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Modeling the motion of edge dislocations in aluminum under
high shear strains using molecular dynamics
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The molecular dynamics method is used to study the motion of a pair of edge dislocations of opposite signs in
a single crystal of aluminum with an fcc lattice under different shear stresses and temperatures. The dimensions of
the computational cell with periodic boundary conditions in all three directions are chosen so that the dislocations
do not interact with each other. The range of sufficiently large shear stresses is studied, when the above-barrier slip
of dislocations is realized and their velocity decreases with increasing temperature due to an increase in viscous
friction. The stacking fault energy is calculated and the oscillation frequency of the dislocation line is estimated.
The obtained results are consistent with the known results of modeling and experimental data, and can be used to

interpret the electroplasticity effect.
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1. Introduction

For most metals, at the normal conditions the basic
mechanism of plastic deformation is sliding and climbing
of dislocations and only in materials with a nanocrystalline
structure that have a dense grid of grain boundaries
the deformation is mostly contributed by grain boundary
sliding [1,2]. In recent decades, an electroplasticity effect
(EPE) has gained interest [3-5], which was discovered by
Troitskii in 1969 [6] and now various methods are proposed
for its application [7-10]. A physical nature of the EPE
is still actively discussed. In addition to an electron wind
hypothesis [11], a hypothesis of dislocation heating by an
electron flux is discussed [12-13], since they offer increased
resistance to a current. After receiving thermal energy from
the electron flux, dislocations have high mobility. It explains
an increase of plasticity of the metal without significant
heating of the metal on average, which is exactly determined
as the EPE [16]. More detailed discussion of the above-
described EPE mechanism requires information about how
mobility of dislocations depends on the temperature and
a stress-strain state of the metal. It is this problem that
motivated this research.

It is known that dislocations in metals move as per
two mechanisms: thermofluctuation mobility and dynamic
overcoming of the Peierls—Nabarro barrier [17]. During

thermoactivated motion, dislocations that are in a field of
shear stresses, overcome the Peierls—Nabarro barrier due
to thermal oscillations of atoms, by formation and motion
of the kinks on the dislocations. A speed of dislocation
movement with the increase of the temperature significantly
increases in this case, since probability of kink origination
on a dislocation line increases [18]. This mechanism is
typical for slowly moving dislocations under effect of weak
shear stresses. With dynamic or, in other words, over-
barrier motion of the dislocations, the acting shear stress
is sufficiently high to overcome the Peierls—Nabarro barrier
without an additional contribution by thermofluctuation.
In this case, the increase of the temperature results in a
decrease of the dislocation speed, since they are subjected
to increasing viscous deceleration. Dynamic deceleration is
manifested not only for fast dislocations, but for slow ones
as well to determine a rate of decay of oscillation motion
of dislocation segments between obstacles and kinetics
of thermofluctuation overcoming of potential barriers by
the dislocations [19]. Therefore, it is important to study
various ranges of the temperatures and the shear stresses to
investigate motion of the dislocations.

It is difficult to experimentally study physical processes
that occur in the metals during motion of the disloca-
tions, since an experiment method is quite complicated,
their application field is limited and they require costly
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equipment [20]. Therefore, it is relevant to use computer
simulation methods, namely, a molecular dynamics method
(MD), for such studies. Molecular dynamics means nu-
merical integration of equations of the classical Newtonian
mechanics, which describe motion of separate atoms in
a solid body or liquid using an interparticle interaction
potential that takes into account properties of a studied
substance [21]. Simulation by the MD method involves a
wide use of potentials that are created by an embedded
atom method (EAM potentials) and take into account not
only interaction between the very atoms, but interaction
between the atoms and an electron gas, thereby resulting in
multiparticle interatomic interactions [22]. We should note a
large progress in development of machine learning potentials
(MLI potentials) [23-26], which significantly exceed the
EAM potentials in accuracy, but are inferior to them in
terms of speed by at least an order [27].

