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Instability of a charged bubble with a gas soluble in the liquid
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The problem of stability of a charged gas bubble containing gas soluble in liquid is considered. The stability

condition of the system
”
gas bubble−liquid“is obtained. The linear analysis is carried out, on the basis of which

the influence of the effects of radial inertia, viscosity of liquid and the process of diffusion on the development of

the instability process is studied.
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Introduction

The study of bubble stability in a liquid is of interest

not only from a theoretical, but also from a practical point

of view, since it is associated with many technological

applications, such as, for example, flotation, cavitation, heat

exchange during boiling, underwater acoustics, bubbling,

etc. [1].
The stability of bubbles with different gas phase compo-

sitions is studied in Ref. [2–5].
It was shown in Ref. [2] that bubbles of a liquid-soluble

gas, which make small radially symmetric vibrations in an

acoustic field, are unstable in amplitude. An expression

is obtained for the increment characterizing the rate of

instability development.

The diffusion stability of gas bubbles in a one- and two-

fraction cluster when exposed to an acoustic field is studied

in Ref. [3]. Ranges of values of initial gas concentrations

in a liquid are numerically obtained in this study for a

single-fraction cluster, at which the bubble tends to one of

two equilibrium states due to diffusion processes occurring

between it and the surrounding liquid. It is found that the

two-fraction cluster tends to become single-fraction.

The stability of an superheated liquid containing insoluble

gas nuclei is studied in Ref. [4]. Critical conditions for the

mass of gas nuclei, their radii, and volume concentrations

in the case of a stable state of the liquid−vapor-gas nuclei

system have been determined. The theory of spontaneous

solutions is constructed, describing the release of an su-

perheated bubble vapor-gas-liquid system from an unstable

state. The dynamics of the transition of an superheated

liquid to a stable state has been studied based on such

solutions.

Boiling of an superheated liquid containing a steam

bubble (or a system of steam bubbles) is studied in Ref. [5].
It was found in this study that the state of a mixture of

liquid and bubbles is unstable due to the action of capillary

forces. Linear and nonlinear solutions are constructed that

describe the system’s exit from an unstable state, as well as

the unlimited growth of a single bubble and the transition

to a stable vapor-liquid state in the presence of volume-

distributed bubbles in the initial state.

Gas bubbles play a negative role in the dielectric strength

of insulating liquids. Depending on their shape and

localized electric field, bubbles can significantly reduce the

dielectric strength of the insulating liquid.

We would like to note the papers that study the stability

of charged bubbles, [6–10].
A dispersion equation is derived in Ref. [6] for capillary

movements in a viscous liquid surrounding a spherical

bubble carrying a surface charge that can lead to instability

of the interface. There are critical conditions for such

instability. The problem is solved using the scalarization

method in a spherical coordinate system.

The equilibrium states of a charged spherical bubble in

a dielectric liquid are studied for stability with respect to

virtual centrally symmetric changes in its volume based

on the analysis of a nonlinear equation describing radial

oscillations of such a bubble in the vicinity of singular

points [7]. It is shown that of the two possible equilibrium

states of the bubble, only one is stable. The boundaries

of the ranges of values of physical parameters separating

stable and unstable states are found. It turned out that the

presence of an electric charge on the bubble leads to an

expansion of the ranges of values of physical parameters in

which there are equilibrium states of the bubble.

It is shown in Ref. [8] that experimentally detected

nanoscale bubbles in an aqueous medium arise sponta-

neously due to the minimization of Gibbs energy, taking

into account the electrostatic component, of a gas-liquid

dispersed system. The increased gas pressure inside the

nanobubble gradually equalizes (according to Henry’s law)
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with the atmospheric pressure of air dissolved in water.

The radius of the bubble decreases to some extent, and

the bubble becomes stable.

The stability mechanism of charged bulk nanobubbles is

described in Ref [9] based on theoretical analysis. The

strong attraction of negative charges to the surface of the

nanobubble leads to an accumulation of charge, as a result

of which the energy of the electric field creates a local

minimum for the free energy required for bubble formation,

which leads to thermodynamic metastability of charged

nanobubbles. The excess surface charges mechanically

create a size-dependent force that balances the Laplace

pressure and acts as a restoring force when the nanobub-

ble thermodynamically deviates from its equilibrium state.

Using this negative feedback mechanism, the stability of

a nanobubble as a function of surface charge and gas

supersaturation is discussed. The theoretical prediction

was compared with experimental observations and a good

agreement was found.

