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Modification of the electronic structure of the magnetic semiconductor
surface with a strong Rashba effect caused

by the presence of domain walls
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In this paper, we theoretically study how electron scattering on domain walls modifies the surface electronic
structure of a magnetic semiconductor with a strong Rashba effect. It is shown that a smooth boundary between
domains with opposite magnetization perpendicular to the surface induces the appearance of three different types
of one-dimensional electronic states. A bound state is formed below the continuum of two-dimensional states.
A resonant state with a quasi-linear spectrum and resonant states with a parabolic dispersion arise within the local
energy exchange gap. The origin of the resonant states is related to the nontrivial Berry curvature due to the
inversion symmetry breaking at the surface. The spectral characteristics and spin polarization of these states are
described as a function of the Rashba splitting strength, the magnetization amplitude in the domains and the width
of the boundary between them. The possible manifestation of the resonant states in magnetotransport experiments,
for example, on the surface of the BiTel polar semiconductor doped with transition metal atoms is discussed.
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1. Introduction

Today, on the basis of Van der Waals materials that
combine a strong spin-orbit coupling (SOC) with a magnetic
order and heterostructure based on these materials, a lot
of various platforms are proposed for implementing and
investigating new phenomena, among which a quantum
anomalous Hall effect (AHE) [1-3] and a magnetoelectric
effect in the axion insulator phase are prominent [4,5]. The
explanation of these effects is rooted in a Berry curvature
concept of the system states in a momentum space, which
is pivotal in a solid-state topology theory [6,7]. The Chern
number C, which is determined by the Berry curvature
integral over filled states, characterizes the intrinsic AHE
in the two-dimensional (2D) magnetic [1,2]. In an ideal
situation, when a film of the magnetic topological insulator
(TI) is in a single-domain state, transport (when the Fermi
level is fixed in an energy gap) is carried out via a
nondissipative chiral edge state localized along the sample
perimeter, which is materialized in quantized transverse
conductivity o,, = Ce?/h and no longitudinal conductivity
oxx =0, where [C| =1 [1,2]. A sign of the topological
invariant C and chirality are associated to a direction of
the magnetization component that is normal to the film.
However, fluctuations of the magnetic order are unavoidable
in a real material. As a result, magnetization of the sample

obtains a multi-domain texture during remagnetization in an
external field. This process in the TI ultrathin film with
the intrinsic or impurity magnetic order is accompanied by
appearance of a random net of conducting channels along
the boundaries between the oppositely-polarized magnetic
domains, which at the same time are topological boundaries.
That is why the one-dimensional (1D) electron state induced
by a magnetic domain wall (DW) as well as an edge
state is commonly referred to as a topologically protected
one [3,9].

Existence of chiral channels with quantum conductance
on the domain walls and their contribution to transport
properties of the magnetic topological insulators is con-
firmed by experimental data [8-11]. As an example, we
can refer to such effects as drop of magnetoresistance with
increase of concentration of the domain walls in an area of
the coercive field [8] and a percolation nature of topological
transitions, which are induced by the external field, between
phases of the quantum AHE and the axion insulator or the
trivial insulator [12]. It indicates that the charge transport in
the magnetic topological insulators is related to distribution
of magnetization in the sample through a network of the
conducting channels, which implies an intricate and rich
physics of the phenomenon. The electron states on the
magnetic domain walls in the topological insulators were
theoretically studied in some studies [13-22].
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Interest to materials and systems with topological specific
features of a band structure and to low-dimensional electron
states on the structural and phase boundaries in them
is not limited to the magnetic topological insulators [23].
However, very little attention is paid to surface states in
the magnetic semiconductors with the strong SOC. Spec-
troscopic measurements and ab initio calculations of the
BiTel polar semiconductor show gigantic Rashba splitting
of the surface states [24-26]. The authors [27-29] have
found that doping the BiTel samples with V or Mn atoms
resulted in formation of a ferromagnetic order with a quite
high Curie temperature on their surface. This phenomenon
is explained as a result of indirect interaction of impurity
magnetic moments via Rashba-type 2D states [29]. Besides,
it was found that the magnetic order in the Rashba-
effect diluted magnetic semiconductor (REMS) had a multi-
domain structure [28]. Unfortunately, there are still no
reports on studying magnetic transport properties in the
Bi;_,(V,Mn), Tel material.