Due to a limited computer power, the MD simulation
deals with small volumes of the substance. As known,
the separate dislocations create long-range fields of elastic
distortions of the lattice and then there is a problem
of eliminating interaction of the dislocation in question
with such fields created by other dislocations [28-32].
The aim of the present study was to investigate motion
of the dislocations in an aluminum single crystal using
periodic boundary conditions that make it possible to fully
zero forces of interactions between the dislocations when
correctly selecting sizes of a computational cell. The
simulation was at various values of the shear stress and
the temperature. Due to the above-mentioned limitedness
of computers resources, we managed to consider only a
case of over-barrier sliding of the dislocations with the shear
stresses noticeably exceeding an aluminum’s flow stress that
is 45—55MPa depending on a structure state. The studied
temperature interval from 50 to 700K covers ranges of
cryogenic and hot deformation (the melting temperature of
aluminum is 934 K). The electroplastic deformation usually
takes place without significant heating of the metal on
average, but around the dislocations the material is heated
more strongly, therefore it is also interesting to simulate the
dislocations at the higher temperatures.

2. Model

To simulate by the MD method, the LAMMPS software
was used, while the OVITO software was used to visualize
calculation results. In order to study dynamics of edge
dislocations in aluminum, we constructed the computational
cell of an FCC crystal with coordinate axes that were
oriented according to the basic slip system [110] (111) that
was typical for the metals with the FCC lattice.

Presently, motion of the dislocations in aluminum
is studied using models with various boundary condi-
tions [11,19,21,33-36]. Unlike many existing studies, in
which the periodic boundary conditions were pre-defined by
one or two axes [19,21], in our model the periodic boundary
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Figure 1. (a) Computational cell and the directions of the
coordinate axes. The two split edge dislocations are encircled.
(b—d) Motion of the dislocations in the sliding plane at the shear
stress of 140 MPa at the times 0 and 2 ps at the temperature (b)
100K, (c¢) 300K and (d) 600K. The lines of partial dislocations
are shown in green, the atoms with HCP coordination are shown
in red, they are arranged on stacking faults.

conditions were pre-defined by the three axes (x,y,z) in
order to simulate motion of a pair of edge dislocations of
opposite signs. When selecting the size of the lattice cell,
we took into account that in order to provide minimum
interaction between the upper and lower dislocations of
opposite signs, a height of the lattice cell shall exceed its
length at least in three times [37]. Here, we use a fact that
fields of stresses from a chain of equidistant dislocations
exponentially decrease with a distance. Thus, the sizes of
the selected computational cell were 171.4x24.7x517.8 A.
Figure 1,a shows the computational cell and directions
of the axes. Figure 1,h—d shows oscillations of partial
dislocations at the various temperatures. It is clear that the
size of the computational cell along the axis x is sufficient
to comprise several kinks on the dislocation line, which are
well visible at the higher temperatures.

A length of the Burgers vector for the full dislocation is
calculated by the formula

bl = S1(110)] = =, (1)

where a =4.04A is an equilibrium lattice parameter.

Correspondingly, by substituting into (1), we obtain
|b| = 2.8567 A.
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For the molecular-dynamics simulation, we used the
interparticle interaction potential presented in the study [38].
The simulation was at the temperatures 7 = 50, 100, 200,
300, 400, 500, 600, 700K and shear strains

nlb
e = "0, 2)

where n — the natural number, L — the height of the lattice
cell. Then, the respective shear stress is

0y, = Gé,y, (3)

where G =25.5GPa — the shear modulus of alu-
minum [39]. For L =517.8A we considered the values
n=1, 2 and 4 and, besides, for the cell of the double
height, L = 1035.6 A, we considered the case when n = 1.
Thus, the shear strains &, = 0.00275, 0.0055, 0.011
and 0.022 were considered, to which the shear stresses
oy, =70, 140, 280 and 561 MPa corresponded. We
note that these values are above the flow stress of pure
aluminum, for which the values o, = 30—55MPa are given
depending on a grain size and a purity degree; therefore,
motion of the dislocations in the performed calculations is
over-barrier motion.

