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Modeling the motion of edge dislocations in aluminum under

high shear strains using molecular dynamics
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The molecular dynamics method is used to study the motion of a pair of edge dislocations of opposite signs in

a single crystal of aluminum with an fcc lattice under different shear stresses and temperatures. The dimensions of

the computational cell with periodic boundary conditions in all three directions are chosen so that the dislocations

do not interact with each other. The range of sufficiently large shear stresses is studied, when the above-barrier slip

of dislocations is realized and their velocity decreases with increasing temperature due to an increase in viscous

friction. The stacking fault energy is calculated and the oscillation frequency of the dislocation line is estimated.

The obtained results are consistent with the known results of modeling and experimental data, and can be used to

interpret the electroplasticity effect.
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1. Introduction

For most metals, at the normal conditions the basic

mechanism of plastic deformation is sliding and climbing

of dislocations and only in materials with a nanocrystalline

structure that have a dense grid of grain boundaries

the deformation is mostly contributed by grain boundary

sliding [1,2]. In recent decades, an electroplasticity effect

(EPE) has gained interest [3–5], which was discovered by

Troitskii in 1969 [6] and now various methods are proposed

for its application [7–10]. A physical nature of the EPE

is still actively discussed. In addition to an electron wind

hypothesis [11], a hypothesis of dislocation heating by an

electron flux is discussed [12–15], since they offer increased

resistance to a current. After receiving thermal energy from

the electron flux, dislocations have high mobility. It explains

an increase of plasticity of the metal without significant

heating of the metal on average, which is exactly determined

as the EPE [16]. More detailed discussion of the above-

described EPE mechanism requires information about how

mobility of dislocations depends on the temperature and

a stress-strain state of the metal. It is this problem that

motivated this research.

It is known that dislocations in metals move as per

two mechanisms: thermofluctuation mobility and dynamic

overcoming of the Peierls−Nabarro barrier [17]. During

thermoactivated motion, dislocations that are in a field of

shear stresses, overcome the Peierls−Nabarro barrier due

to thermal oscillations of atoms, by formation and motion

of the kinks on the dislocations. A speed of dislocation

movement with the increase of the temperature significantly

increases in this case, since probability of kink origination

on a dislocation line increases [18]. This mechanism is

typical for slowly moving dislocations under effect of weak

shear stresses. With dynamic or, in other words, over-

barrier motion of the dislocations, the acting shear stress

is sufficiently high to overcome the Peierls−Nabarro barrier

without an additional contribution by thermofluctuation.

In this case, the increase of the temperature results in a

decrease of the dislocation speed, since they are subjected

to increasing viscous deceleration. Dynamic deceleration is

manifested not only for fast dislocations, but for slow ones

as well to determine a rate of decay of oscillation motion

of dislocation segments between obstacles and kinetics

of thermofluctuation overcoming of potential barriers by

the dislocations [19]. Therefore, it is important to study

various ranges of the temperatures and the shear stresses to

investigate motion of the dislocations.

It is difficult to experimentally study physical processes

that occur in the metals during motion of the disloca-

tions, since an experiment method is quite complicated,

their application field is limited and they require costly
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equipment [20]. Therefore, it is relevant to use computer

simulation methods, namely, a molecular dynamics method

(MD), for such studies. Molecular dynamics means nu-

merical integration of equations of the classical Newtonian

mechanics, which describe motion of separate atoms in

a solid body or liquid using an interparticle interaction

potential that takes into account properties of a studied

substance [21]. Simulation by the MD method involves a

wide use of potentials that are created by an embedded

atom method (EAM potentials) and take into account not

only interaction between the very atoms, but interaction

between the atoms and an electron gas, thereby resulting in

multiparticle interatomic interactions [22]. We should note a

large progress in development of machine learning potentials

(MLI potentials) [23–26], which significantly exceed the

EAM potentials in accuracy, but are inferior to them in

terms of speed by at least an order [27].
Due to a limited computer power, the MD simulation

