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1. Introduction

A two-dimensional electron system, which is a TMDC
monolayer, is interesting for a specific feature of its band
structure. Presence of two nonequivalent valleys, wherein
each of them has a nonzero total moment of momentum,
generates a number of unusual physical effects, which were
studied in many theoretical and experimental studies [1-
6]. Significantly less attention is paid in the literature
to the influence of the mentioned specific features of a
band spectrum of the TMDC monolayers on processes,
which are related to presence of impurities in the system.
Meanwhile, these processes are also distinguished from
similar phenomena in ordinary semiconductors and these
differences can be experimentally detected.

In the proposed article, we consider a spectrum impurity
states on a short-range center, photoionization of this center,
i.e. impurity—band transitions, as well as electron scattering
on the impurity, which determines a contribution by the
impurities to resistance of the monolayer. We describe
electrons in the TMDC monolayer by a two-band model
accepted in the literature [7] with taking into account spin-
orbit (SO) band splitting:

y(tky — iky)
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. (1)
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where k — the operator of the 2D momentum of electron,
o = +1 — the spin number, 7 = +1 — the valley number,
2y, 24, — the spin splittings in a valence band and a
conduction band, y — the interband velocity, A — the band
gap width within taking into account SO (hereinafter /i = 1).
All the things below belong to an exactly solvable model
of the potential U(r) of the impurity center — a round
potential well of the radius a and the depth Vy. In the
cylindrical coordinates, components of a spinor wave func-
tion of the Hamiltonian (1) are written as ¥ = R (r)e™?,
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1y = Ry(r)e!™+7)® where the radial functions satisfy the
system of equations:

m-+rT

Ri(r)[dc —E+U(r)] —iy [T Ry(r)+TR5(r)| =0,

—Rl(r) —TR/I

ty

. } —Ro(r)[dv+E—-U(r)] =0. (2)

Here, d = A/2, a prime means differentiating with respect
to r. For the spinors (R = (Ry, R;)) bound in a well of
states, we have:

) (r <a)
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(3)
where J,, and K,, are the Bessel and Macdonald functions.
The following notations are introduced in (2) and (3):

dc=d+Aiv, dv=d-—1,v, v==I

(yq)* = (E — dc + Vo) (E + dv + Vy);
(yko)* = (dc — E)(dv + E).
By stitching the spinors in the point r = a, we find a
dispersion equation for energies of bound levels E,, (o, 7 ):
Jm(qa)(E +dv + V)

_ Ku(koa)(E +dv)
qu+T(qa) ‘

T koKin+r (Koa) )
It follows from properties of the cylindrical functions that
the spectrum of the bound states is characterized by a
symmetry E, (o, 7) = E_,,(—0, —7), i.e. all the levels are
doubly degenerate.

Numerical calculation for MoS, when a =S5A,
Vo = 0.5eV gives two levels with a moment m = 0 in each
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valley, which differ by a spin projection (of the quantum
number o). The binding energies of these levels are 72 meV
and 83 meV. Spin splitting in each valley at the specified
is equal to splitting by the valley index 7 for each value of
the spin projection o.

All the foregoing belongs to an electric-type impurity,
which attracts electrons and repels holes. In a two-band
situation, another-type impurity is possible, for example, a
structural defect or a deep trap that attracts both electrons
and holes (a recombination center). In this case, the
impurity potential in the form of U(r)o, is included in
the Hamiltonian. Calculation for MoS, shows a slight
difference of the binding energy from the above-considered
case: 53 meV and 63 meV.