The simulation consisted of the following stages:

1. Creation of the ideal crystal FCC lattice of aluminum
with the pre-defined sizes and crystal-lattice orientation with
the periodic boundary conditions in the three dimensions.

2. Cutting out two adjacent atomic planes (110) of the
common thickness |b| and height L/2 with subsequent
energy minimization resulting in collapse of section edges
and formation of the pair of the split edge dislocations of
opposite signs. The minimization was carried out in an
NVE assembly for 5 ps.

3. Holding for 1 ps in the NVE assembly for relaxation of
internal stresses and for 10ps in an NPT assembly at the
temperature of a subsequent shear in order to transfer the
system into an equilibrium state.

4. Application of homogeneous shear strain ¢,;.

5. Molecular-dynamics calculation for 10 ps after applica-
tion of the shear with recording of dislocation motion.

We note importance of the stage 2, which includes split-
ting of the full dislocation that is energetically less favorable
for this FCC lattice, into two partial edge dislocations as per
the expression:

%a[llO] - %a[2li] + %a[121]. )
The pair of the split dislocations occurred as a result of
crystallite relaxation can be considered as a dislocation loop.
Therefore, the upper and lower dislocations in Figure 1,a
have an opposite topological charge and when the positive
shear stress o, is applied they will slide along the axis x in
the opposite directions.

A stacking fault is formed between the partial disloca-
tions. The split of the full dislocation is stable with a
minimum of the energy of a system that consists of the
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two partial dislocations and the stacking fault binding them.
At the same time, tensioning of the stacking fault tends
to tighten up the partial dislocations together, overcoming
a force of their repulsion. Consequently, a width of the
splitting area of the partial dislocations is determined by the
energy of the stacking fault: the smaller the energy of the
stacking fault, the larger the distance between the partial
dislocations [40].

The speed of the dislocations was determined as a sum
of the distances transmitted by the two partial dislocations
for a certain time period, which is divided by this time
period. For the slower dislocations, we selected a longer
time period in order to record the distance transmitted
by them with sufficient accuracy. For the shear stresses
140, 280 and 561 MPa the calculation time was 2ps at
the temperatures 50, 100 and 200K; it was 3ps at the
temperatures 300 and 400 K; it was 4 ps at the temperatures
500 and 600K and it was 5 ps at the temperature of 700 K.
For the double-height lattice, at the shear stress of 70 MPa,
the calculation time was 4ps for all the cases, since at
this value of the stress the temperature slightly affected the
speed of the dislocations.

In order to study oscillations of the partial dislocations
due to thermofluctuations without effect of the shear, the
calculations were performed for the temperatures 100,
300 and 600 K.

The simulation for determining the stacking fault energy
(SFE) consisted of the following steps:

1. Creation of the ideal crystal FCC lattice of aluminum
with the sizes 171.4x24.7x517.8 A.

2. Incorporation of the three parallel stacking faults
into the system at the distance 5[b| from each other by
displacing respective atomic units by |b|/v/3 along the
axis y, which is equivalent to displacement by a/+/3 along
the direction {112} [41,42).

3. Energy minimization in the NVE assembly for 5 ps and
holding at the temperature of 10K for 10ps in the NPT
assembly.

4. Calculation of the SFE.

3. Results and discussion

3.1. Motion of dislocations

Figure 2 shows graphs of the dependence of the distance
transmitted by the upper and lower partial dislocations
on time at the shear stress of 280 MPa and the tempera-
tures (a) 100 and (b) 500K. It is clear that at the con-
sidered time portion the dislocations move approximately
at the same speed, wherein the motion speed decreases
with an increase of the temperature. The speed of the
dislocations was determined within the portion of the linear
dependence x (t).