deals with small volumes of the substance. As known,

the separate dislocations create long-range fields of elastic

distortions of the lattice and then there is a problem

of eliminating interaction of the dislocation in question

with such fields created by other dislocations [28–32].
The aim of the present study was to investigate motion

of the dislocations in an aluminum single crystal using

periodic boundary conditions that make it possible to fully

zero forces of interactions between the dislocations when

correctly selecting sizes of a computational cell. The

simulation was at various values of the shear stress and

the temperature. Due to the above-mentioned limitedness

of computers resources, we managed to consider only a

case of over-barrier sliding of the dislocations with the shear

stresses noticeably exceeding an aluminum’s flow stress that

is 45−55MPa depending on a structure state. The studied

temperature interval from 50 to 700K covers ranges of

cryogenic and hot deformation (the melting temperature of

aluminum is 934K). The electroplastic deformation usually

takes place without significant heating of the metal on

average, but around the dislocations the material is heated

more strongly, therefore it is also interesting to simulate the

dislocations at the higher temperatures.

2. Model

To simulate by the MD method, the LAMMPS software

was used, while the OVITO software was used to visualize

calculation results. In order to study dynamics of edge

dislocations in aluminum, we constructed the computational

cell of an FCC crystal with coordinate axes that were

oriented according to the basic slip system [110] (1̄11̄) that

was typical for the metals with the FCC lattice.

Presently, motion of the dislocations in aluminum

is studied using models with various boundary condi-

tions [11,19,21,33–36]. Unlike many existing studies, in

which the periodic boundary conditions were pre-defined by

one or two axes [19,21], in our model the periodic boundary
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Figure 1. (a) Computational cell and the directions of the

coordinate axes. The two split edge dislocations are encircled.

(b−d) Motion of the dislocations in the sliding plane at the shear

stress of 140MPa at the times 0 and 2 ps at the temperature (b)
100K, (c) 300K and (d) 600K. The lines of partial dislocations

are shown in green, the atoms with HCP coordination are shown

in red, they are arranged on stacking faults.

conditions were pre-defined by the three axes (x , y, z ) in

order to simulate motion of a pair of edge dislocations of

opposite signs. When selecting the size of the lattice cell,

we took into account that in order to provide minimum

interaction between the upper and lower dislocations of

opposite signs, a height of the lattice cell shall exceed its

length at least in three times [37]. Here, we use a fact that

fields of stresses from a chain of equidistant dislocations

exponentially decrease with a distance. Thus, the sizes of

the selected computational cell were 171.4×24.7×517.8 Å.

Figure 1, a shows the computational cell and directions

of the axes. Figure 1, b–d shows oscillations of partial

dislocations at the various temperatures. It is clear that the

size of the computational cell along the axis x is sufficient

to comprise several kinks on the dislocation line, which are

well visible at the higher temperatures.

A length of the Burgers vector for the full dislocation is

calculated by the formula

|b| =
a

2
|〈110〉| =

a√
2
, (1)

where a = 4.04 Å is an equilibrium lattice parameter.

Correspondingly, by substituting into (1), we obtain

|b| = 2.8567 Å.
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For the molecular-dynamics simulation, we used the

interparticle interaction potential presented in the study [38].
The simulation was at the temperatures T = 50, 100, 200,

300, 400, 500, 600, 700K and shear strains

εxz =
n|b|

L
, (2)

where n — the natural number, L — the height of the lattice

cell. Then, the respective shear stress is

σxz = Gεxz , (3)

where G = 25.5GPa — the shear modulus of alu-

minum [39]. For L = 517.8 Å we considered the values

n = 1, 2 and 4 and, besides, for the cell of the double

height, L = 1035.6 Å, we considered the case when n = 1.

Thus, the shear strains εxz = 0.00275, 0.0055, 0.011

and 0.022 were considered, to which the shear stresses

σxz = 70, 140, 280 and 561MPa corresponded. We

note that these values are above the flow stress of pure

aluminum, for which the values σy = 30−55MPa are given

depending on a grain size and a purity degree; therefore,

motion of the dislocations in the performed calculations is

over-barrier motion.