2. Elastic scattering

In order to find a scattering section, it is necessary to have
a solution of the system of equations (2), which in infinity
consists of a flat wave with a spinor amplitude (falling
particles) and a superposition of diverging cylindrical waves
with the different moments m. As in the case of a common
Schrodinger scattering problem, superposition coefficients
are selected so that all terms with the converging waves
are cancelled in the difference of the exact solution and the
spinor flat wave. If selecting the spinor flat wave normalized
to a unit flux (the current operator in the considered
problem is v = yo, = p(r 0y, 0y)), then a squared module
of the spinor scattering amplitude f (¢) will at once provide
a differential scattering section along the direction ¢. By
omitting a long, but quit obvious computation, we provide
a result:

- 71 Z e—im/4 ( "i | G eime
= = — (e 1Dy ,
fof S\ 2K (/G
(5)
where

k= +/(E —dc)(E 4 dv)/y;

G — (E +dv)1/4' Q20 _ D1
E —dc ’ Dz,m.

For D, and D, ,, we have:

_ K @)
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The bilinear combinations f1f5 and f}]f> now have
no dependence on the index 7 explicitly included in the
formulas, so that the section depends on the valley only via
a combination 7o included in the parameters dc and dv.
When calculating the full transport section, a multiplier
(1 — cos(¢)) after angle integration leaves only 3 terms in
the double sum on m and m": m=m', m=m' — 1 and
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Dependence of the transport section on the energy. The solid
curve corresponds to the electric-type impurity potential, while
the dotted line corresponds to the structural defect.

m =m’ + 1, wherein the third contribution is reduced to
the second one by shifting a summing index. Finally we
obtain:

m=oQ

Ot = P Z Sinz((bm - (Dmfl) (9)

m=—0o0

The formula (9) written in this form coincides with the
result obtained in the study [8] and [9] for the ordinary
semiconductor described by the Schrodinger equation, but
determination of the phases ®,, is of course different from
the TMDC case.

The twice as large coefficient in front of the sum is
explained in the studies [8,9] by the fact that we relate (9)
to this valley and this value of the spin index o, whereas the
authors [8,9] neglected spin splitting and just made a spin
summation.

In the same way as in the above-considered issue of
the bound-state energy, replacement of the electric impurity
potential with a deep trap potential does not result in crucial
changes in the scattering pattern as long as the amplitude
Vo is still less than a half-width of the band gap.

Results of numerical calculation of the dependence of the
transport section on the energy in MoS, for the well with
the parameters Vo = 0.5eV, a = 5 A are given in the figure.
The curves show the dependence oy, (E) for both the types
of the potential when v = +1 (in this case the threshold
energy is d + 4.).

We note an interesting specific feature of the energy
dependence of the singularity section for the two types of
the impurity. In case of the electric-type potential, its matrix
element of the undisturbed wave functions is provided by
a sum of integrals, wherein one of them includes upper
components of the spinors of the initial and final states
and the second one includes the lower components thereof.
And for the impurity of the structural-defect type there is
a difference of such integrals, therefore, the module of the
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matrix element is smaller in the latter case. It results in
two competing factors. First of all, at the same parameters
of the well this potential ,;holds™ the particles more weakly
than the electric-type potential and the energy level in it is
more shallow. Secondly, the smaller value of the matrix
element decreases perturbation of the wave function of
a bombarding particle, thereby resulting in attenuation of
scattering. With the low energies, the more shallow level
enhances a resonance effect in scattering and this effects
turns out to be stronger than reduction of the module of
the matrix element. With the increase of the energy, a role
of the resonance effect decreases and a section of scattering
by the structural defect becomes less than in the case of the
electric-type impurity. The described competition results in
intersection of the curves in the figure at a certain value of
the energy E.. In our example, E, is spaced away from a
bottom of the conduction band by ~ 53 meV.

3. Photoionization of the impurity center

Let us consider the impurity—band under effect of
circularly polarized emission with the polarization vector
e=(1,i&)/v/2 (£ =+1 is the polarization index). An
operator of interaction with radiation in the system with
the Hamiltonian (1) is provided by an expression

Hip = epAohs e + h.c.;

- 1 ) 1 0 T+¢&
o= L(rouvitny) = L—s o |r 1
where 7y — the amplitude of the light-wave vector-

potential, £ = +1 for right (left) polarization of light.

