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Instability of a charged bubble with a gas soluble in the liquid
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The problem of stability of a charged gas bubble containing gas soluble in liquid is considered. The stability
condition of the system ,,gas bubble—liquid“is obtained. The linear analysis is carried out, on the basis of which
the influence of the effects of radial inertia, viscosity of liquid and the process of diffusion on the development of

the instability process is studied.
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Introduction

The study of bubble stability in a liquid is of interest
not only from a theoretical, but also from a practical point
of view, since it is associated with many technological
applications, such as, for example, flotation, cavitation, heat
exchange during boiling, underwater acoustics, bubbling,
ete. [1].

The stability of bubbles with different gas phase compo-
sitions is studied in Ref. [2-3].

It was shown in Ref. [2] that bubbles of a liquid-soluble
gas, which make small radially symmetric vibrations in an
acoustic field, are unstable in amplitude. An expression
is obtained for the increment characterizing the rate of
instability development.

The diffusion stability of gas bubbles in a one- and two-
fraction cluster when exposed to an acoustic field is studied
in Ref [3]. Ranges of values of initial gas concentrations
in a liquid are numerically obtained in this study for a
single-fraction cluster, at which the bubble tends to one of
two equilibrium states due to diffusion processes occurring
between it and the surrounding liquid. It is found that the
two-fraction cluster tends to become single-fraction.

The stability of an superheated liquid containing insoluble
gas nuclei is studied in Ref. [4]. Critical conditions for the
mass of gas nuclei, their radii, and volume concentrations
in the case of a stable state of the liquid—vapor-gas nuclei
system have been determined. The theory of spontaneous
solutions is constructed, describing the release of an su-
perheated bubble vapor-gas-liquid system from an unstable
state. The dynamics of the transition of an superheated
liquid to a stable state has been studied based on such
solutions.

Boiling of an superheated liquid containing a steam
bubble (or a system of steam bubbles) is studied in Ref. [5].
It was found in this study that the state of a mixture of

liquid and bubbles is unstable due to the action of capillary
forces. Linear and nonlinear solutions are constructed that
describe the system’s exit from an unstable state, as well as
the unlimited growth of a single bubble and the transition
to a stable vapor-liquid state in the presence of volume-
distributed bubbles in the initial state.

Gas bubbles play a negative role in the dielectric strength
of insulating liquids. Depending on their shape and
localized electric field, bubbles can significantly reduce the
dielectric strength of the insulating liquid.

We would like to note the papers that study the stability
of charged bubbles, [6-10).

A dispersion equation is derived in Ref. [6] for capillary
movements in a viscous liquid surrounding a spherical
bubble carrying a surface charge that can lead to instability
of the interface. There are critical conditions for such
instability. The problem is solved using the scalarization
method in a spherical coordinate system.

The equilibrium states of a charged spherical bubble in
a dielectric liquid are studied for stability with respect to
virtual centrally symmetric changes in its volume based
on the analysis of a nonlinear equation describing radial
oscillations of such a bubble in the vicinity of singular
points [7]. It is shown that of the two possible equilibrium
states of the bubble, only one is stable. The boundaries
of the ranges of values of physical parameters separating
stable and unstable states are found. It turned out that the
presence of an electric charge on the bubble leads to an
expansion of the ranges of values of physical parameters in
which there are equilibrium states of the bubble.

It is shown in Ref [8] that experimentally detected
nanoscale bubbles in an aqueous medium arise sponta-
neously due to the minimization of Gibbs energy, taking
into account the electrostatic component, of a gas-liquid
dispersed system. The increased gas pressure inside the
nanobubble gradually equalizes (according to Henry’s law)
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with the atmospheric pressure of air dissolved in water.
The radius of the bubble decreases to some extent, and
the bubble becomes stable.

The stability mechanism of charged bulk nanobubbles is
described in Ref [9] based on theoretical analysis. The
strong attraction of negative charges to the surface of the
nanobubble leads to an accumulation of charge, as a result
of which the energy of the electric field creates a local
minimum for the free energy required for bubble formation,
which leads to thermodynamic metastability of charged
nanobubbles. The excess surface charges mechanically
create a size-dependent force that balances the Laplace
pressure and acts as a restoring force when the nanobub-
ble thermodynamically deviates from its equilibrium state.
Using this negative feedback mechanism, the stability of
a nanobubble as a function of surface charge and gas
supersaturation is discussed. The theoretical prediction
was compared with experimental observations and a good
agreement was found.