The simulation consisted of the following stages:

1. Creation of the ideal crystal FCC lattice of aluminum

with the pre-defined sizes and crystal-lattice orientation with

the periodic boundary conditions in the three dimensions.

2. Cutting out two adjacent atomic planes (110) of the

common thickness |b| and height L/2 with subsequent

energy minimization resulting in collapse of section edges

and formation of the pair of the split edge dislocations of

opposite signs. The minimization was carried out in an

NVE assembly for 5 ps.

3. Holding for 1 ps in the NVE assembly for relaxation of

internal stresses and for 10 ps in an NPT assembly at the

temperature of a subsequent shear in order to transfer the

system into an equilibrium state.

4. Application of homogeneous shear strain εxz .

5. Molecular-dynamics calculation for 10 ps after applica-

tion of the shear with recording of dislocation motion.

We note importance of the stage 2, which includes split-

ting of the full dislocation that is energetically less favorable

for this FCC lattice, into two partial edge dislocations as per

the expression:

1

2
a [110] =

1

6
a [211̄] +

1

6
a [121]. (4)

The pair of the split dislocations occurred as a result of

crystallite relaxation can be considered as a dislocation loop.

Therefore, the upper and lower dislocations in Figure 1, a

have an opposite topological charge and when the positive

shear stress σxz is applied they will slide along the axis x in

the opposite directions.

A stacking fault is formed between the partial disloca-

tions. The split of the full dislocation is stable with a

minimum of the energy of a system that consists of the

two partial dislocations and the stacking fault binding them.

At the same time, tensioning of the stacking fault tends

to tighten up the partial dislocations together, overcoming

a force of their repulsion. Consequently, a width of the

splitting area of the partial dislocations is determined by the

energy of the stacking fault: the smaller the energy of the

stacking fault, the larger the distance between the partial

dislocations [40].
The speed of the dislocations was determined as a sum

of the distances transmitted by the two partial dislocations

for a certain time period, which is divided by this time

period. For the slower dislocations, we selected a longer

time period in order to record the distance transmitted

by them with sufficient accuracy. For the shear stresses

140, 280 and 561MPa the calculation time was 2 ps at

the temperatures 50, 100 and 200K; it was 3 ps at the

temperatures 300 and 400K; it was 4 ps at the temperatures

500 and 600K and it was 5 ps at the temperature of 700K.

For the double-height lattice, at the shear stress of 70MPa,

the calculation time was 4 ps for all the cases, since at

this value of the stress the temperature slightly affected the

speed of the dislocations.

In order to study oscillations of the partial dislocations

due to thermofluctuations without effect of the shear, the

calculations were performed for the temperatures 100,

300 and 600K.

The simulation for determining the stacking fault energy

(SFE) consisted of the following steps:

1. Creation of the ideal crystal FCC lattice of aluminum

with the sizes 171.4×24.7×517.8 Å.

2. Incorporation of the three parallel stacking faults

into the system at the distance 5|b| from each other by

displacing respective atomic units by |b|/
√
3 along the

axis y , which is equivalent to displacement by a/
√
3 along

the direction {112} [41,42].
3. Energy minimization in the NVE assembly for 5 ps and

holding at the temperature of 10K for 10 ps in the NPT

assembly.

4. Calculation of the SFE.

3. Results and discussion

3.1. Motion of dislocations

Figure 2 shows graphs of the dependence of the distance

transmitted by the upper and lower partial dislocations

on time at the shear stress of 280MPa and the tempera-

tures (a) 100 and (b) 500K. It is clear that at the con-

sidered time portion the dislocations move approximately

at the same speed, wherein the motion speed decreases

with an increase of the temperature. The speed of the

dislocations was determined within the portion of the linear

dependence x(t).
Figure 3 shows the dependences of the stress σxz on time

and Figure 4 shows the dependences of other components

of the stress tensor on time at the shear stress εxz = 0.0055

and at the various temperatures. It is clear from Figure 3
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Figure 2. Dependence of the speed of the partial dislocations on time at the shear stress of 280MPa at the temperature: a — 100,

b — 500K, where 1, 2 — the upper left and right partial dislocations, respectively, 3, 4 — the lower left and right partial dislocations,

respectively.
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Figure 3. Dependence of the shear stress σxz on time with the

shear strain εxz = 0.0055.

