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In this paper, we theoretically study how electron scattering on domain walls modifies the surface electronic

structure of a magnetic semiconductor with a strong Rashba effect. It is shown that a smooth boundary between

domains with opposite magnetization perpendicular to the surface induces the appearance of three different types

of one-dimensional electronic states. A bound state is formed below the continuum of two-dimensional states.

A resonant state with a quasi-linear spectrum and resonant states with a parabolic dispersion arise within the local

energy exchange gap. The origin of the resonant states is related to the nontrivial Berry curvature due to the

inversion symmetry breaking at the surface. The spectral characteristics and spin polarization of these states are

described as a function of the Rashba splitting strength, the magnetization amplitude in the domains and the width

of the boundary between them. The possible manifestation of the resonant states in magnetotransport experiments,

for example, on the surface of the BiTeI polar semiconductor doped with transition metal atoms is discussed.
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1. Introduction

Today, on the basis of Van der Waals materials that

combine a strong spin-orbit coupling (SOC) with a magnetic

order and heterostructure based on these materials, a lot

of various platforms are proposed for implementing and

investigating new phenomena, among which a quantum

anomalous Hall effect (AHE) [1–3] and a magnetoelectric

effect in the axion insulator phase are prominent [4,5]. The
explanation of these effects is rooted in a Berry curvature

concept of the system states in a momentum space, which

is pivotal in a solid-state topology theory [6,7]. The Chern

number C, which is determined by the Berry curvature

integral over filled states, characterizes the intrinsic AHE

in the two-dimensional (2D) magnetic [1,2]. In an ideal

situation, when a film of the magnetic topological insulator

(TI) is in a single-domain state, transport (when the Fermi

level is fixed in an energy gap) is carried out via a

nondissipative chiral edge state localized along the sample

perimeter, which is materialized in quantized transverse

conductivity σxy = Ce2/h and no longitudinal conductivity

σxx = 0, where |C| = 1 [1,2]. A sign of the topological

invariant C and chirality are associated to a direction of

the magnetization component that is normal to the film.

However, fluctuations of the magnetic order are unavoidable

in a real material. As a result, magnetization of the sample

obtains a multi-domain texture during remagnetization in an

external field. This process in the TI ultrathin film with

the intrinsic or impurity magnetic order is accompanied by

appearance of a random net of conducting channels along

the boundaries between the oppositely-polarized magnetic

domains, which at the same time are topological boundaries.

That is why the one-dimensional (1D) electron state induced

by a magnetic domain wall (DW) as well as an edge

state is commonly referred to as a topologically protected

one [8,9].
Existence of chiral channels with quantum conductance

on the domain walls and their contribution to transport

properties of the magnetic topological insulators is con-

firmed by experimental data [8–11]. As an example, we

can refer to such effects as drop of magnetoresistance with

increase of concentration of the domain walls in an area of

the coercive field [8] and a percolation nature of topological

transitions, which are induced by the external field, between

phases of the quantum AHE and the axion insulator or the

trivial insulator [12]. It indicates that the charge transport in

the magnetic topological insulators is related to distribution

of magnetization in the sample through a network of the

conducting channels, which implies an intricate and rich

physics of the phenomenon. The electron states on the

magnetic domain walls in the topological insulators were

theoretically studied in some studies [13–22].
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Interest to materials and systems with topological specific

features of a band structure and to low-dimensional electron

states on the structural and phase boundaries in them

is not limited to the magnetic topological insulators [23].
However, very little attention is paid to surface states in

the magnetic semiconductors with the strong SOC. Spec-

troscopic measurements and ab initio calculations of the

BiTeI polar semiconductor show gigantic Rashba splitting

of the surface states [24–26]. The authors [27–29] have

found that doping the BiTeI samples with V or Mn atoms

resulted in formation of a ferromagnetic order with a quite

high Curie temperature on their surface. This phenomenon

is explained as a result of indirect interaction of impurity

magnetic moments via Rashba-type 2D states [29]. Besides,
it was found that the magnetic order in the Rashba-

effect diluted magnetic semiconductor (REMS) had a multi-

domain structure [28]. Unfortunately, there are still no

reports on studying magnetic transport properties in the

Bi1−x(V,Mn)xTeI material.