Figure 3 shows the dependences of the stress o, on time
and Figure 4 shows the dependences of other components
of the stress tensor on time at the shear stress &,, = 0.0055
and at the various temperatures. It is clear from Figure 3
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Figure 2. Dependence of the speed of the partial dislocations on time at the shear stress of 280 MPa at the temperature: a — 100,
b — 500K, where 7,2 — the upper left and right partial dislocations, respectively, 3,4 — the lower left and right partial dislocations,
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Figure 3. Dependence of the shear stress oy, on time with the
shear strain &,; = 0.0055.

that the stress oy, tends to zero with time. Oscillating
approximation of the shear stress to zero is observed
at the low temperatures, so is relaxation approximation
thereof at the high temperatures, which is related to the
increase of viscosity of the material with the increase of
the temperature. As can be seen from Figure 4, at all the
temperatures the stresses oy, 0yy, 0;;, Oy, Oy, Temain to
be small as compared to the stress oy.

Figure 5 shows graphs of the dependence of the speeds
of the dislocations on the temperature at the various values
of the shear strain, while Figure 6 shows graphs of the
dependence of the stress oy, on the temperature in the
same time interval, in which the speed of the dislocations
was calculated.

It is clear from Figure 5 and Figure 6 that with the
increase of the temperature the speed of motion of the

dislocations and the stresses o, decrease. At the same time,
with the increase of the temperature the shear stresses o,
significantly decrease at the shear strain &, = 0.022 and
they less significantly decrease when ¢, = 0.011 and are
almost unchanged when ¢,, = 0.0055 and &,, = 0.00275.
It is related to dynamic overcoming of the Peierls—Nabarro
potential by the dislocations due to effect of the high shear
stresses (which exceed a yield strength of this material,
which is 55MPa and 45MPa in the initial and annealed
states, respectively [43]) without significant contribution by
thermofluctuation. Deceleration of the dislocations with
the increase of the temperature is due to the increase of
viscosity of medium, in which the dislocation moves.

It is assumed that at the lower shear stresses (below
the yield strength) we enter an area of thermofluctuation
mobility, where the speed of motion of the dislocations will
increase with the increase of the temperature. At the same
time, the dislocations will move much more slowly and their
speed will be required to be measured at much longer time
intervals.

3.2. Oscillation of dislocations

Figure 7 shows the images of the partial dislocations
in a section in plan view at the zero shear stress and
at the temperatures 100, 300 and 600 K. The images are
provided with the interval of 04ps. In all the cases, a
period of oscillations of the dislocation line is about 0.1 ps.
It is clear that with the increase of the temperature the
amplitude of oscillations of the dislocations increases due to
thermofluctuation of the atoms.

3.3. Stacking fault energy

The three stacking faults at the distance of 5|b| were
incorporated into the computational cell with the periodic

Physics of the Solid State, 2025, Vol. 67, No. 8
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Figure 4. Dependence of various components of the stress tensor (except for oy;) on time with the shear strain &, = 0.0055 and at the
temperature: a — 100, » — 300, ¢ — 500, d — 700 K.

1000
—e—£_=0.00275 —e— & =0.00275
30 —e— ¢ . =0.0055 200 F —o— ¢ =0.0055
—— & —0.011 ——¢ _=0.011
oo s e g =002 oo oo . g, =002
S S 600 [ g
§.‘ 20 B o E s .
o< 1] N
s 400
ok w
‘\i\i—i\N—{\. 200 |
H__H‘—._—\_i_i\;
—o— 9 —0 — o 9 o 8
0 ] ] | | | | | 0 1 1 I I I I I
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

T.K T,K

Figure 6. Dependences of the shear stresses oy, on the
temperature within the interval, in which the speed of the
dislocations was calculated.

Figure 5. Dependences of the speed of the dislocations on the
temperature at the various shear strains.
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Figure 7. Image of the partial dislocations (the green lines) in a section in plan view at the zero shear stress at the temperatures: (a)
100, (b) 300, (c) 600K. The dislocations for each temperature are shown in times with an interval of 0.4 ps.
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Figure 8. For the calculation of the stacking fault energy. The
atoms with FCC (HCP) coordination are shown in green (red).

boundary conditions for SFE calculation, see Figure 8. The
calculation was performed at the temperature of 10K by
the formula:

E, — E;

ESF = T (5)

where E; — the potential energy of the ideal structure after
minimization, £, — the structure defect energy after mini-
mization, S — the area of one stacking fault. Using the nu-
merical values E; = —447380.34¢V, E, = —447275.41 ¢V,
S = 4233.58 A%, we find that

Esp = 0.0082eV/A” = 131 mJ/m?. (6)

According to the literature data [44], the SFE value of
aluminum is within the interval 80—150 mJ/m? and the ob-
tained calculated value falls within this interval. Coincidence
of the SFE with the experimental data indicates justifiability
of selection of the used interatomic potential.