Theoretical concepts of the existence of stable gas bubbles
in pure water and aqueous solutions of electrolytes in
equilibrium with the external gas environment are developed
in Ref [10]. A theoretical model of ion adsorption on the
water surface is proposed, and a quantitative description of
the resulting double electric layer is given on its basis. These
results also made it possible to conduct a thermodynamic
description of the Babston structure in the ,,water—external
gas medium“ system. It is shown that the appearance
of such a structure at certain values of temperature and
concentration of dissolved impurity ions is a phase transition
of the first kind. In this problem, the unique role of
helium as an external gas medium has been established:
in this case, the Babston structure does not occur at any
initial ion concentrations, and the solubility of helium itself
increases with increasing temperature. The mechanism of
formation of experimentally observed Babston clusters is
considered.

We would like to note the monographic paper [11].
It states that nanobubbles filled with air or various pure
gases persist in water for several weeks and months.
Nanoemulsions consisting of oil droplets in water are also
surprisingly resistant to coagulation and can last up to
several weeks, even if they are not coated with surfactants.
A reverse system consisting of nanodrops of water in oil is
also available for study and application. Nanoscale voids
are formed when modeling water under strong tension
and are stable throughout the entire simulation time. The
stability of these nanoobjects is ultimately determined by
the structure of their surfaces at the molecular level.
However, thermodynamic theory can also provide some
insight into this. Therefore, we consider spherical gas
nanobubbles, immiscible liquid nanodrops, and nanocavities
formed in water at negative pressure at the same level
and conduct a unified thermodynamic analysis of these
systems. In all cases, the mechanical equilibrium (local
maximum or minimum of free energy) is expressed by the
Laplace equation, and the thermodynamic stability (local

minimum of free energy) follows from the dependence
of surface tension on the radius. All of them would
be unstable if their surface tension were constant. Data
from the literature allow constructing numerical examples
for cavities and gas nanobubbles. Spectroscopic data are
provided to confirm that the structure of water at the
interface of gas nanobubbles and water droplets in oil
differs from their counterparts on a flat surface. It was
believed that the observed durability of nanobubbles, in
particular, violates the fundamental principles of diffusion
and solubility. A close look at Laplace’s equation and
its derivation shows why this widely held view is incor-
rect.

Capillary vibrations and the stability of a charged bubble
in a viscous incompressible dielectric liquid with respect
to infinitesimal distortions of volume and shape are studied
in Ref [12]. It defines the regions of physical parameters
at which the instability of centrally symmetric radial and
axisymmetric surface movements of the bubble is observed.
Analytical asymptotic expressions for attenuation decre-
ments of axisymmetric capillary oscillations of a bubble in
low and high viscosity approximations are obtained.

This paper considers the instability of a single charged
bubble in carbon dioxide-saturated water when the bubble
is in dynamic and thermal equilibrium in its initial state.
The influence of radial inertia, fluid viscosity, and diffusion
on bubble instability is analyzed.

1. Problem statement and basic
equations

Let there be a gas bubble with a radius a¢ in a liquid
at a temperature 7Ty and a pressure pg, on the surface of
which a charge Qg is evenly distributed. We will assume
that the liquid is a dielectric with a permeability e. We
will also assume that the ,gas bubble—liquid® system is
in dynamic and thermal equilibrium. We can write the
following relation based on this assumption:

20
DPg0 + Peio = Po + —, (1)
ao

where pgo, peio is the initial partial vapor pressure in the
bubble and the pressure force of the electric field, o is the
coefficient of surface tension of the liquid.

The gas inside the bubbles will be considered soluble.
The gas pressure will be considered homogeneous and
obeying the Clapeyron—Mendeleev equation:

Pg0 = pgRgTO,

where pg is the initial gas density, R, is the reduced gas
constant.

