипольного момента димера, Ê —

единичный оператор. Безразмерный параметр Dm в урав-

нении (3) характеризует неравновесную поляризацию

среды [11].
Адиабатические поверхности свободной энергии

(ПСЭ) G
(a)
k

(k = 1, . . . , 4) могут быть рассчитаны как

собственные значения полного гамильтониана систе-

мы Ĥ :

Ĥ
∣

∣9
(a)
k

(Dm)〉 = G
(a)
k

(Dm)
∣

∣9
(a)
k

(Dm)〉. (4)

Здесь |9
(a)
k
〉 — собственный вектор, соответствующий

собственному значению G
(a)
k
, а поляризационная коорди-

ната Dm выступает в качестве независимого параметра.

Получаемая в результате система профилей G
(a)
k

(Dm)
определяет энергетическую структуру возбужденных со-

стояний. Знание этих поверхностей необходимо для

расчета как химической динамики системы, так и оп-

тических свойств бихромофора.

В настоящей работе уравнение (4) решалось числен-

но, в ходе расчетов исследовалось влияние межхромо-

форных взаимодействий на форму адиабатических ПСЭ.

Основным наблюдаемым эффектом стало расщепление

взаимодействующих поверхностей в областях их квази-

пересечения. Этот эффект хорошо известен в квантовой

механике, в частности, модель Ландау−Зинера оценива-

ет расщепление двух линейных термов как 1E = 2|V |.
Отметим, что в рассматриваемой задаче зоны расщеп-

ления ПСЭ играют особую роль, потому что именно

в этих зонах формируются спектральные особенности

поглощения бихромофоров.

Полученная при решении уравнения (4) система

потенциальных поверхностей G
(a)
k

является удобным

инструментом для описания фотореакций в компакт-

ных димерах с сильными межхромофорными связями.

В таких агрегатах низшие возбужденные состояния

отделены друг от друга значительными энергетически-

ми зазорами (1E & kBT ), блокирующими электронные

переходы. Фотодинамика таких димеров почти цели-

ком определяется движением диффузионных пакетов

по адиабатическим ПСЭ и вертикальными излучатель-

ными/безызлучательными переходами на нижележащие

энергетические уровни. Значение дипольного момента

оптического перехода |90〉 → |91〉 в рамках разработан-

ной модели вычисляется по формуле

µ2
opt/µ

2
0 = |a1|

2 + |a2|
2 + cos θ(a1a

∗
2 + a

∗
1a2), (5)

где µ0 — модуль дипольного момента оптического

перехода для одиночного хромофора, а θ — угол между

векторами дипольных моментов Ch1 и Ch2. Величина

µ2
opt определяет интенсивность поглощения на резонанс-

ной частоте, поэтому зависимость µ2
opt(θ) указывает

на связь молекулярной структуры бихромофора с его

абсорбционными характеристиками. Отметим, что этот

эффект также известен в литературе — влияние типа

агрегации хромофоров на спектральные свойства агре-

гата неоднократно фиксировалось в экспериментах.
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Рис. 2. Влияние межхромофорных взаимодействий (параметры Vet, Vht) на форму адиабатических поверхностей свободной

энергии (a) и спектр поглощения 0-0-перехода S0 (формула (6), b). Значения Vet = −Vht (в электрон-вольтах) указаны на рисунке.

С учетом мультиплетной структуры возбужденного

состояния 0-0-спектр поглощения димера S0(~ω) пред-

ставляет собой сумму 4 компонент, соответствующих

резонансным оптическим переходам из основного со-

стояния |90〉 в адиабатические возбужденные состояния

|9
(a)
k
〉:

S0(~ω) =

4
∑

k=1

+∞
∫

−∞

ρ0(Dm)
µ2
0k

2µ2
0

δ(1G0k − ~ω)dDm. (6)

Здесь µ0k = µ0k(Dm) — модуль дипольного момента

перехода |90〉 → |9
(a)
k
〉, 1G0k ≡ G

(a)
k

− G0 — энергетиче-

ский зазор между ПСЭ основного и k-го возбужденного

состояний.