It has been recently shown that the hard domain wall
results in appearance of a resonant state with linear
dispersion in the energy interval of the local exchange gap
on the REMS surface [30]. With weak exchange splitting
relative to the Rashba splitting this state is quite stable and
spin-polarized. By taking into account unique properties of
the resonant state, it was predicted in the study [31] that the
magnetic texture that consists of a pair of parallel domain
walls could realize the almost semi-quantized anomalous
Hall effect with |0y, | = €2/2h on the REMS surface.

In the present article, we study the electron states
on the surface of the diluted magnetic semiconductor
with strong Rashba splitting and spatially inhomogeneous
magnetization. We consider a situation when the impurity
magnetic moments are ordered orthogonally to the surface,
but it is assumed that the domain wall exists. It is shown
that 1D states of the various type can appear at a solitary
boundary between the domains with oppositely-oriented
magnetization.  First of all, the domain wall create a
bound state split from the 2D continuum. Secondly, the
band structure of the Rashba-effect surface has a nontrivial
Berry curvature, thereby resulting in origination of the
1D resonant state with quasi-linear dispersion within the
local exchange gap on the domain wall. Thirdly, in case
of a relatively wide interdomain boundary the exchange
gap can produce the resonant states with a parabolic
spectrum. The main properties of the aforesaid states
are described. In the final part of the article we discuss
a possible role of the DW-induced electron states in the
magnetotransport phenomena on the surface of the diluted
REMS, for example, Bi;_,(V,Mn), Tel.

2. Main part

In the diluted REMS, the moments that are localized on
the magnetic atoms form the ferromagnetic order in a sam-
ple volume and/or in its surface area. Taking into account
violation of both inversion symmetry near the surface of
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the three-dimensional (3D) semiconductor and symmetry
relative to time inversion, we describe the electron with the
momentum k = (ky, k), which moves along the surface, by
means of an effective 2D Hamiltonian [32-34]

k2

"o

H (k) oo —a(k xo]-e)+JIMx,y)o., (1)

where 6 = (0y, 0y, 0;) is the vector of the Pauli matrix,
\/ k3 + k2, m* is the
effective mass of the carriers in the surface area, « is
the Rashba parameter. Hereinafter, a system of units
where 7 =1 is used, unless specified otherwise. We
omit summands that are higher that the second order in
k in the expansion of (1) around a center of the Brillouin
zone I. The last summand in (1) describes a relation of the
electron spin and magnetization M = Me, via the exchange
integral J, where e, is a normal to the surface. Since we are
talking about the diluted magnetic semiconductor, then it
is assumed that distribution of magnetization M (x, y) along
the surface, which is included in (1), is a result of averaging
on a scale that exceeds an average distance between atoms
of the magnetic impurity. For certainty, we consider the
2D electron states, which were formed near a bottom of
the 3D conduction band of the semiconductor, although it
is possible to similarly consider the 2D hole state near a top
of the 3D valence band.

We remind that the spin-momentum coupling, which
is implied in the second summand of the Hamilto-
nian (1), results in splitting the 2D spectrum into
two parabolic bands with opposite spin polarization
even without the magnetic order. In case of nontri-
vial homogeneous magnetization, M(x,y) = My = const,
the surface state become gapped states in the T
point, obeying a dispersion relationship E®)(k) =

= k?/2m* & /A2 + a?k?, where 2A¢ =2JM,. At the

same time the Berry curvature in the model (1) takes
the form Q) (k) = Fa2Ao/ (2[A2 + o?k?]*'?) [6,7], where
Q) (k)/Q) (k) is related to an upper/lower energy branch
E™)(k)/E7)(k), respectively. Using a standard definition
for the Chern number as C = [d’kQ(k)/27 [6,7), it
is possible to obtain the analytical dependence C(u) on
the Fermi level position u [31]. At the same time,
according to [31], the value of the this integral topological
characteristic is essentially determined by the dimensionless
parameter |Ag|/E,,, where E, = m*a?/2 is the Rashba
splitting energy, and its sign directly correlates with the
direction of magnetization. The attention should be paid
to the behaviour of the magnitude C(u) within the energy
area of the exchange gap when A% > u?. For example,
if E;, < |Ag|, then the Chern number becomes a van-
ishingly small quantity, C(u) ~ E;,/Ao. In the opposite
case, when the exchange splitting is comparatively weak,
E;, > |Aol, the topological index approaches a half-integer
value, C(u) ~ [1— (|Ao|/4E,,)] sign (Ag)/2. Outside the
exchange gap, i.e, when u®> > A3, the magnitude C(u)
drastically decreases.