that the stress σxz tends to zero with time. Oscillating

approximation of the shear stress to zero is observed

at the low temperatures, so is relaxation approximation

thereof at the high temperatures, which is related to the

increase of viscosity of the material with the increase of

the temperature. As can be seen from Figure 4, at all the

temperatures the stresses σxx , σyy , σz z , σxy , σyz remain to

be small as compared to the stress σxz .

Figure 5 shows graphs of the dependence of the speeds

of the dislocations on the temperature at the various values

of the shear strain, while Figure 6 shows graphs of the

dependence of the stress σxz on the temperature in the

same time interval, in which the speed of the dislocations

was calculated.

It is clear from Figure 5 and Figure 6 that with the

increase of the temperature the speed of motion of the

dislocations and the stresses σxz decrease. At the same time,

with the increase of the temperature the shear stresses σxz

significantly decrease at the shear strain εxz = 0.022 and

they less significantly decrease when εxz = 0.011 and are

almost unchanged when εxz = 0.0055 and εxz = 0.00275.

It is related to dynamic overcoming of the Peierls−Nabarro

potential by the dislocations due to effect of the high shear

stresses (which exceed a yield strength of this material,

which is 55MPa and 45MPa in the initial and annealed

states, respectively [43]) without significant contribution by

thermofluctuation. Deceleration of the dislocations with

the increase of the temperature is due to the increase of

viscosity of medium, in which the dislocation moves.

It is assumed that at the lower shear stresses (below
the yield strength) we enter an area of thermofluctuation

mobility, where the speed of motion of the dislocations will

increase with the increase of the temperature. At the same

time, the dislocations will move much more slowly and their

speed will be required to be measured at much longer time

intervals.

3.2. Oscillation of dislocations

Figure 7 shows the images of the partial dislocations

in a section in plan view at the zero shear stress and

at the temperatures 100, 300 and 600K. The images are

provided with the interval of 0.4 ps. In all the cases, a

period of oscillations of the dislocation line is about 0.1 ps.

It is clear that with the increase of the temperature the

amplitude of oscillations of the dislocations increases due to

thermofluctuation of the atoms.

3.3. Stacking fault energy

The three stacking faults at the distance of 5|b| were

incorporated into the computational cell with the periodic

Physics of the Solid State, 2025, Vol. 67, No. 8
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Figure 4. Dependence of various components of the stress tensor (except for σxz ) on time with the shear strain εxz = 0.0055 and at the

temperature: a — 100, b — 300, c — 500, d — 700K.
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Figure 5. Dependences of the speed of the dislocations on the

temperature at the various shear strains.

T, K

100 200 300 400 500 700600 800
0

200

400

600

800

1000

σ
, 
M

P
a

x
z

ε  = 0.00275
xz

ε  = 0.022
xz

ε  = 0.011
xz

ε  = 0.0055
xz

0

Figure 6. Dependences of the shear stresses σxz on the

temperature within the interval, in which the speed of the

dislocations was calculated.
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Figure 7. Image of the partial dislocations (the green lines) in a section in plan view at the zero shear stress at the temperatures: (a)
100, (b) 300, (c) 600K. The dislocations for each temperature are shown in times with an interval of 0.4 ps.