Механизм влияния межхромофорных взаимодействий

на S0(~ω) иллюстрируется рис. 2, на котором показаны

изменения формы адиабатических ПСЭ (a) и связанные

с этим изменения профиля поглощения S0(~ω) (b)
при увеличении Vet = −Vht от 0.01 до 0.2 eV. Расчеты

показывают, что рост величины Vet−Vht ведет к усилению

интенсивности дополнительных полос в 0−0-спектре,

т. е. вызывает его эффективное уширение.

Учтем мультифононную структуру спектра, возника-

ющую как результат взаимодействия бихромофора с

внутримолекулярными колебаниями в ходе оптического

возбуждения. Пусть λ
(low)
ex и λ

(high)
ex — энергии реорга-

низации низкочастотных (~ωv ≪ kBT ) и высокочастот-

ных (~�v ≫ kBT ) колебательных мод. С учетом этих

взаимодействий спектр поглощения бихромофора S(~ω)
рассчитывается по формуле

S(~ω) =
∑

n

FnS1(~ω − n~�v),

S1(~ω) =

∞
∫

0

S0(~ω
′)F(~ω − ~ω′)d~ω′, (7)

где F(E) — функция Гаусса с центром E = 2λ
(low)
ex

и дисперсией 〈E2〉 = 2λ
(low)
ex kBT , а Fn — фактор

Франка−Кондона для перехода на n-й колебательный

подуровень.

Разработанная математическая модель была исполь-

зована для анализа спектров поглощения кофокальных

димеров перилендиимида (tpPDI) в полярных раство-

рителях, соответствующие экспериментальные данные

опубликованы недавно в работе [14]. Одной из особен-

ностей, зафиксированных в экспериментах, было суще-

ственное изменение спектрального профиля S(~ω) при

переходе от мономера tpPDI к димеру. Это изменение

проявилось в спектрах как существенное усиление ко-

лебательной полосы 0-1 по отношению к полосе 0-0.

В частности, для мономера (компонент 1d в [14]) отно-

шение интенсивностей двух полос A01/A00 было оценено

значением 0.6, в то время как в димере (компонент 2d)
это отношение увеличилось до 1.25, т. е. полоса 0−1

стала преобладающей. Данный результат не может быть

объяснен в рамках классической модели Каша, которая

предсказывает сдвиг спектра димера (в красную или

синюю область в зависимости от типа агрегата), но не

описывает изменение его формы. Следует отметить, что

этот эффект не может быть также связан с увеличени-

ем энергии электронно-колебательного взаимодействия

λ
(high)
ex , так как такое увеличение приводило бы к ушире-

нию спектра, не наблюдаемому в эксперименте.

Для анализа указанных особенностей нами было

проведено фитирование спектра поглощения мономе-

ра, по результатам которого определены парамет-

ры взаимодействия tpPDI со средой: λ
(low)
ex = 0.073 eV,

λ
(high)
ex = 0.104 eV, ~�v = 0.174 eV. Полученные значения

использовались для расчетов абсорбционных спектров

димера на основе соотношений (6), (7), часть ре-

зультатов показана на рис. 3, b. В частности, целевое

значение A01/A00 = 1.25 было получено при следующих

Оптика и спектроскопия, 2025, том 133, вып. 11
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Рис. 3. Результаты моделирования спектров поглощения мономера (a) и димера (b) в рамках разработанной модели. Значения

A01/A00 соответствуют экспериментальным данным для производных перилендиимида tpPDI (компоненты 1d−2d [14]).

значениях модельных параметров: Vht = −Vet = 0.04 eV,

Vext = 0.087 eV, θ = 0.58π. Отметим, что полученные

величины попадают в область характерных значений для

производных перилендиимида в полярных растворите-

лях.

Предложенный в данной статье математический ап-

парат может считаться расширением и продолжением

подхода, разработанного ранее для описания процессов

нарушения симметрии в фотовозбужденных димерах под

влиянием внешней среды [9]. Основным отличием ис-

пользуемого метода от результатов работы [9] является
расчет полной системы адиабатических ПСЭ молекулы,

а не только ПСЭ нижнего квазистабильного состоя-

ния. Это дает более детальную картину фотореакции,

в частности, позволяет моделировать деактивационные

и релаксационные процессы в бихромофорах, а также

связанную с ними спектральную динамику поглощения

и люминесценции.
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