Transitions between states with a definite value of the
moment under effect of circularly polarized emission from
the state (Eo,m) into the state (E,m’) follow the rule
selection by the number m, which is determined only by
an angular part of the wave function and therefore does not
depend on details of a behavior of the axially symmetrical
potential. At any 7 we have m’ = m + £. The numbers 7
and o are preserved during the optical transition. But in
case of photoionization of the bound state the finite wave
function shall in infinity have a form of the flat wave with a
certain momentum. By constructing the spinor of the final
state according to the known rules, we obtain superposition
of the wave functions with all the moments m. Integration
with the wave function of the bound level (m =0) in
the matrix element of the transition selects only a term
with m’ =& from the entire superposition. The wave
function of the state (E,m’) shall asymptotically at large
distances from the center transform into superposition of
the flat wave and the converging spherical wave, wherein
the moduli of momenta of both the waves correspond to the
energy of the final state E = Ey + @ (w — the frequency
of incident radiation).
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Probability of the process W is equal to a sum of the two
contributions:

= w.. (11)

Although all the integrals that determine W, and W_ are
taken in a closed form, appearing expressions are rather
cumbersome. In (11), we have explicitly parenthesized mul-
tipliers than carry the dependence on radiation polarization.
Of interest is a threshold behavior of probability of the
process with the energy of a photon close to the minimum
possible one ., where w, =d — Ey. This behavior is
described by the formulas:
W,=Ci(w—w:), W_=C_(w—w). (12)
The constants C; and C_ are provided by the following
expressions:
Vd(2Vo + d)[q0ga*Jo(Ga)d 1 (qoa) —
— q5a*Jo(q0a)J1(ga)])
V2(q5 — 3°)(d + Eo + Vo) x
x [dGaJo(Ga)li(qoa) + VoJ1(qa)]

2

C+:

Vd K (roa) |
+(d+Eo)\/§ ’ 13)

c {aq‘fo(qoawq'a) — Jo(da)J1(goa)
V2d(g5 — 3*)Jo(ga)

a
4
vV 2dkoJ (c}a)

The notation is introduced here:

2
71{1(/{001)} . (14)

(Eo +Vo)? —d?/y, ko=

qg=+2Vo+d)Vo/y.

Inequality of these constants means selectivity of proba-
bility of photoionization, wherein its energy dependence is
qualitatively different from the similar dependence of the
band—band transition for the free electron. The latter is
determined by a ratio s = W, /W_ and in the symmetrical
model (A, = A, =A) s = [(w — A)/(w + A)]?, where 0 —
the frequency of the absorbed photon. Thus, in one of
the valleys absorption tends to zero at the threshold of
the process. In our case, when approaching the threshold
w = . the ratio W, /W_ tends to a constant value, which
is for the symmetrical model turns out to be quite close to
unity. Let us provide the values of the selectivity parameter
s(Vo,a) for MoS, at several values of the parameters
of the potential well (Vyin electron-volts,a in angstroms):
5(0.5,2.5)=1.0009; s(0.5, 3)=1.0102; 5(0.5, 4)=1.0776;
5(0.5,5)=1.0918; 5(0.4,5)=1.0917; s(0.3,5)=1.0544;
5(0.2,5)=1.0127.

q0 = (d>—E})/y.
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We see that the photo-induced band—band transitions,
in which the momentum of the electron is preserved (the
transitions are vertical), result in much more pronounced
valley selectivity of the process than the transitions from the
state, in which the particle has not a certain momentum, but
has a certain moment.

Thus, on the example of the TMDC monolayer we
have shown that in the two-valley band structure the two-
dimensional electron system with a Dirac spectrum interacts
with the impurity qualitatively similarly to the ordinary
single-valley situation, if we talk about the bound states on
the impurity or about scattering of the electrons on it. How-
ever, the optical effects related to the impurity significantly
differ from the ordinary situation: photoionization of the
impurity center has valley selectivity, whose value depends
on the parameters of the impurity potential. It is shown that
in the impurity-band transitions selectivity is much less than
in the interband transitions, in which the momentum of the
electron is preserved.
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