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1. Introduction

A two-dimensional electron system, which is a TMDC

monolayer, is interesting for a specific feature of its band

structure. Presence of two nonequivalent valleys, wherein

each of them has a nonzero total moment of momentum,

generates a number of unusual physical effects, which were

studied in many theoretical and experimental studies [1–
6]. Significantly less attention is paid in the literature

to the influence of the mentioned specific features of a

band spectrum of the TMDC monolayers on processes,

which are related to presence of impurities in the system.

Meanwhile, these processes are also distinguished from

similar phenomena in ordinary semiconductors and these

differences can be experimentally detected.

In the proposed article, we consider a spectrum impurity

states on a short-range center, photoionization of this center,

i.e. impurity−band transitions, as well as electron scattering

on the impurity, which determines a contribution by the

impurities to resistance of the monolayer. We describe

electrons in the TMDC monolayer by a two-band model

accepted in the literature [7] with taking into account spin-

orbit (SO) band splitting:
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where k̂ — the operator of the 2D momentum of electron,

σ = ±1 — the spin number, τ = ±1 — the valley number,

2λv , 2λc — the spin splittings in a valence band and a

conduction band, γ — the interband velocity, 1 — the band

gap width within taking into account SO (hereinafter ~ = 1).
All the things below belong to an exactly solvable model

of the potential U(r) of the impurity center — a round

potential well of the radius a and the depth V0. In the

cylindrical coordinates, components of a spinor wave func-

tion of the Hamiltonian (1) are written as ψ1 = R1(r)eimϕ,

ψ2 = R2(r)ei(m+τ )ϕ, where the radial functions satisfy the

system of equations:
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− iγ
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]

− R2(r)
[

dv + E −U(r)
]

= 0. (2)

Here, d = 1/2, a prime means differentiating with respect

to r . For the spinors (R = (R1, R2)) bound in a well of

states, we have:

R(r) =

(

Jm(qr),
iγqJm+τ (qr)

dv + E + V0

)

(r < a)

R(r) =

(

Km(rκ0), Km+τ (rκ0)
iγκ0τ Km+τ (rκ0)

dv + E

)

(r > a),

(3)
where Jm and Km are the Bessel and Macdonald functions.

The following notations are introduced in (2) and (3):

dc = d + λcν, dv = d − λvν ; ν = ±1;

(γq)2 = (E − dc + V0)(E + dv + V0);

(γκ0)
2 = (dc − E)(dv + E).

By stitching the spinors in the point r = a , we find a

dispersion equation for energies of bound levels Em(σ, τ ):

Jm(qa)(E + dv + V0)

qJm+τ (qa)
=

Km(κ0a)(E + dv)

τ κ0Km+τ (κ0a)
. (4)

It follows from properties of the cylindrical functions that

the spectrum of the bound states is characterized by a

symmetry Em(σ, τ ) = E−m(−σ,−τ ), i.e. all the levels are

doubly degenerate.

Numerical calculation for MoS2 when a = 5 Å,

V0 = 0.5 eV gives two levels with a moment m = 0 in each
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valley, which differ by a spin projection (of the quantum

number σ ). The binding energies of these levels are 72meV

and 83meV. Spin splitting in each valley at the specified τ

is equal to splitting by the valley index τ for each value of

the spin projection σ .

All the foregoing belongs to an electric-type impurity,

which attracts electrons and repels holes. In a two-band

situation, another-type impurity is possible, for example, a

structural defect or a deep trap that attracts both electrons

and holes (a recombination center). In this case, the

impurity potential in the form of U(r)σz is included in

the Hamiltonian. Calculation for MoS2 shows a slight

difference of the binding energy from the above-considered

case: 53meV and 63meV.

