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The study has investigated the influence of the external magnetic field on the phase states of the spin nematic

with
”
easy-axis“ single-ion anisotropy in the external magnetic field. We have considered a case of predominant

biquadratic exchange interaction. The system is studied in two possible geometries: a field parallel to the anisotropy

axis and a field perpendicular to the anisotropy axis. It is shown that in both the cases an axial nematic phase is

realized in the system, but values of the fields of an axial nematic-paramagnetic state transition are different.
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1. Introduction

The state of the spin nematic is one of the most

unusual states of magnetic-ordered structures. Standard

magnetic ordering is related to disturbance of time reversal

symmetry [1,2], whereas in the spin nematic spontaneous

disturbance of rotational symmetry is determined by multi-

pole spin correlators that are average, i. e. different-node

(or one-node) ones [3–22]. Usually, properties of the

spin nematics are studied in case of no external field. At

this, a question arises: will the nematic phase be stable

when the external magnetic field is switched on? The

influence of the magnetic field on stability of the nematic

states is actively studied in magnetics with the magnetic-ion

spin S = 1/2, in which the nematic state is characterized

by different-node spin averages [23–34]. However, the

influence of the magnetic field on the phases states of a non-

Heisenberg magnetic with biquadratic exchange interaction

results in new unusual outcomes. Thus, it was shown in

the study [35] that both in the isotropic as well as the

spin nematic with single-ion anisotropy the stable nematic

state is realized. At the same time, the external magnetic

field significantly affects a geometric image of this state in

spin space. Thus, without the external field, the geometric

image of the nematic state in spin space is a uniaxial

ellipsoid (an infinitely thin disk), whereas switching on the

field transforms the quadrupole ellipsoid into a two-axis

ellipsoid. Besides, it was shown in the study [36] that in

a ferromagnetic with high biquadratic exchange interaction

and single-ion anisotropy of the
”
easy-plane“ type, presence

of the external magnetic field perpendicular to the basal

plane results in realization of an
”
angular“ nematic phase,

in which the quadrupole two-axis ellipsoids are oriented

at a certain angle to a quantization axis, i. e. results in

realization of a new phase state — the
”
angular“ nematic

phase. Origination of this state is related to presence of easy-

plane anisotropy that results in an effect of quantum spin

reduction [37] and of the external magnetic field. A question

arises: will it be energetically favorable to realize this

”
angular“ nematic phase in the easy-axis non-Heisenberg

ferromagnetic that is in the external field orthogonal to the

easy axis?

Thus, the aim of the present study is to investigate the

phase states of the non-Heisenberg ferromagnetic with high

biquadratic exchange interaction and single-ion anisotropy

of the
”
easy-axis“ type, which is in the external magnetic

field.

2. Non-Heisenberg anisotropic
ferromagnetic in the longitudinal
magnetic field

A studied model is considered to be a ferromagnetic

with the magnetic-ion spin S = 1, whose exchange Hamil-

tonian takes into account both Heisenberg exchange and

biquadratic exchange as well. Besides, the studied system

has single-ion anisotropy of the
”
easy-axis“ type and is in

the external magnetic field parallel to an easy-magnetization

axis. The Hamiltonian of this ferromagnetic can be

represented as follows:

H = −H
∑

n

Sz
n − β

∑

n

(Sz
n)

2

− 1

2

∑

n1 6=n2

[

J(n − n′)(SnSn′) + K(n − n′)(SnSn′)
2
]

,

(1)
where J, K — the constants of bilinear and biquadratic

exchange interactions, β > 0 — the constant of single-

ion anisotropy of the
”
easy-axis“ type, H — the external
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field in energy units. Further on, we will consider only a

case of high biquadratic exchange interaction K > J and

it is assumed that it is considered at low temperatures,

i. e. T → 0.

Before considering the influence of the external field on

the state of the anisotropic spin nematic, we consider a

behavior of the system when H = 0 [14]. As shown in

the studies [12,16,17,19–21], in the case of high biquadratic

exchange the nematic state is realized in the system, which

is described by the following order parameters:

〈Sz 〉 = cos 2α, q0
2 = 3〈(Sz )2〉 − S(S + 1),

q2
2 = 〈(Sx )2〉 − 〈(Sy )2〉 = sin 2α,

where α is a parameter of a generalized u−v transfor-

mation [38], which in case of no external field can take

the value ±π/4. Thus, in the considered case the order

parameters that determine the nematic state are as follows:

〈Sz 〉 = 0, q0
2 = 1, q2

2 = ±1. (2)

It follows from the relationships (2) that

〈(Sz )2〉 = 1, 〈(Sx )2〉 = 1, 〈(Sy )2〉 = 0,

if α = π/4; or

〈(Sz )2〉 = 1, 〈(Sx )2〉 = 0, 〈(Sy )2〉 = 1,

if α = −π/4. Thus, the geometric image in spin space of

the nematic state of the anisotropic spin nematic with
”
easy-

axis“ anisotropy is a uniaxial ellipsoid (an infinitely thin

disk) that is oriented either in the ZOX plane(α = π/4)
or in the ZOY plane (α = −π/4). At the same time, the

ground state energy in both the cases is the same and is

Egs = −K0

3
− β,

while ground state vectors are as follows:

|ψgs〉 =
|1〉 + | − 1〉√

2
(α = π/4);

|ψgs〉 =
|1〉 − | − 1〉√

2
(α = −π/4).