It has been recently shown that the hard domain wall

results in appearance of a resonant state with linear

dispersion in the energy interval of the local exchange gap

on the REMS surface [30]. With weak exchange splitting

relative to the Rashba splitting this state is quite stable and

spin-polarized. By taking into account unique properties of

the resonant state, it was predicted in the study [31] that the
magnetic texture that consists of a pair of parallel domain

walls could realize the almost semi-quantized anomalous

Hall effect with |σxy | = e2/2h on the REMS surface.

In the present article, we study the electron states

on the surface of the diluted magnetic semiconductor

with strong Rashba splitting and spatially inhomogeneous

magnetization. We consider a situation when the impurity

magnetic moments are ordered orthogonally to the surface,

but it is assumed that the domain wall exists. It is shown

that 1D states of the various type can appear at a solitary

boundary between the domains with oppositely-oriented

magnetization. First of all, the domain wall create a

bound state split from the 2D continuum. Secondly, the

band structure of the Rashba-effect surface has a nontrivial

Berry curvature, thereby resulting in origination of the

1D resonant state with quasi-linear dispersion within the

local exchange gap on the domain wall. Thirdly, in case

of a relatively wide interdomain boundary the exchange

gap can produce the resonant states with a parabolic

spectrum. The main properties of the aforesaid states

are described. In the final part of the article we discuss

a possible role of the DW-induced electron states in the

magnetotransport phenomena on the surface of the diluted

REMS, for example, Bi1−x(V,Mn)xTeI.

2. Main part

In the diluted REMS, the moments that are localized on

the magnetic atoms form the ferromagnetic order in a sam-

ple volume and/or in its surface area. Taking into account

violation of both inversion symmetry near the surface of

the three-dimensional (3D) semiconductor and symmetry

relative to time inversion, we describe the electron with the

momentum k = (kx , ky ), which moves along the surface, by

means of an effective 2D Hamiltonian [32–34]

H(k) =
k2

2m∗
σ0 − α

(

[k× σ ] · ez

)

+ JM(x , y)σz , (1)

where σ = (σx , σy , σz ) is the vector of the Pauli matrix,

σ0 is the identity 2× 2-matrix, k =
√

k2
x + k2

y , m∗ is the

effective mass of the carriers in the surface area, α is

the Rashba parameter. Hereinafter, a system of units

where ~ = 1 is used, unless specified otherwise. We

omit summands that are higher that the second order in

k in the expansion of (1) around a center of the Brillouin

zone Ŵ. The last summand in (1) describes a relation of the

electron spin and magnetization M = Mez via the exchange

integral J, where ez is a normal to the surface. Since we are

talking about the diluted magnetic semiconductor, then it

is assumed that distribution of magnetization M(x , y) along

the surface, which is included in (1), is a result of averaging
on a scale that exceeds an average distance between atoms

of the magnetic impurity. For certainty, we consider the

2D electron states, which were formed near a bottom of

the 3D conduction band of the semiconductor, although it

is possible to similarly consider the 2D hole state near a top

of the 3D valence band.