Theoretical concepts of the existence of stable gas bubbles

in pure water and aqueous solutions of electrolytes in

equilibrium with the external gas environment are developed

in Ref. [10]. A theoretical model of ion adsorption on the

water surface is proposed, and a quantitative description of

the resulting double electric layer is given on its basis. These

results also made it possible to conduct a thermodynamic

description of the Babston structure in the
”
water−external

gas medium“ system. It is shown that the appearance

of such a structure at certain values of temperature and

concentration of dissolved impurity ions is a phase transition

of the first kind. In this problem, the unique role of

helium as an external gas medium has been established:

in this case, the Babston structure does not occur at any

initial ion concentrations, and the solubility of helium itself

increases with increasing temperature. The mechanism of

formation of experimentally observed Babston clusters is

considered.

We would like to note the monographic paper [11].
It states that nanobubbles filled with air or various pure

gases persist in water for several weeks and months.

Nanoemulsions consisting of oil droplets in water are also

surprisingly resistant to coagulation and can last up to

several weeks, even if they are not coated with surfactants.

A reverse system consisting of nanodrops of water in oil is

also available for study and application. Nanoscale voids

are formed when modeling water under strong tension

and are stable throughout the entire simulation time. The

stability of these nanoobjects is ultimately determined by

the structure of their surfaces at the molecular level.

However, thermodynamic theory can also provide some

insight into this. Therefore, we consider spherical gas

nanobubbles, immiscible liquid nanodrops, and nanocavities

formed in water at negative pressure at the same level

and conduct a unified thermodynamic analysis of these

systems. In all cases, the mechanical equilibrium (local
maximum or minimum of free energy) is expressed by the

Laplace equation, and the thermodynamic stability (local

minimum of free energy) follows from the dependence

of surface tension on the radius. All of them would

be unstable if their surface tension were constant. Data

from the literature allow constructing numerical examples

for cavities and gas nanobubbles. Spectroscopic data are

provided to confirm that the structure of water at the

interface of gas nanobubbles and water droplets in oil

differs from their counterparts on a flat surface. It was

believed that the observed durability of nanobubbles, in

particular, violates the fundamental principles of diffusion

and solubility. A close look at Laplace’s equation and

its derivation shows why this widely held view is incor-

rect.

Capillary vibrations and the stability of a charged bubble

in a viscous incompressible dielectric liquid with respect

to infinitesimal distortions of volume and shape are studied

in Ref. [12]. It defines the regions of physical parameters

at which the instability of centrally symmetric radial and

axisymmetric surface movements of the bubble is observed.

Analytical asymptotic expressions for attenuation decre-

ments of axisymmetric capillary oscillations of a bubble in

low and high viscosity approximations are obtained.

This paper considers the instability of a single charged

bubble in carbon dioxide-saturated water when the bubble

is in dynamic and thermal equilibrium in its initial state.

The influence of radial inertia, fluid viscosity, and diffusion

on bubble instability is analyzed.

1. Problem statement and basic
equations

Let there be a gas bubble with a radius a0 in a liquid

at a temperature T0 and a pressure p0, on the surface of

which a charge Q0 is evenly distributed. We will assume

that the liquid is a dielectric with a permeability ε. We

will also assume that the
”
gas bubble−liquid“ system is

in dynamic and thermal equilibrium. We can write the

following relation based on this assumption:

pg0 + pel0 = p0 +
2σ

a0

, (1)

where pg0, pel0 is the initial partial vapor pressure in the

bubble and the pressure force of the electric field, σ is the

coefficient of surface tension of the liquid.

The gas inside the bubbles will be considered soluble.

The gas pressure will be considered homogeneous and

obeying the Clapeyron−Mendeleev equation:

pg0 = ρ0gRgT0,

where ρ0g is the initial gas density, Rg is the reduced gas

constant.

The lower indices (l) and (g) denote the parameters

of the liquid and gas in the following description of the

problem; the additional lower index corresponds to the

initial state of equilibrium; the index (el) refers to the
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parameters indicating the effect of the electric field of charge

on the surface of the bubble.

Let us consider the radially symmetric motion of the

system in the vicinity of the equilibrium state defined by

equation (1).
Let us study the dynamics of the

”
exit“ of an electrically

charged gas bubble from equilibrium by presenting the basic

equations describing the radial motions of a bubble in an

incompressible liquid (ρ0l = const — liquid density).
The equation of pulsation motion of a bubble — the

Rayleigh−Lamb equation has the form [13]:

ρ0l

(

aä +
3

2
ȧ2 +

4ν
(µ)
l ȧ

a

)

= pg + pel − pl −
2σ

a
. (2)

Considering the hypothesis of homobaricity, it is possible

to obtain an equation for the change in gas pressure in the

following form [14]:

d pg

dt
= −3

pg

a

da

dt
+ 3

pg

a

ρ0l
ρ0g

Dl

(

∂g

∂r

)

a

. (3)

Parameters ν
(µ)
l , Dl and g — kinematic viscosity of the

liquid, diffusion coefficient and mass concentration of gas in

the liquid.