The lower indices (/) and (g) denote the parameters
of the liquid and gas in the following description of the
problem; the additional lower index corresponds to the
initial state of equilibrium; the index (el) refers to the
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parameters indicating the effect of the electric field of charge
on the surface of the bubble.

Let us consider the radially symmetric motion of the
system in the vicinity of the equilibrium state defined by
equation (1).

Let us study the dynamics of the ,exit of an electrically
charged gas bubble from equilibrium by presenting the basic
equations describing the radial motions of a bubble in an
incompressible liquid (plo = const — liquid density).

The equation of pulsation motion of a bubble — the
Rayleigh—Lamb equation has the form [13]:

4 ) .
oY <aa' T N i
2 a

20
:pg+pel—[71—7- (2)

Considering the hypothesis of homobaricity, it is possible
to obtain an equation for the change in gas pressure in the

following form [14]:
dg
D | = .

Parameters vl(” ), D, and g — kinematic viscosity of the
liquid, diffusion coefficient and mass concentration of gas in
the liquid.

The lower index a in the equation (3) for the gas
concentration gradient corresponds to the bubble boundary.
The second term in (3) is responsible for the intensity of gas
dissolution, which is limited by the process of gas diffusion
from the liquid into the bubble near the interfacial surface.

Let us write down the diffusion equation in a liquid to
determine the intensity of mass transfer [13]:

g g 10 ,08
Jt +w18r _Dlrz or (r ar )’ )

_ N

%7 3pgda
dt a dt a p?

where w; = ‘:—ja' is the radial velocity of the liquid.
Boundary conditions for the diffusion equation (4) in a
liquid have the form

g=gsifr=aand g =goifr = co. (5)

Here g, is the concentration of gas on the surface of the
bubble, which is related to the gas pressure according to
Henry’s law:

8a = Gpy. (6)

The initial pressure of the electric field forces of the
bubble is taken in the following form [7]:

k03
= —7F, 7
Peto 8meay @
where k = 4;60 is the proportionality coefficient,

g = 8.85- 107> F/m is the electrical constant.
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We assume that the law of conservation of charge on the
bubble surface holds:

0 = Qo. (8)

Based on this assumption, we obtain the relationship
between the current pressure and the initial pressure:

Pel = Pel0 (00)4- 9)

a
2. Linear analysis

Let the pressure in the liquid p; be constant and equal to
the initial value py (p; = po). Let’s consider small deviations
of the bubble radius from the initial value, which will entail
a change in the remaining parameters. Expressions for the
radius, gas pressure, pressure of the electric field force
of the charge on the surface of the bubble, density and
concentration of the gas are represented as:

, /
a=ap+a, Del = Pel0 + Deys

Pg = Pg0 + Py
g=g0+g,

where the parameters with strokes are small deviations of
the parameters from the equilibrium state, which are values
of the first order of smallness [15].

Linearizing the system of equations (2)—(9) near the
equilibrium state (neglecting the values of the second order
of smallness, for example, the product of parameters with
strokes), we obtain

Pg = P50 + Py

U[(#) da

0 a&+4—— =pg+ +2—0a
P90 ag o ) PeTRAT 20

da
299 _w, 10
S =W (10)
9 i) Lo (2
IPs _ _3Ps00¢ 3P0 Prp (98 (g
ot ag 0t ao Pgo I/ 4
dg 19 (,08
dg 19 (,08 12
ot lr2 ar (r ar agp ’ (ao - OO)’ ( )
g =gqifr=agand g = 0if r = oo, (13)
ga = Gpg’ (14)
a
pel = —4])610—. (15)
ao

In the resulting equations and further, the stroke sign
indicating parameter perturbations is omitted.

We will look for the solution of system (10)—(15) in the
form

a =A™, P = Ape™, g =A.(r)e.  (16)
It should be noted that with this type of solution, the
inverse A indicates the time it takes for the amplitude of the

disturbances to increase by e times (7 = 1/1).
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From the diffusion equation (12) based on (13), (14) for
the amplitude of the gas concentration around the bubble,
we have

Y = aok = \/a(z)l/Dl. (17)

From equation (15), the pressure amplitude of the electric
field forces has the form

Ay = —4P04, (18)
ao

Using this solution based on equations (10), (11) from
the condition for the existence of a nontrivial solution of the
form (16), we obtain the equation for determining A:

Y(2) = pf2al + 4o +

3 pg()Y 2 20
——————— +4pago— — =0, 19
+Y2—|—30s(1+Y)+ Pet0 ao (19)
where Os is the Ostwald number, indicating the value of
the volume of gas that can dissolve in a unit volume of
liquid [16].