We remind that the spin-momentum coupling, which

is implied in the second summand of the Hamilto-

nian (1), results in splitting the 2D spectrum into

two parabolic bands with opposite spin polarization

even without the magnetic order. In case of nontri-

vial homogeneous magnetization, M(x , y) = M0 = const,

the surface state become gapped states in the Ŵ

point, obeying a dispersion relationship E(±)(k) =

= k2/2m∗ ±
√

12
0 + α2k2, where 210 = 2JM0. At the

same time the Berry curvature in the model (1) takes

the form �(±)(k) = ∓α210

/(

2
[

12
0 + α2k2

]3/2)
[6,7], where

�(+)(k)/�(−)(k) is related to an upper/lower energy branch

E(+)(k)/E(−)(k), respectively. Using a standard definition

for the Chern number as C =
∫

d2k�(k)/2π [6,7], it

is possible to obtain the analytical dependence C(µ) on

the Fermi level position µ [31]. At the same time,

according to [31], the value of the this integral topological

characteristic is essentially determined by the dimensionless

parameter |10|/Eso, where Eso = m∗α2/2 is the Rashba

splitting energy, and its sign directly correlates with the

direction of magnetization. The attention should be paid

to the behaviour of the magnitude C(µ) within the energy

area of the exchange gap when 12
0 > µ2. For example,

if Eso ≪ |10|, then the Chern number becomes a van-

ishingly small quantity, C(µ) ≈ Eso/10. In the opposite

case, when the exchange splitting is comparatively weak,

Eso ≫ |10|, the topological index approaches a half-integer

value, C(µ) ≈
[

1−
(

|10|/4Eso

)]

sign (10)/2. Outside the

exchange gap, i. e., when µ2 > 12
0, the magnitude C(µ)

drastically decreases.
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Now we analyze the situation with the solitary domain

wall. We assume that the exchange field 1(x , y) = 1(x)
continuously increases with the coordinate x to go out to the

asymptote 1(x) → ±10, when (x/ς ) → ±∞, where ς is

a characteristic scale of variation of the function 1(x).
Then, for certainty we assume that 10 > 0 and the domain

wall is fixed along the line x = 0, i. e., 1(x = 0, y) = 0.

A pair of semi-infinite ferromagnetic domains that dif-

fer from each other in the magnetization sign can be

characterized by the local Chern numbers: the positive

one for the right domain, Cr > 0 when x > 0, and the

negative one for the left domain, C l < 0 when x < 0.

Thus, if the Fermi level is fixed inside the exchange

gap, |µ| < 10 and the condition Eso ≫ 10 is fulfilled,

then the topological index experiences a near-unit (almost

quantized) change when transiting through the domain wall:

Cr −C l ≈ 1− (10/4Eso). According to the correspondence

principle [35,36], this situation can be interpreted as close

critical regarding the appearance of the 1D electron state

with particular properties at the boundary x = 0.

If neglecting the term quadratic in momentum in (1),
it is possible to obtain an exact solution of the

1D problem H(x , ky)θ(x , ky) = ε(ky )θ(x , ky) for the par-

ticular state, which energy linearly depends on the

momentum, ε(0)(ky) = αky , intersecting the exchange

gap in the 2D spectrum E
(±)
0 (k) = ±

√

12
0 + α2k2 [2].

The corresponding envelope wave function that is lo-

calized on the domain wall can be represented as

θ(0)(x) = θ0 exp
[

−α−1
∫ x

0
1(ξ)dξ

]

. The spectrum and spin

polarization of this state do not depend on a specific dis-

tribution of the exchange field 1(x), but are determined by

an asymptotic limitation only, 1(x → ∞)1(x → −∞) < 0.

I.e., the ground state is topologically protected. Indeed, if

formally directing m∗ → ∞, we obtain Cr −C l = 1. The

state θ(0)(x) is chiral: the direction of its spin polarization

along the axis ex is strictly orthogonal to a direction

of propagation of electron excitation along the domain

wall. In addition to the topologically protected state,

the domain wall can induce 1D trivial Volkov-Pankratov

states (V-P) [37]. Their appearance depends on a ratio

of a localization scale of the ground state ∝ α/10 and

the domain wall width ∝ ς . If the former exceeds the

latter, (10ς/α) ≪ 1), then the gap has only the state

ε(0)(ky ), whose spatial behavior can be approximated by

the dependence θ(0)(x) ∼ exp(−10|x |/α) that is typical

for 1(x) = 10 sign (x). Otherwise, (10ς/α) ≫ 1, the

exchange gap hosts the energy branches with the spectrum

ε(±n)(ky) = ±

√

[

ε(±n)(0)
]2

+ α2k2
y , n = 1, 2, 3..., where

|ε(±n)(0)| < 10. The wider the domain wall, the larger the

number of the states ε(±n)(ky) with n > 0, which is induced

by it within the exchange gap.