The lower index a in the equation (3) for the gas

concentration gradient corresponds to the bubble boundary.

The second term in (3) is responsible for the intensity of gas

dissolution, which is limited by the process of gas diffusion

from the liquid into the bubble near the interfacial surface.

Let us write down the diffusion equation in a liquid to

determine the intensity of mass transfer [13]:

∂g

∂t
+ w l

∂g

∂r
= Dl

1

r2
∂

∂r

(

r2
∂g

∂r

)

, (4)

where w l = a2

r 2
ȧ is the radial velocity of the liquid.

Boundary conditions for the diffusion equation (4) in a

liquid have the form

g = ga if r = a and g = g0 if r = ∞. (5)

Here ga is the concentration of gas on the surface of the

bubble, which is related to the gas pressure according to

Henry’s law:

ga = Gpg . (6)

The initial pressure of the electric field forces of the

bubble is taken in the following form [7]:

pel0 =
kQ2

0

8πεa4
0

, (7)

where k = 1
4πε0

is the proportionality coefficient,

ε0 = 8.85 · 10−12 F/m is the electrical constant.

We assume that the law of conservation of charge on the

bubble surface holds:

Q = Q0. (8)

Based on this assumption, we obtain the relationship

between the current pressure and the initial pressure:

pel = pel0

(a0

a

)4

. (9)

2. Linear analysis

Let the pressure in the liquid pl be constant and equal to

the initial value p0 (pl = p0). Let’s consider small deviations

of the bubble radius from the initial value, which will entail

a change in the remaining parameters. Expressions for the

radius, gas pressure, pressure of the electric field force

of the charge on the surface of the bubble, density and

concentration of the gas are represented as:

a = a0 + a ′, pg = pg0 + p′

g , pel = pel0 + p′

el,

ρg = ρg0 + ρ′g , g = g0 + g ′,

where the parameters with strokes are small deviations of

the parameters from the equilibrium state, which are values

of the first order of smallness [15].
Linearizing the system of equations (2)−(9) near the

equilibrium state (neglecting the values of the second order

of smallness, for example, the product of parameters with

strokes), we obtain

ρ0l

(

a0

∂2a

∂t2
+ 4

ν
(µ)
l

a0

∂a

∂t

)

= pg + pel +
2σ

a2
0

a,

∂a

∂t
= w, (10)

∂ pg

∂t
= −3

pg0

a0

∂a

∂t
+ 3

pg0

a0

ρ0l
ρg0

Dl

(

∂g

∂r

)

a0

, (11)

∂g

∂t
= Dl

1

r2
∂

∂r

(

r2
∂g

∂r

)

a0

, (a0 < r < ∞), (12)

g = ga if r = a0 and g = 0 if r = ∞, (13)

ga = Gpg , (14)

pel = −4pel0

a

a0

. (15)

In the resulting equations and further, the stroke sign

indicating parameter perturbations is omitted.

We will look for the solution of system (10)−(15) in the

form

a = Aaeλt, pg = Apeλt, g = Ag(r)eλt . (16)

It should be noted that with this type of solution, the

inverse λ indicates the time it takes for the amplitude of the

disturbances to increase by e times (τ = 1/λ).
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From the diffusion equation (12) based on (13), (14) for

the amplitude of the gas concentration around the bubble,

we have

Ag(r) = ApG
a0

r
exp

(

Y

(

1−
r

a0

))

,

Y = a0k =
√

a2
0λ/Dl. (17)

From equation (15), the pressure amplitude of the electric

field forces has the form

Ael = −4
pel0

a0

Aa . (18)

Using this solution based on equations (10), (11) from

the condition for the existence of a nontrivial solution of the

form (16), we obtain the equation for determining λ:

ψ(λ) = ρ0l λ
2a2

0 + 4ρ0l λν
(µ)
l +

+
3pg0Y

2

Y 2 + 3Os(1 + Y )
+ 4pel0 −

2σ

a0

= 0, (19)

where Os is the Ostwald number, indicating the value of

the volume of gas that can dissolve in a unit volume of

liquid [16].

Equation (19) has a positive root λ if the condition is

satisfied

pel0 <
σ

2a0

, (20)

therefore, the bubble is unstable when this condition is met.