oy is the identity 2 x 2-matrix, k =
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Now we analyze the situation with the solitary domain
wall. We assume that the exchange field A(x,y) = A(x)
continuously increases with the coordinate x to go out to the
asymptote A(x) — +Ay, when (x/¢) — too, where ¢ is
a characteristic scale of variation of the function A(x).
Then, for certainty we assume that Ag > 0 and the domain
wall is fixed along the line x =0, ie, A(x =0,y) =0.
A pair of semi-infinite ferromagnetic domains that dif-
fer from each other in the magnetization sign can be
characterized by the local Chern numbers: the positive
one for the right domain, C, > 0 when x > 0, and the
negative one for the left domain, C; <0 when x < 0.
Thus, if the Fermi level is fixed inside the exchange
gap, |u| <A and the condition E, > A, is fulfilled,
then the topological index experiences a near-unit (almost
quantized) change when transiting through the domain wall:
C, — C; = 1 — (Ay/4E;,). According to the correspondence
principle [35,36], this situation can be interpreted as close
critical regarding the appearance of the 1D electron state
with particular properties at the boundary x = 0.

If neglecting the term quadratic in momentum in (1),
it is possible to obtain an exact solution of the
1D problem H(x, ky,)0(x, ky) = e(ky)0(x, k,) for the par-
ticular state, which energy linearly depends on the
momentum, ¢ (k,) = ak,, intersecting the exchange

gap in the 2D spectrum Eéjt)(k):qu/A%—i-ozzk2 [2].

The corresponding envelope wave function that is lo-
calized on the domain wall can be represented as
6O (x) = Ogexp[—a~" [ A(§)dé]. The spectrum and spin
polarization of this state do not depend on a specific dis-
tribution of the exchange field A(x), but are determined by
an asymptotic limitation only, A(x — c0)A(x — —o0) < 0.
Le., the ground state is topologically protected. Indeed, if
formally directing m* — oo, we obtain C, —C; = 1. The
state 0(%)(x) is chiral: the direction of its spin polarization
along the axis e, is strictly orthogonal to a direction
of propagation of electron excitation along the domain
wall. In addition to the topologically protected state,
the domain wall can induce 1D trivial Volkov-Pankratov
states (V-P) [37]. Their appearance depends on a ratio
of a localization scale of the ground state oc @/A¢ and
the domain wall width oc¢. If the former exceeds the
latter, (Aog/a) < 1), then the gap has only the state
e (ky), whose spatial behavior can be approximated by
the dependence 6% (x) ~ exp(—Aq|x|/a) that is typical
for A(x) =Agsign(x).  Otherwise, (Aog/a) > 1, the
exchange gap hosts the energy branches with the spectrum
eE) (ky) = i\/[e(i”> (0)}2 +a%2, n=1,2,3..., where
|e®(0)| < Ag. The wider the domain wall, the larger the
number of the states ¢+ (k,) with n > 0, which is induced
by it within the exchange gap.

Inclusion of the quadratic summand into (1) results in
certain modification of the above-described states. Near
the T, where the kinetic summand, k2/2m*, is com-
paratively small, this problem was solved in principle for
the low-energy state in the study [30]. It was shown that

scattering of electrons on an extremely narrow antiphase
boundary of the type o,A¢sign (x) (when ¢ = 0) leads to
the appearance of the 1D resonant state in the region of the
local exchange gap on the surface of the semiconductor
with the strong Rashba effect. In the approximation
Ay < 4E,, and |k,| < kyo, Where kg, = am*, the disper-
sion relationship for this state can be explicitly obtained:
e (ky) = aky + wy) — T [30]. Thus, modification of
the energy of the state sé%) (ky) consists in a small shift
o) = A2/4E,, and spectral broadening I'") = A3/8E2
The resonant state is quasi-bound. In addition to the
component that is localized near the domain wall, its
envelope function, 6,<QO> (x, ky) = 09 (x) 4+ V(x, ky), obtains
an oscillating component, for which the following estimate
is true ¥ (x, ky = 0) ~ U4 exp(£2ik,x). The weak spectral
broadening, Fg)) < Ay, and a low-amplitude correction to
the envelope, |[04| < |6p|, is a result of overlapping of the
energy of the 1D state 8}({0) (ky) with the lower branch of the
2D states E(~)(k) [30]. The resonant state is strongly (with
accuracy to terms, of the order of (A¢/E;,)? ) spin-polarized
along the axis e,. On the other hand, with increase of the ra-

tio Ag/E;, the spectral branch of the resonant state 81(;)) (ky)

is smeared and its envelope 9,((0) (x, ky) is delocalized.
Finally, when E;, < Ay, the 2D states lose the topological
signs and, consequently, the features of the 1D resonant
state in the real and momentum spaces disappear [30].