Inclusion of the quadratic summand into (1) results in

certain modification of the above-described states. Near

the Ŵ, where the kinetic summand, ∝ k2/2m∗, is com-

paratively small, this problem was solved in principle for

the low-energy state in the study [30]. It was shown that

scattering of electrons on an extremely narrow antiphase

boundary of the type σz10 sign (x) (when ς = 0) leads to

the appearance of the 1D resonant state in the region of the

local exchange gap on the surface of the semiconductor

with the strong Rashba effect. In the approximation

10 ≪ 4Eso and |ky | ≪ kso, where kso = αm∗, the disper-

sion relationship for this state can be explicitly obtained:

ε
(0)
R (ky ) = αky + ω

(0)
R − iŴ

(0)
R [30]. Thus, modification of

the energy of the state ε(0)(ky) consists in a small shift

ω
(0)
R = 12

0/4Eso and spectral broadening Ŵ
(0)
R = 13

0/8E2
so.

The resonant state is quasi-bound. In addition to the

component that is localized near the domain wall, its

envelope function, θ
(0)
R (x , ky) = θ(0)(x) + ϑ(x , ky), obtains

an oscillating component, for which the following estimate

is true ϑ(x , ky = 0) ∼ ϑ± exp(±2iksox). The weak spectral

broadening, Ŵ
(0)
R ≪ 10, and a low-amplitude correction to

the envelope, |ϑ±| ≪ |θ0|, is a result of overlapping of the

energy of the 1D state ε
(0)
R (ky) with the lower branch of the

2D states E(−)(k) [30]. The resonant state is strongly
(

with

accuracy to terms, of the order of (10/Eso)
2
)

spin-polarized

along the axis ex . On the other hand, with increase of the ra-

tio 10/Eso the spectral branch of the resonant state ε
(0)
R (ky )

is smeared and its envelope θ
(0)
R (x , ky) is delocalized.

Finally, when Eso ≪ 10, the 2D states lose the topological

signs and, consequently, the features of the 1D resonant

state in the real and momentum spaces disappear [30].
In order to clarify evolution of the 1D states emergent

at the finite-width domain wall, we resorted to numerical

analysis within the framework of the tight-binding approx-

imation, performing lattice regularization of the Hamilto-

nian (1). Figure 1 schematically illustrates smooth variation

of magnetization near the domain wall that induces the

1D resonant state. Without losing generality of the analysis,

a spatial distribution of the exchange field was approximated

by the function 1(x) = 10 tanh(x/ς ). By imposing periodic

boundary conditions, we have calculated a single-particle

spectral function. This procedure is described in more detail

in the study [30]. Results of calculations of the spectral

y

x

Figure 1. Schematic illustration of emergence of the 1D resonant

state on the solitary domain wall on the REMS surface. The blue

and green circles show variation of the amplitude and the sign

of magnetization M(x) = M(x)ez near the domain wall on the

REMS surface. The red line symbolizes a unidirectional nature of

the resonant state, while the yellow arrow marks a direction of its

spin polarization.
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Figure 2. Evolution of the spectral characteristics of the 1D electron states on the REMS surface, which are induced by the solitary

amplitude domain wall, with increase of its width ς . The distribution of the exchange field is defined as 1(x) = 10 tanh(x/ς ). The four

panels (a), (b), (c), (d) correspond to key moments of variation of dispersion of the 1D states. Each panel reflects intensity of the spectral

function for the wall, with increase of its width ς . The distribution of the given dimensionless parameter ksoς . A ratio of the exchange

splitting energy to the Rashba splitting energy is given by the value (10/Eso = 0.4). The spectral functions of the 1D states are represented

by thin cherry-color lines against the background of projection of the spectral function of the 2D states in the magnetic domains, E(±)(k).