If the pressure of the electric field forces of the charge

does not satisfy the condition (20), then the bubble state

is stable. In this case, the value of the root, called the

increment, determines the rate of instability development

at the initial linear stage. The existence of a positive

root means that expressions of the form (16) represent

spontaneous solutions [17] for which the initial state of

equilibrium is reached at t → −∞.

If there is no charge on the bubble (Q0 = 0, pel0 = 0)
from the condition (1) it is possible to find the value of the

bubble radius at given liquid pressure values p0:

a
(M)
0 =

2σ

pg0 − p0

. (21)

It follows from the condition of mechanical equilib-

rium (1) that if there is a charge on the bubble surface

(Q0 > 0, pel0 > 0), the radius a0 is always less than the

value determined by the expression (21) (a0 < a
(M)
0 ). Let

us determine the lower limit value of the bubble radius

in the equilibrium state in the case when the bubble is

unstable, i.e. the condition (20) is fulfilled. Obviously, for

this radius, in addition to (1), the condition must be fulfilled

pel0 =
σ

2a0

. (22)
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0
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4
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0
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a , µm0

Figure 1. Dependence of the function f (a0) on the initial

radius a0, for different values of bubble charges: 1st case — dashed

line, 2nd case — dotted, 3rd case — dotted, 4th case — solid.

Excluding from (1), (22) pel0, we find the expression for

the minimum radius a
(m)
0 in the form

a
(m)
0 =

3

4
a

(M)
0 =

3σ

2(pg0 − p0)
. (23)

It is possible to obtain an expression for the critical charge

of a gas bubble using expressions (7), (23)

Qcr =

√

27πεσ 4

2k(pg0 − p0)3
. (24)

Substituting the expression (7) in the condition of

mechanical equilibrium (1), we obtain the equation for

determining the equilibrium radius a0 for a given charge

value pel0 of a gas bubble

f (a0) = (pg0 − p0)a
4
0 − 2σ a3

0 +
kQ2

0

8πε
= 0. (25)

Let’s analyze the expression (25). The following cases are

possible, which are shown in Fig. 1:

1) for pg0 < p0 , the equation has one positive root for

any value Q0;

2) for the case pg0 > p0 and for Q0 > Qcr , there are no

valid roots;

3) If pg0 > p0 and for Q0 = Qcr , the equation has one

real root;

4) and finally, if pg0 > p0 for Q0 < Qcr , the equation has

two real roots.

In addition, for 0 < Q0 < Qcr, the equation has two

positive roots a
(m)
0 < a01 < a

(M)
0 and 0 < a02 < a

(m)
0 , and

for a larger radius a01 the ”
bubble-liquid system“ is unstable

for the case of positive roots of the equation (19), and it

is stable for a smaller radius a02 for the case of complex

conjugate roots of equation (19).
We obtain the value Qcr ≈ 2 pC from formula

(24) for the critical charge at parameters ε = 87.9,

Technical Physics, 2025, Vol. 70, No. 11
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Figure 2. Dependence of the equilibrium radius on the charge of

the bubble at p0 = 0.1MPa, T0 = 273K, Os = 1.7.

σ = 75.64 · 10−3 Pa ·m, a0 = 10−5 m. In the case when the

charge of the bubble is zero (Q0 = 0), the maximum value

of the equilibrium radius is a
(M)
0 = 10−5 m. All necessary

values of the thermophysical parameters are taken from

Ref. [18].

For a given charge value Q0 , based on equation (25), it is

possible to determine the values of the radii that correspond

to the unstable and stable equilibrium state of the gas

bubble. Fig. 2 shows the dependence of the equilibrium

radii of a gas bubble on its charge in water saturated with

carbon dioxide. The upper branch of the curve of the radius

dependence on the charge corresponds to the actual values

of the roots of equation (19); they also correspond to the

unstable equilibrium state of the bubble. The lower branch

of the curve corresponds to the complex conjugate roots of

equation (19) corresponding to stable bubble states. These

roots correspond to the decaying natural oscillations. The

upper and lower branches are separated by a horizontal line

a0 = a
(m)
0 .

Fig. 3 shows the dependence of the increment ( of the

positive root of equation (19)), corresponding to the upper

branch of the dependence shown in Figure 2, on the charge

of the gas bubble. In the left-hand side of equation (19),

the first, second, and third terms take into account the

influence of radial inertia, fluid viscosity, and gas diffusion

on the development of instability at the linear stage, when

the bubble radius is equal to the equilibrium value.