4. Conclusion

We have performed the molecular-dynamics simulation
of motion of the edge dislocations in the FCC lattice of
the aluminum single crystal at the various values of the
shear stresses and the temperature. We have used the
periodic boundary conditions with the pair of the edge
dislocations of opposite sings in the computational cell,
whereas only one dislocation was previously considered in
many studies with using rigid boundary conditions along
some directions [28,29,31]. Absence of interaction between
the pair of the dislocations in the computational cell is
achieved in the present study by selecting a cell size ratio
based on the fact that the elastic fields created by the chain
of the equidistant dislocations exponentially decrease with
the distance from the chain.

Physics of the Solid State, 2025, Vol. 67, No. 8
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The full dislocation was split into two partial dislocations,
between which the stacking fault with the HCP structure
was formed, which is typical for the FCC metals. The
stacking fault energy is calculated. The obtained value
Esp = 131 mJ/m? is within the range of the experimental
data 80—150 mJ/m? [44], thereby indicating a good quality
of the used interatomic potential.

Within the studied range of the shear stresses
70—561MPa  (above the flow stress that is
30—55MPa [43]), the Peierls—Nabarro potential is

dynamically overcome by the dislocations. As a result, the
increase of viscous friction with the increase of the temper-
ature determined reduction of the speed of the dislocations
with the increase of the temperature, see Figure 5.

It is found when studying the process of oscillations
of the lines of the partial dislocations at the various
temperatures without applying the shear stress that the
typical oscillation period is 0.1 ps. A typical current pulse
applied in EPE-study has duration of 10~*s, i.e. for the
time of transmission of one pulse the dislocation has time
to complete 10° oscillations.

Let us show that the represented results are useful
when discussing the EPE nature. It is known that the
density of the dislocations after annealing is p ~ 101> m—2
and can be up to p ~ 10®m~2 in the highly deformed
metals [45,46]. When considering an array of the equidistant
parallel straight dislocations with the density of the dis-
locations p, the distance between the nearest dislocations
in it will be D ~1/,/p. We obtain that D ~ 10*A in
the annealed state and D ~ 102 A in the deformed metal.
We note that our calculations used the cell with the sizes
171.4%24.7x517.8 A, in which the two dislocations are
arranged. Thus, we simulated the density of the dislocations,
which corresponded to the highly deformed state.

Joule heat released at the dislocation propagates further
on due to thermal conductivity into defectless areas of the
crystal. By solving a thermal conductivity problem, it can be
found how the temperature of a dislocation nucleus varies
in time by taking into account a Joule heat influx rate and a
heat outflow rate due to thermal conductivity. When know-
ing the temperature of the dislocation and the dependence
of the speed of the dislocation on the temperature, one can
construct a theory of electroplastic deformation. This theory
shall also take into account a change of the density of the
dislocations during electroplastic deformation.

The presented results can be useful when discussing the
experimental studies for electroplasticity of aluminum and
aluminum alloys that are electrosimulatedly formed [47],
twisted [48], cyclically twisted [49] and tensioned [50]. Of
interest, are studies on the influence of the current on a
friction coefficient of aluminum [51], a compression ratio of
titanium [52] as well as on vibrations of a metal, which are
induced by current pulses.

It is planned in the next studies to determine the
dependence of the speed of the dislocations on the tem-
perature at the low values of the shear stresses, when the

3 Physics of the Solid State, 2025, Vol. 67, No. 8

Peierls—Nabarro potential is overcome in a thermofluctua-
tion way and it is expected that the speed of the dislocation
increases with the temperature. These calculations will
require many more resources, since the calculation time
significantly increases.
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