In order to clarify evolution of the 1D states emergent
at the finite-width domain wall, we resorted to numerical
analysis within the framework of the tight-binding approx-
imation, performing lattice regularization of the Hamilto-
nian (1). Figure 1 schematically illustrates smooth variation
of magnetization near the domain wall that induces the
1D resonant state. Without losing generality of the analysis,
a spatial distribution of the exchange field was approximated
by the function A(x) = Agtanh(x/¢). By imposing periodic
boundary conditions, we have calculated a single-particle
spectral function. This procedure is described in more detail
in the study [30]. Results of calculations of the spectral

S = N N\
)@ ® ote © OC
19®® oo ©OC

X

Figure 1. Schematic illustration of emergence of the 1D resonant
state on the solitary domain wall on the REMS surface. The blue
and green circles show variation of the amplitude and the sign
of magnetization M(x) = M(x)e, near the domain wall on the
REMS surface. The red line symbolizes a unidirectional nature of
the resonant state, while the yellow arrow marks a direction of its
spin polarization.
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Figure 2. Evolution of the spectral characteristics of the 1D electron states on the REMS surface, which are induced by the solitary
amplitude domain wall, with increase of its width ¢. The distribution of the exchange field is defined as A(x) = Ag tanh(x/¢). The four
panels (a), (b), (c), (d) correspond to key moments of variation of dispersion of the 1D states. Each panel reflects intensity of the spectral
function for the wall, with increase of its width ¢. The distribution of the given dimensionless parameter k.. A ratio of the exchange
splitting energy to the Rashba splitting energy is given by the value (Ao/Es, = 0.4). The spectral functions of the 1D states are represented
by thin cherry-color lines against the background of projection of the spectral function of the 2D states in the magnetic domains, E (i)(k).

(£n)

The symbols R, VP and B denote the gapless resonant state, el(eo) (ky), the Volkov-Pankratov resonant states, 5~ (ky) with n > 0 and the

bound state, ez (ky ), respectively.

behavior of the surface states in the situation of the relatively
weak exchange field gﬂ = 0.4 are shown in Figure 2. Four
qualitatively different cases are selected: (a) an extremely
hard domain wall, when k,,c < 1; (b) a moderately hard
domain wall, when k;,¢c < 1; (c) an intermediate-width
domain wall, k;,¢ ~ 1; (d) a soft domain wall, k;,¢ > 1.
It is easy to distinguish the 2D surface states in the domains
from the 1D resonant states on the domain wall. The branch
with quasi-linear dispersion al(eo) (ky) is located between
projections of the bands E(*) (k). It is noteworthy that the
only essential change in the behavior of the gapless state
with variation of the domain wall width, which can be noted
in Figure 2, is a narrowing of the spectral broadening of r}f’

Physics of the Solid State, 2025, Vol. 67, No. 8

with increase of the magnitude of k;,c. Rough assessment

provides a two-fold decrease of the value of F;eo) at k, =0,
when the parameter k,¢ increases from 0 to 1.3 (Figure 2).
The effect of the domain wall texture on spectral broadening
of the resonant state el(qo) (ky) is explained at a qualitative
level by the fact that in case of the finite-width domain wall

the electron that is localized on the scale of the envelope

function 9;0) (x, ky) is affected by the smaller-value exchange
field as compared to Ag. Figure 3 demonstrates that the
gapless resonant state exhibits a chirality property: it is
highly-spin-polarized along the axis e,, which is orthogonal
both to the domain wall direction e, and to orientation of
magnetization in the domains +e;.
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Figure 3. Spin polarization of the 1D electron states on the REMS surface, which are induced by the single amplitude domain
wall. The panels reflect intensity of the spectral function with taking into account spin resolution for the two different values of

the dimensionless parameter k;,g. A ratio of the exchange splitting energy to the Rashba splitting energy is defined by the value
(Ao/Eso) = 0.4. Positive/negative polarization along the axis e, is shown by the blue/red color. The symbols R, VP and B denote the

gapless resonant state, 6}(30)

We note that when inverting the direction of magnetiza-
tion in the studied system, or, in other words, when formally
replacing A(x) with —A(x), the 1D gapless state e,g)) (ky)
changes the signs of the speed and spin polarization.

At the domain wall, there is also the bound state
ep(ky), which is located below the 2D band. The effective
potential that is proportional to the value of the exchange
field gradient, |0A(x)/dx|, splits the bound state eg(ky)
from a lower edge of the branch E(~)(k). As can be
seen in Figure 2, as the domain wall width increases,
in other words, with decrease of the gradient value, the
energy branch e (ky) is pressed against the line segment
lky| < \/k?, — (Ao/a)? that connects the minimums of the
lower 2D band.