In the case when the development of instability is limited

by radial inertia, i.e. in equation (24) the second and third

terms related to viscosity and diffusion are omitted, for the

increment value we have

λ(R) =

√

2σ/a0 − 4pel0

ρ0l a2
0

. (26)

Assuming that the increment value is determined by the

viscosity of the liquid, we obtain

λ(µ) =
σ/a0 − 2pel0

2ρ0l ν
(µ)
l

. (27)

We also give a formula for the increment, when the dif-

fusion process is the determining factor in the development

of instability

λD =
Dl

a2
0

(

A

2
+

√

A2

4
+ A

)2

,

(

A = 3Os
6

1 − 6
, 6 =

2σ/a0 − 4pelo

3pg0

)

. (28)

Dotted, dashed, and dotted lines in Fig. 3 are obtained by

formulas (26), (27), and (28), respectively.
An analysis of Fig. 3 shows that the increment values

determined by radial inertia, viscosity, and diffusion are

independent of the charge value Q0 up to Qcr. At Q0 = Qcr,

the increment value is λ → 0 regardless of the factor

affecting the bubble instability, hence τ → ∞. This means

that it takes an infinite amount of time for a bubble with a

charge Qcr on its surface to grow. Under such conditions,

the charged bubble is close to a stable state. The increment

is most important for the case when the instability of the

bubble is limited by viscosity (dashed line, Fig. 3). It should
be noted that the increment determined by diffusion (dotted
line) coincides with the general solution of equation(19)
(solid line), i.e., the diffusion effect plays a major role in the

development of instability for any values of the charge on

the bubble up to Qcr.

0 0.5 1.0 1.5 2.0

Q , pC0

–
1

λ
, 
s

710

610

510

410

310

210

110

010

–110

Qcr

Figure 3. Dependence of increments of unstable equilibrium radii

on the charge of the bubble at ε = 87.9, σ = 75.64 · 10−3 Pa·m,

a0 = 10−5 m, ρ = 1000m/s, ν = 1.787 · 10−6 m2/s,

D = 3.53 · 10(−9) m2/s, the remaining parameters are the

same as in Fig. 2: solid line — general solution of equation (19),
dotted, dashed and dotted lines — solutions of equation (19)
(dotted — taking into account radial inertia, dashed — viscosity,

dashed — diffusion).
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Figure 4. Dependences of the natural oscillation frequency (a) and the attenuation decrement (b) for stable radii on the charge on the

bubbles. The calculation parameters are the same as in Fig. 3.
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λ
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1

2

Figure 5. a — dependence of increments of unstable radii on the charge of the bubble. Gas — carbon dioxide, liquid — water

at p0 = 0.1MPa for various values of Ostwald number and temperatures: solid line — Os = 0.51, T0 = 323K; dashed — Os = 1,

T0 = 288K; point —Os = 1.7, T0 = 273K. b — dependence of increments of unstable radii on charge a bubble for carbon dioxide in

water at T0 = 273K, Os = 1.7. Lines 1 and 2 correspond to the static liquid pressures p0 = 0.1 and 1MPa.

Fig.4 shows the dependences of the natural oscillation

frequency ωR = Im(λ) and the logarithmic decay decrement

δ = −2πRe(λ)/Imλ on the charge of the gas bubble. It

follows from Fig. 4 that as the charge on the bubble surface

increases, the natural oscillation frequency and attenuation

decrement decrease.

Fig. 5, a shows the dependences of the increment that

determines the rate of development of the output of a

charged carbon dioxide bubble on the charge Q0. Dotted,

dotted, and solid lines correspond to the solution of equation

(19). It can be seen that the higher the temperature of the

liquid, the more stable the bubble is. It also follows from the

graph that as the Ostwald number increases, the value of the

critical charge increases. Fig. 5, b shows the dependences of

the increment of unstable radii on the charge Q0 at various

static pressures. The lines 1 and 2 are obtained according to

the solution of equation (10). The line 2 is located below

the line 1, this means that for the temperature T0 = 273K,

the higher the static pressure of the liquid, the more stable

the bubble is.

Conclusion

The paper shows that in water saturated with carbon

dioxide, a single charged bubble can be in dynamic and

thermal equilibrium if the charge of the bubble is less than

a critical value.
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Linear analysis of the instability of a single bubble in

carbon dioxide-saturated water has shown that the instability

is mainly limited by the effect of gas diffusion into the

bubble.

When the bubble charge is less than the critical value,

there are two values of the equilibrium radius. Moreover,

an unstable state corresponds to a higher value of the radius,

and a stable state corresponds to a lower value.
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