The symbols R, VP and B denote the gapless resonant state, ε
(0)
R (ky ), the Volkov-Pankratov resonant states, ε

(±n)
R (ky ) with n > 0 and the

bound state, εB(ky ), respectively.

behavior of the surface states in the situation of the relatively

weak exchange field 10

Eso
= 0.4 are shown in Figure 2. Four

qualitatively different cases are selected: (a) an extremely

hard domain wall, when ksoς ≪ 1; (b) a moderately hard

domain wall, when ksoς < 1; (c) an intermediate-width

domain wall, ksoς ≈ 1; (d) a soft domain wall, ksoς > 1.

It is easy to distinguish the 2D surface states in the domains

from the 1D resonant states on the domain wall. The branch

with quasi-linear dispersion ε
(0)
R (ky ) is located between

projections of the bands E(±)(k). It is noteworthy that the

only essential change in the behavior of the gapless state

with variation of the domain wall width, which can be noted

in Figure 2, is a narrowing of the spectral broadening of Ŵ
(0)
R

with increase of the magnitude of ksoς . Rough assessment

provides a two-fold decrease of the value of Ŵ
(0)
R at ky = 0,

when the parameter ksoς increases from 0 to 1.3 (Figure 2).
The effect of the domain wall texture on spectral broadening

of the resonant state ε
(0)
R (ky ) is explained at a qualitative

level by the fact that in case of the finite-width domain wall
the electron that is localized on the scale of the envelope

function θ
(0)
R (x , ky) is affected by the smaller-value exchange

field as compared to 10. Figure 3 demonstrates that the
gapless resonant state exhibits a chirality property: it is
highly-spin-polarized along the axis ex , which is orthogonal
both to the domain wall direction ey and to orientation of
magnetization in the domains ±ez .
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Figure 3. Spin polarization of the 1D electron states on the REMS surface, which are induced by the single amplitude domain

wall. The panels reflect intensity of the spectral function with taking into account spin resolution for the two different values of

the dimensionless parameter ksoς . A ratio of the exchange splitting energy to the Rashba splitting energy is defined by the value

(10/Eso) = 0.4. Positive/negative polarization along the axis ex is shown by the blue/red color. The symbols R, VP and B denote the

gapless resonant state, ε
(0)
R (ky ), the Volkov-Pankratov resonant states, ε

(±n)
R (ky ) with n > 0 and the bound state, εB (ky ), respectively.

We note that when inverting the direction of magnetiza-

tion in the studied system, or, in other words, when formally

replacing 1(x) with −1(x), the 1D gapless state ε
(0)
R (ky )

changes the signs of the speed and spin polarization.

At the domain wall, there is also the bound state

εB(ky), which is located below the 2D band. The effective

potential that is proportional to the value of the exchange

field gradient, |∂1(x)/∂x |, splits the bound state εB(ky )
from a lower edge of the branch E(−)(k). As can be

seen in Figure 2, as the domain wall width increases,

in other words, with decrease of the gradient value, the

energy branch εB(ky) is pressed against the line segment

|ky | ≤
√

k2
so − (10/α)2 that connects the minimums of the

lower 2D band.