Equation (19) has a positive root 4 if the condition is

satisfied
o

Pel0 < 57—

20y’ (20)

therefore, the bubble is unstable when this condition is met.

If the pressure of the electric field forces of the charge
does not satisfy the condition (20), then the bubble state
is stable. In this case, the value of the root, called the
increment, determines the rate of instability development
at the initial linear stage. The existence of a positive
root means that expressions of the form (16) represent
spontaneous solutions [17] for which the initial state of
equilibrium is reached at t — —oo.

If there is no charge on the bubble (Qp =0, p.o = 0)
from the condition (1) it is possible to find the value of the
bubble radius at given liquid pressure values py:

(M) 20

ay, = —.
Pg0 — Po

(21)

It follows from the condition of mechanical equilib-
rium (1) that if there is a charge on the bubble surface
(Qo > 0, peio > 0), the radius ag is always less than the
value determined by the expression (21) (ag < af)M>). Let
us determine the lower limit value of the bubble radius
in the equilibrium state in the case when the bubble is
unstable, ie. the condition (20) is fulfilled. Obviously, for
this radius, in addition to (1), the condition must be fulfilled

o
o = ——. 22
Peid = 5 (22)

[— — [\®)
) W S
i T

(9]

f(ap), aPa-m*
bh o

L
o

-15

Figure 1. Dependence of the function f(ag¢) on the initial
radius ay, for different values of bubble charges: 1st case — dashed
line, 2nd case — dotted, 3rd case — dotted, 4th case — solid.

Excluding from (1), (22) p.i0, we find the expression for
the minimum radius ag") in the form

(m) _ 300 30

alm = 2,00 _ . 23

L U >
It is possible to obtain an expression for the critical charge

of a gas bubble using expressions (7), (23)

2Tmect
Y L — 24
Cer =\ 2k(pyo — po? @)

Substituting the expression (7) in the condition of
mechanical equilibrium (1), we obtain the equation for
determining the equilibrium radius ao for a given charge
value p,o of a gas bubble

2
F(@0) = (pyo — po)al — 203+ £20 =0, (25)
e
Let’s analyze the expression (25). The following cases are
possible, which are shown in Fig. 1:

1) for pgo < po , the equation has one positive root for
any value Qo;

2) for the case pgo > po and for Qg > Qq , there are no
valid roots;

3) If pyo > po and for Qp = QO , the equation has one
real root;

4) and finally, if pyo > po for Qo < Q. , the equation has
two real roots.

In addition, for 0 < Q¢ < Q., the equation has two
positive roots af)m) <ag < af)M) and 0 < agy < ag"), and
for a larger radius ag; the ,,bubble-liquid system® is unstable
for the case of positive roots of the equation (19), and it
is stable for a smaller radius ag, for the case of complex
conjugate roots of equation (19).

We obtain the value Qg ~2pC from formula
(24) for the critical charge at parameters ¢ = 87.9,
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Figure 2. Dependence of the equilibrium radius on the charge of
the bubble at po = 0.1 MPa, Ty = 273K, Os = 1.7.

0 =75.64-10"3Pa-m, ag = 10~ m. In the case when the
charge of the bubble is zero (Qp = 0), the maximum value
of the equilibrium radius is af)m = 107> m. All necessary
values of the thermophysical parameters are taken from

Ref. [18].

For a given charge value Qy , based on equation (25), it is
possible to determine the values of the radii that correspond
to the unstable and stable equilibrium state of the gas
bubble. Fig. 2 shows the dependence of the equilibrium
radii of a gas bubble on its charge in water saturated with
carbon dioxide. The upper branch of the curve of the radius
dependence on the charge corresponds to the actual values
of the roots of equation (19); they also correspond to the
unstable equilibrium state of the bubble. The lower branch
of the curve corresponds to the complex conjugate roots of
equation (19) corresponding to stable bubble states. These
roots correspond to the decaying natural oscillations. The
upper and lower branches are separated by a horizontal line
apg = agm.