Consequently, the nematic state when H = 0 is degenerate

in orientation of the quadrupole ellipsoids in spin space

relative to the easy-magnetization axis, i. e. the axis OZ.

When switching on the external field parallel to the

anisotropy axis, a nonzero magnetic moment originates,

i. e. 〈Sz 〉 6= 0, wherein its value is less than a nominal value

of the magnetic-ion spin. In this case, the ground state

energy is:

Egs = −K0

3
− β − H cos 2α +

1

2
(K0 − J0) cos

2 2α, (3)

while the order parameters take the form:

〈Sz 〉 = cos 2α, q0
2 = 1, q2

2 = sin 2α, (4)

where

〈(Sx )2〉 =
1

2
(1 + sin 2α);

〈(Sy )2〉 =
1

2
(1− sin 2α); 〈(Sz )2〉 = 1. (5)

Since we consider the behavior of the system at the low

temperatures (T → 0), then an expression for the ground

state energy (3) determines a density of free energy of the

studied magnetic. The density of free energy is analyzed to

show that

cos 2α = 〈Sz 〉 =
H

K0 − J0

,

i. e. with the fields that are less than the critical one

(Hc < K0−J0), a so-called axial nematic is realized in the

spin nematic with easy-axis single-ion anisotropy, whose

geometric image in spin space, as follows from the rela-

tionships (5), is a two-axis ellipsoid, whose main axis is

parallel to the axis OZ, i. e. parallel both to the direction of

the external field and the easy-magnetization axis as well.

With the fields that exceed Hc , the order parameters take

the following form:

〈Sz 〉 = 1, q0
2 = 1, q2

2 = 0,

and the magnetic transits into the paramagnetic state.

3. Non-Heisenberg anisotropic
ferromagnetic in the transverse
magnetic field

Now we consider a behavior of the easy-axis spin nematic

in the transverse external field perpendicular to the easy-

magnetization axis. For certainty, we assume that the

magnetic field is parallel to the axis OZ and easy-axis

anisotropy is oriented along the axis OX . As above, it is

assumed that the magnetic-ion spin S = 1, the temperatures

are low and the constant of biquadratic exchange interaction

exceeds the constant of bilinear exchange, i. e. K > J . The

magnetic Hamiltonian in this case is as follows:

H = −H
∑

n

Sz
n − β

∑

n

(Sx
n)

2

− 1

2

∑

n1 6=n2

[

J(n − n′)(SnSn′) + K(n − n′)(SnSn′)
2
]

.

(6)
Switching on the external field will result in origination of

the nonzero magnetic moment, whose orientation and value

will be determined by competition of the external field and

constitutive parameters of the system, in particular, single-

ion anisotropy. It can be expected that in this geometry

the so-called
”
angular“ nematic phase can be realized, as

observed in the easy-plane spin nematic (see, for example,

the study [36]). Consequently, it can be assumed that

the magnetic moment that originates under effect of the

magnetic field is oriented at a certain angle θ to the axis OZ.
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For certainty, we will believe that the magnetic moment is

in the ZOX plane. Using a unitary transformation

H (θ) = UHU+, U(θ) =
∏

n

exp[iθSy
n ]

we will go over to an intrinsic system of coordinates at each

node, in which the axis OZ coincides with a direction of

the average magnetic moment. In the intrinsic system of

coordinates, the ground state energy that coincides with the

density of free energy in case of the low temperatures, takes

the form:

Egr,st = −H cos θ cos 2α +
1

2
(K0 − J0) cos

2 2α

+
β

2
cos2 θ(1− sin 2α). (7)

Here, as above, α is a parameter of the u−v transformation.