In case of the comparatively narrow domain wall that is
represented by the panels (a) and () in Figure 2, the inter-
val of the local exchange gap, |E| < Ay, hosts the resonant
state e§°> (ky) only. In case of the intermediate-width domain
wall, k;,¢ = 1, as can be seen in the panel (c), a pair of the

V-P-type states originates [37], with one state at an upper
and a lower edge of the exchange gap, e,gil)(ky). In case of
the comparatively wide domain wall, as exemplified by the
panel (d), the gap hosts the states £ (k, ) with n > 1. The
extremely wide domain wall (k;,¢ > 1) generates multiple
V-P-type states that densely fill the entire exchange gap. As
can be seen from the figure, the V-P-type states e}in) (ky)
are also resonant states, wherein they have a noticeably
larger spectral broadening F;in) as compared to rﬁ”. Spin
polarization of the 1D V-P states clearly correlates with
polarization of a projection of the 2D state, from which
they originate (Figure 3). It should be noted that although
the resonant V-P-type states are not directly related to the

(ky ), the Volkov-Pankratov resonant states, eRi") (ky) with n > 0 and the bound state, ez (k, ), respectively.

topological specific features of the 2D REMS spectrum,
they necessarily appear (along with the gapless resonant
state) on the quite wide domain wall, k,,¢ > 1.

3. Discussion and conclusion

Above, we have described the spectral properties of
the REMS surface that includes the finite-width domain
wall.  Certainly, among the 1D states induced by the
domain wall, the most interesting is the gapless resonant
state with a spin density orthogonal to the domain wall
According to the estimates done in the studies [29,30],
for the case of the hard domain wall a suitable platform
for experimental detection of such a state can be the
diluted REMS Bi;_,(V,Mn), Tel [27-29]. The Van der
Waals semiconductor material BiTel has a volume band
gap ~ 0.38 eV, which includes the 2D Rashba state with
a record high value of the parameter @ = 3.85meV - A and
splitting Ej, ~ 0.1 meV on the surface that is formed by
the Te atoms [24]. Doping BiTel with the V or Mn atoms
of the concentration x from 2 to 3 % results in opening of
the exchange gap 2Ag of up to one hundred of meV in
the T point due to surface ferromagnetic ordering of the
local moments along the easy axis e, with the relatively
high Curie temperature Tc ~ 130K [27-29]. It should
be expected that the boundary between the ferromagnetic
domains with transverse magnetization at the Te surface
of Bij_,(V,Mn), Tel is a source of long-lived spin-polarized
resonance with the quasi-linear spectrum ~ +ak, and the
lifetime 7. The magnitude 7, = [T'y’] ! is determined
by the typical time interval, during which the density of
probability of excitation, 0% (x, k,)|?, which moves along

Physics of the Solid State, 2025, Vol. 67, No. 8
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the domain wall in a ballistic mode, flows into into the
2D state E(7)(k). As shown above, spectral broadening
rﬁ” somewhat decreases with increase of the domain wall
width ¢. lLe., the resonant state 81(;)) (ky) becomes more
stable in the sense of increase of the lifetime TR<0>. However,
on the other hand, the quite wide domain wall generates
the resonant V-P-type states 81(;” (ky) that will shunt a
contribution of the resonant state 8}({0) (ky) into the transport
and magnetotransport phenomena, when the Fermi level u
is outside the energy interval 81(;1)(0) <p< 81(;)(0). And
with increase of ¢ this interval narrows. It is obvious that
the similar issue will arise when trying to observe the state
81(;)) (ky) by means of scanning tunnel spectroscopy.

In the present study, we have investigated origination of
the 1D electron states at the magnetic domain wall at the
REMS surface and their modification with variation of the
domain wall width. It is shown that the gapless resonant
state that should be interpreted as a marker of the nontrivial
Berry curvature of the 2D states, not only maintains quasi-
linear dispersion and spin polarization, but becomes more
stable with increase of the domain wall width as well. Be-
sides, the domain wall can induce the trivial states, namely:
the bound state and the resonant Volkov-Pankratov-type
state, whose behavior depends on the domain wall width.
Thus, it is reasonable to expand the scope of the systems
that combine magnetic ordering and specific features of the
band structure over the magnetic semiconductors with the
strong Rashba effect and to focus attention on searching
low-dissipative electron states on the boundaries of the
various magnetic phases in these materials.
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