2. Elastic scattering

In order to find a scattering section, it is necessary to have

a solution of the system of equations (2), which in infinity

consists of a flat wave with a spinor amplitude (falling
particles) and a superposition of diverging cylindrical waves

with the different moments m. As in the case of a common

Schrödinger scattering problem, superposition coefficients

are selected so that all terms with the converging waves

are cancelled in the difference of the exact solution and the

spinor flat wave. If selecting the spinor flat wave normalized

to a unit flux (the current operator in the considered

problem is v̂ = γσ τ = γ(τ σx , σy )), then a squared module

of the spinor scattering amplitude f̂ (φ) will at once provide

a differential scattering section along the direction φ. By

omitting a long, but quit obvious computation, we provide

a result:
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(5)
where

κ =
√

(E − dc)(E + dv)/γ ;

G =
(E + dv

E − dc

)1/4

; e2i8m =
D1,m

D2,m

. (6)

For D1,m and D2,m we have:

D1,m = −
iγκ

E + dv
Jm(qa)H

(2)
m+τ (κa)

−
iγq

E + dv + V0

Jm+τ (qa)H(2)
m (κa); (7)

D2,m = D∗

1,m. (8)

The bilinear combinations f 1 f ∗

2 and f ∗

1 f 2 now have

no dependence on the index τ explicitly included in the

formulas, so that the section depends on the valley only via

a combination τ σ included in the parameters dc and dv .

When calculating the full transport section, a multiplier

(1− cos(φ)) after angle integration leaves only 3 terms in

the double sum on m and m′: m = m′, m = m′ − 1 and
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Dependence of the transport section on the energy. The solid

curve corresponds to the electric-type impurity potential, while

the dotted line corresponds to the structural defect.

m = m′ + 1, wherein the third contribution is reduced to

the second one by shifting a summing index. Finally we

obtain:

σtr =
2

κ

m=∞
∑

m=−∞

sin2(8m − 8m−1) (9)

The formula (9) written in this form coincides with the

result obtained in the study [8] and [9] for the ordinary

semiconductor described by the Schrödinger equation, but

determination of the phases 8m is of course different from

the TMDC case.

The twice as large coefficient in front of the sum is

explained in the studies [8,9] by the fact that we relate (9)
to this valley and this value of the spin index σ , whereas the

authors [8,9] neglected spin splitting and just made a spin

summation.

In the same way as in the above-considered issue of

the bound-state energy, replacement of the electric impurity

potential with a deep trap potential does not result in crucial

changes in the scattering pattern as long as the amplitude

V0 is still less than a half-width of the band gap.

Results of numerical calculation of the dependence of the

transport section on the energy in MoS2 for the well with

the parameters V0 = 0.5 eV, a = 5 Å are given in the figure.

The curves show the dependence σtr (E) for both the types

of the potential when ν = +1 (in this case the threshold

energy is d + λc).

We note an interesting specific feature of the energy

dependence of the singularity section for the two types of

the impurity. In case of the electric-type potential, its matrix

element of the undisturbed wave functions is provided by

a sum of integrals, wherein one of them includes upper

components of the spinors of the initial and final states

and the second one includes the lower components thereof.

And for the impurity of the structural-defect type there is

a difference of such integrals, therefore, the module of the
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matrix element is smaller in the latter case. It results in

two competing factors. First of all, at the same parameters

of the well this potential
”
holds“ the particles more weakly

than the electric-type potential and the energy level in it is

more shallow. Secondly, the smaller value of the matrix

element decreases perturbation of the wave function of

a bombarding particle, thereby resulting in attenuation of

scattering. With the low energies, the more shallow level

enhances a resonance effect in scattering and this effects

turns out to be stronger than reduction of the module of

the matrix element. With the increase of the energy, a role

of the resonance effect decreases and a section of scattering

by the structural defect becomes less than in the case of the

electric-type impurity. The described competition results in

intersection of the curves in the figure at a certain value of

the energy Ec . In our example, Ec is spaced away from a

bottom of the conduction band by ∼ 53meV.

3. Photoionization of the impurity center

Let us consider the impurity−band under effect of

circularly polarized emission with the polarization vector

e = (1, iξ)/
√
2 (ξ = ±1 is the polarization index). An

operator of interaction with radiation in the system with

the Hamiltonian (1) is provided by an expression

Ĥint = eγA0ĥτ ,ξe
−iωt + h.c.;

ĥτ ,ξ =
1

2

(

τ σx + iξσy

)

=
1

2

[

0 τ + ξ

τ − ξ 0

]

, (10)

where A0 — the amplitude of the light-wave vector-

potential, ξ = ±1 for right (left) polarization of light.