By minimizing the density of free energy (7) by the

parameters θ and α, we obtain a relationship of these

parameters with the constitutive parameters of the magnetic:

cos θ =
H

β

cos 2α

1− sin 2α
, sin 2α = − H2

2β(K0 − J0)
. (8)

Using the relationships (8) as well as taking into account

that in the intrinsic system of coordinates cos 2α = 〈S〉, we
obtain

〈Sz 〉 =

(

β

H
+

H

2(K0 − J0)

)

cos θ. (9)

It follows from analysis of the expression (9) that the

average value of the magnetic moment decreases with an

increase of the value of the magnetic field, since the first

summand decreases with the increase of the field as a

hyperbole (at the fixed β, θ), while the second summand

increases as a linear function. This behavior of the average

values of the magnetic moment indicates that unlike the

easy-plane nematic [36], the
”
angular“ phase is not realized

in this case, but the axial nematic phase originates, in which

the nonzero magnetic moment is parallel to the external

field, while the order parameters are determined by the

relationships (4). At the same time, the average magnetic

moment increases with the increase of the field, while the

quadrupole ellipsoid, as follows from an explicit form of the

one-node correlators

〈(Sz )2〉 = 1,

〈(Sy )2〉 =
1

2
(1− sin 2α), 〈(Sx )2〉 =

1

2
(1 + sin 2α),

is transformed into the two-axis ellipsoid, whose main axis

is oriented along the magnetic field.

In this phase, the ground state energy is:

Egr,st = −H cos 2α +
1

2
(K0 − J0) cos

2 2α +
β

2
(1− sin 2α).

(10)

1

1

PM

SN

H

K
J

0
0

–

b

2( – )K J0 0

Phase diagram of the spin nematic with
”
easy-axis“ anisotropy in

the transverse magnetic field.

while the ground state wave vector is as follows:

|ψgr,st〉 = cosα|1〉 + sinα| − 1〉.
Since we consider the system at the low temperatures,

then the ground state energy (when T → 0) determines

the density of free energy, whose parameter minimization

allows obtaining the following equation for this parameter:

H sin 2α − (K0 − J0) sin 2α cos 2α +
β

2
cos 2α = 0.

After simple mathematical transformations this equation can

be reduced to the following form:

(

H

K0 − J0

)2/3

+

(

β

2(K0 − J0)

)2/3

= 1. (11)

Generally, the equation (11) describes a closed curve

(astroid) in variables

H

K0 − J0

,
β

2(K0 − J0)

(see the study [1]). In the considered case the equation (11)
describes only a part of the astroid, since all the parameters

of (11) are positive, i. e. it is the part of the astroid, which

is in the first quadrant. Besides, the equation (11) allows

determining a field of a transition between the axial nematic

phase characterized by the order parameters (4) and the

paramagnetic state characterized by the order parameters

〈Sz 〉 = 1, q0
2 = 1, q2

2 = 0.

A value of the critical field is determined as follows:

Hc = (K0 − J0)

[

1−
(

β

2(K0 − J0)

)2/3]3/2

.

Thus, when H < Hc the axial nematic state is realized,

and when H > Hc the paramagnetic phase is realized.

Graphically, it can be presented as follows (see the figure).
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4. Conclusion

What is the reason of such a striking difference between

models that seem to be very close to each other: the

spin nematic with
”
easy-plane“ anisotropy in the transverse

field and the spin nematic with
”
easy-axis“anisotropy in the

transverse field as well?

In order to understand the resulting differences in the

behavior of the magnetics with single-ion anisotropy
”
easy

axis“ and
”
easy plane“ in the external magnetic field, we

turn to consideration of the situation without the external

field. As shown in the study [36], when H = 0 and

biquadratic exchange interaction is high, the nematic state

with 〈S〉 = 0 is realized in the magnetic. At the same

time, single-ion anisotropy of the
”
easy-plane“ type orients

the uniaxial quadrupole ellipsoid (the infinitely thin disk)
in the basal plane, i. e. creates effective anisotropy of

the quadrupole order parameters. When switching on

the external magnetic field perpendicular to the basal

plane, there is competition between effective anisotropy

and the magnetic field, thereby resulting in realization

of the
”
angular“ nematic phase. In the case that is

considered in the present study, i. e. of the spin nematic

with
”
easy-axis“ anisotropy, when H = 0 the nematic state

with 〈S〉 = 0 is also realized, but the quadrupole ellipsoid

(of the infinitely thin disk) is formed either in the XOZ

plane or the ZOY plane. The external field that is switched

on perpendicular to the anisotropy axis turns out to be in

the plane of the uniaxial ellipsoid. It means that there is no

competition between effective anisotropy of the quadrupole

order parameters and the external field. Consequently,

when switching on the external field oriented parallel to

the axis OZ, there is the nonzero magnetic moment oriented

along the magnetic field (0 < 〈Sz 〉 < 1) and the quadrupole

two-axis ellipsoid is oriented so that its main axis is parallel

to the axis OZ, too. Thus, in our considered case, when

H 6= 0 and biquadratic exchange interaction is high, the

”
angular“ nematic phase is not realized, but the axial-

nematic state originates.

Thus, it can be stated that symmetrical properties of

the spin nematic with
”
easy-axis“anisotropy and the spin

nematic with
”
easy-plane“ anisotropy are different.
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