In case of the comparatively narrow domain wall that is

represented by the panels (a) and (b) in Figure 2, the inter-

val of the local exchange gap, |E| < 10, hosts the resonant

state ε
(0)
R (ky ) only. In case of the intermediate-width domain

wall, ksoς ≈ 1, as can be seen in the panel (c), a pair of the
V-P-type states originates [37], with one state at an upper

and a lower edge of the exchange gap, ε
(±1)
R (ky ). In case of

the comparatively wide domain wall, as exemplified by the

panel (d), the gap hosts the states ε
(±n)
R (ky ) with n > 1. The

extremely wide domain wall (ksoς ≫ 1) generates multiple

V-P-type states that densely fill the entire exchange gap. As

can be seen from the figure, the V-P-type states ε
(±n)
R (ky )

are also resonant states, wherein they have a noticeably

larger spectral broadening Ŵ
(±n)
R as compared to Ŵ

(0)
R . Spin

polarization of the 1D V-P states clearly correlates with

polarization of a projection of the 2D state, from which

they originate (Figure 3). It should be noted that although

the resonant V-P-type states are not directly related to the

topological specific features of the 2D REMS spectrum,

they necessarily appear (along with the gapless resonant

state) on the quite wide domain wall, ksoς > 1.

3. Discussion and conclusion

Above, we have described the spectral properties of

the REMS surface that includes the finite-width domain

wall. Certainly, among the 1D states induced by the

domain wall, the most interesting is the gapless resonant

state with a spin density orthogonal to the domain wall.

According to the estimates done in the studies [29,30],
for the case of the hard domain wall a suitable platform

for experimental detection of such a state can be the

diluted REMS Bi1−x(V,Mn)xTeI [27–29]. The Van der

Waals semiconductor material BiTeI has a volume band

gap ∼ 0.38 eV, which includes the 2D Rashba state with

a record high value of the parameter α = 3.85meV · Å and

splitting Eso ≈ 0.1meV on the surface that is formed by

the Te atoms [24]. Doping BiTeI with the V or Mn atoms

of the concentration x from 2 to 3% results in opening of

the exchange gap 210 of up to one hundred of meV in

the Ŵ point due to surface ferromagnetic ordering of the

local moments along the easy axis ez with the relatively

high Curie temperature TC ≈ 130K [27–29]. It should

be expected that the boundary between the ferromagnetic

domains with transverse magnetization at the Te surface

of Bi1−x(V,Mn)xTeI is a source of long-lived spin-polarized

resonance with the quasi-linear spectrum ∼ ±αky and the

lifetime τ
(0)

R . The magnitude τ
(0)

R =
[

Ŵ
(0)
R

]−1
is determined

by the typical time interval, during which the density of

probability of excitation, |θ
(0)
R (x , ky)|

2, which moves along

Physics of the Solid State, 2025, Vol. 67, No. 8
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the domain wall in a ballistic mode, flows into into the
2D state E(−)(k). As shown above, spectral broadening

Ŵ
(0)
R somewhat decreases with increase of the domain wall

width ς . I. e., the resonant state ε
(0)
R (ky ) becomes more

stable in the sense of increase of the lifetime τ
(0)

R . However,
on the other hand, the quite wide domain wall generates

the resonant V-P-type states ε
(n)
R (ky ) that will shunt a

contribution of the resonant state ε
(0)
R (ky) into the transport

and magnetotransport phenomena, when the Fermi level µ

is outside the energy interval ε
(−1)
R (0) < µ < ε

(1)
R (0). And

with increase of ς this interval narrows. It is obvious that
the similar issue will arise when trying to observe the state

ε
(0)
R (ky ) by means of scanning tunnel spectroscopy.

In the present study, we have investigated origination of
the 1D electron states at the magnetic domain wall at the
REMS surface and their modification with variation of the
domain wall width. It is shown that the gapless resonant
state that should be interpreted as a marker of the nontrivial

Berry curvature of the 2D states, not only maintains quasi-
linear dispersion and spin polarization, but becomes more
stable with increase of the domain wall width as well. Be-
sides, the domain wall can induce the trivial states, namely:
the bound state and the resonant Volkov-Pankratov-type
state, whose behavior depends on the domain wall width.

Thus, it is reasonable to expand the scope of the systems
that combine magnetic ordering and specific features of the
band structure over the magnetic semiconductors with the
strong Rashba effect and to focus attention on searching
low-dissipative electron states on the boundaries of the

various magnetic phases in these materials.
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