Figure 8. For the calculation of the stacking fault energy. The

atoms with FCC (HCP) coordination are shown in green (red).

boundary conditions for SFE calculation, see Figure 8. The

calculation was performed at the temperature of 10K by

the formula:

ESF =
E2 − E1

3S
, (5)

where E1 — the potential energy of the ideal structure after

minimization, E2 — the structure defect energy after mini-

mization, S — the area of one stacking fault. Using the nu-

merical values E1 = −447380.34 eV, E2 = −447275.41 eV,

S = 4233.58 Å
2, we find that

ESF = 0.0082 eV/Å
2

= 131mJ/m2
. (6)

According to the literature data [44], the SFE value of

aluminum is within the interval 80−150mJ/m2 and the ob-

tained calculated value falls within this interval. Coincidence

of the SFE with the experimental data indicates justifiability

of selection of the used interatomic potential.

4. Conclusion

We have performed the molecular-dynamics simulation

of motion of the edge dislocations in the FCC lattice of

the aluminum single crystal at the various values of the

shear stresses and the temperature. We have used the

periodic boundary conditions with the pair of the edge

dislocations of opposite sings in the computational cell,

whereas only one dislocation was previously considered in

many studies with using rigid boundary conditions along

some directions [28,29,31]. Absence of interaction between

the pair of the dislocations in the computational cell is

achieved in the present study by selecting a cell size ratio

based on the fact that the elastic fields created by the chain

of the equidistant dislocations exponentially decrease with

the distance from the chain.
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The full dislocation was split into two partial dislocations,

between which the stacking fault with the HCP structure

was formed, which is typical for the FCC metals. The

stacking fault energy is calculated. The obtained value

ESF = 131mJ/m2 is within the range of the experimental

data 80−150mJ/m2 [44], thereby indicating a good quality

of the used interatomic potential.

Within the studied range of the shear stresses

70−561MPa (above the flow stress that is

30−55MPa [43]), the Peierls−Nabarro potential is

dynamically overcome by the dislocations. As a result, the

increase of viscous friction with the increase of the temper-

ature determined reduction of the speed of the dislocations

with the increase of the temperature, see Figure 5.

It is found when studying the process of oscillations

of the lines of the partial dislocations at the various

temperatures without applying the shear stress that the

typical oscillation period is 0.1 ps. A typical current pulse

applied in EPE-study has duration of 10−4 s, i. e. for the

time of transmission of one pulse the dislocation has time

to complete 109 oscillations.

Let us show that the represented results are useful

when discussing the EPE nature. It is known that the

density of the dislocations after annealing is ρ ∼ 1012 m−2

and can be up to ρ ∼ 1016 m−2 in the highly deformed

metals [45,46]. When considering an array of the equidistant

parallel straight dislocations with the density of the dis-

locations ρ, the distance between the nearest dislocations

in it will be D ∼ 1/
√
ρ. We obtain that D ∼ 104 Å in

the annealed state and D ∼ 102 Å in the deformed metal.

We note that our calculations used the cell with the sizes

171.4×24.7×517.8 Å, in which the two dislocations are

arranged. Thus, we simulated the density of the dislocations,

which corresponded to the highly deformed state.

Joule heat released at the dislocation propagates further

on due to thermal conductivity into defectless areas of the

crystal. By solving a thermal conductivity problem, it can be

found how the temperature of a dislocation nucleus varies

in time by taking into account a Joule heat influx rate and a

heat outflow rate due to thermal conductivity. When know-

ing the temperature of the dislocation and the dependence

of the speed of the dislocation on the temperature, one can

construct a theory of electroplastic deformation. This theory

shall also take into account a change of the density of the

dislocations during electroplastic deformation.

The presented results can be useful when discussing the

experimental studies for electroplasticity of aluminum and

aluminum alloys that are electrosimulatedly formed [47],
twisted [48], cyclically twisted [49] and tensioned [50]. Of

interest, are studies on the influence of the current on a

friction coefficient of aluminum [51], a compression ratio of

titanium [52] as well as on vibrations of a metal, which are

induced by current pulses.

It is planned in the next studies to determine the

dependence of the speed of the dislocations on the tem-

perature at the low values of the shear stresses, when the

Peierls−Nabarro potential is overcome in a thermofluctua-

tion way and it is expected that the speed of the dislocation

increases with the temperature. These calculations will

require many more resources, since the calculation time

significantly increases.
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