Transitions between states with a definite value of the

moment under effect of circularly polarized emission from

the state (E0, m) into the state (E,m′) follow the rule

selection by the number m, which is determined only by

an angular part of the wave function and therefore does not

depend on details of a behavior of the axially symmetrical

potential. At any τ we have m′ = m + ξ . The numbers τ

and σ are preserved during the optical transition. But in

case of photoionization of the bound state the finite wave

function shall in infinity have a form of the flat wave with a

certain momentum. By constructing the spinor of the final

state according to the known rules, we obtain superposition

of the wave functions with all the moments m. Integration

with the wave function of the bound level (m = 0) in

the matrix element of the transition selects only a term

with m′ = ξ from the entire superposition. The wave

function of the state (E, m′) shall asymptotically at large

distances from the center transform into superposition of

the flat wave and the converging spherical wave, wherein

the moduli of momenta of both the waves correspond to the

energy of the final state E = E0 + ω (ω — the frequency

of incident radiation).

Probability of the process W is equal to a sum of the two

contributions:

W =
(1 + ξτ )

2
W+ +

(1− ξτ )

2
W−. (11)

Although all the integrals that determine W+ and W− are

taken in a closed form, appearing expressions are rather

cumbersome. In (11), we have explicitly parenthesized mul-

tipliers than carry the dependence on radiation polarization.

Of interest is a threshold behavior of probability of the

process with the energy of a photon close to the minimum

possible one ωc , where ωc = d − E0. This behavior is

described by the formulas:

W+ = C+(ω − ωc), W− = C−(ω − ωc). (12)

The constants C+ and C− are provided by the following

expressions:

C+ =



















√
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− q2
0a

2J0(q0a)J1(q̄a)])
√
2(q2

0 − q̄2)(d + E0 + V0) ×
× [dq̄aJ0(q̄a)J1(q0a) + V0J1(q̄a)]

+

√
d K2(κ0a)

(d + E0)
√
2















2

; (13)

C− =

{

aq̄J0(q0a)J1(q̄a) − J0(q̄a)J1(q0a)√
2d(q2

0 − q̄2)J0(q̄a)

+
a√

2dκ0J0(q̄a)
K1(κ0a)

}2

. (14)

The notation is introduced here:

q0 =
√

(E0 + V0)2 − d2/γ, κ0 =
√

(d2 − E2
0 )/γ,

q̄ =
√

(2V0 + d)V0/γ.

Inequality of these constants means selectivity of proba-

bility of photoionization, wherein its energy dependence is

qualitatively different from the similar dependence of the

band−band transition for the free electron. The latter is

determined by a ratio s = W+/W− and in the symmetrical

model (1c = 1v = 1) s = [(ω − 1)/(ω + 1)]2, where ω —
the frequency of the absorbed photon. Thus, in one of

the valleys absorption tends to zero at the threshold of

the process. In our case, when approaching the threshold

ω = ωc the ratio W+/W− tends to a constant value, which

is for the symmetrical model turns out to be quite close to

unity. Let us provide the values of the selectivity parameter

s(V0, a) for MoS2 at several values of the parameters

of the potential well (V0 in electron-volts, a in angstroms):
s(0.5, 2.5)=1.0009; s(0.5, 3)=1.0102; s(0.5, 4)=1.0776;

s(0.5, 5)=1.0918; s(0.4, 5)=1.0917; s(0.3, 5)=1.0544;

s(0.2, 5)=1.0127.
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We see that the photo-induced band−band transitions,

in which the momentum of the electron is preserved (the
transitions are vertical), result in much more pronounced

valley selectivity of the process than the transitions from the

state, in which the particle has not a certain momentum, but

has a certain moment.

Thus, on the example of the TMDC monolayer we

have shown that in the two-valley band structure the two-

dimensional electron system with a Dirac spectrum interacts

with the impurity qualitatively similarly to the ordinary

single-valley situation, if we talk about the bound states on

the impurity or about scattering of the electrons on it. How-

ever, the optical effects related to the impurity significantly

differ from the ordinary situation: photoionization of the

impurity center has valley selectivity, whose value depends

on the parameters of the impurity potential. It is shown that

in the impurity-band transitions selectivity is much less than

in the interband transitions, in which the momentum of the

electron is preserved.
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