Fig. 3 shows the dependence of the increment ( of the
positive root of equation (19)), corresponding to the upper
branch of the dependence shown in Figure 2, on the charge
of the gas bubble. In the left-hand side of equation (19),
the first, second, and third terms take into account the
influence of radial inertia, fluid viscosity, and gas diffusion
on the development of instability at the linear stage, when
the bubble radius is equal to the equilibrium value.

In the case when the development of instability is limited
by radial inertia, i.e. in equation (24) the second and third
terms related to viscosity and diffusion are omitted, for the
increment value we have

20'/00 — 4])610
AR = [ E (26)
prag
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Assuming that the increment value is determined by the
viscosity of the liquid, we obtain

20 — a/ao — 2peio

(27)
21010‘)1(”)

We also give a formula for the increment, when the dif-
fusion process is the determining factor in the development
of instability

D, (A A2 2
ip=—|= — +A
b a(2)<2+ 4+)’

1-3 x= 3[7g0

Dotted, dashed, and dotted lines in Fig. 3 are obtained by
formulas (26), (27), and (28), respectively.

An analysis of Fig. 3 shows that the increment values
determined by radial inertia, viscosity, and diffusion are
independent of the charge value Qg up to Q.. At Qo = O,
the increment value is 4 — 0 regardless of the factor
affecting the bubble instability, hence 7 — oo. This means
that it takes an infinite amount of time for a bubble with a
charge Q. on its surface to grow. Under such conditions,
the charged bubble is close to a stable state. The increment
is most important for the case when the instability of the
bubble is limited by viscosity (dashed line, Fig. 3). It should
be noted that the increment determined by diffusion (dotted
line) coincides with the general solution of equation(19)
(solid line), i.c., the diffusion effect plays a major role in the
development of instability for any values of the charge on
the bubble up to Q.

(28)

(A:30S Py 20—/6’0_4pe10>.
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Figure 3. Dependence of increments of unstable equilibrium radii
on the charge of the bubble at ¢ = 87.9, 0 = 75.64 - 1073 Pa-m,
ap=10"m, p = 1000 m/s, v =1.787-10~° m%ss,
D =3.53-10""m%s, the remaining parameters are the
same as in Fig. 2: solid line — general solution of equation (19),
dotted, dashed and dotted lines — solutions of equation (19)
(dotted — taking into account radial inertia, dashed — viscosity,
dashed — diffusion).
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Figure 4. Dependences of the natural oscillation frequency (a) and the attenuation decrement () for stable radii on the charge on the

bubbles. The calculation parameters are the same as in Fig. 3.
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Figure 5. a — dependence of increments of unstable radii on the charge of the bubble. Gas — carbon dioxide, liquid — water

at po = 0.1 MPa for various values of Ostwald number and temperatures: solid line — Os = 0.51, Tp = 323 K; dashed — Os =1,
To = 288K, point —Os = 1.7, Ty = 273 K. b — dependence of increments of unstable radii on charge a bubble for carbon dioxide in
water at Top = 273K, Os = 1.7. Lines I and 2 correspond to the static liquid pressures pp = 0.1 and 1 MPa.

Fig4 shows the dependences of the natural oscillation
frequency wg = Im(A) and the logarithmic decay decrement
§ = —27Re(1)/ImA on the charge of the gas bubble. It
follows from Fig. 4 that as the charge on the bubble surface
increases, the natural oscillation frequency and attenuation
decrement decrease.

Fig. 5,a shows the dependences of the increment that
determines the rate of development of the output of a
charged carbon dioxide bubble on the charge Qy. Dotted,
dotted, and solid lines correspond to the solution of equation
(19). It can be seen that the higher the temperature of the
liquid, the more stable the bubble is. It also follows from the
graph that as the Ostwald number increases, the value of the
critical charge increases. Fig. 5, b shows the dependences of

the increment of unstable radii on the charge Q¢ at various
static pressures. The lines / and 2 are obtained according to
the solution of equation (10). The line 2 is located below
the line /, this means that for the temperature 7o = 273K,
the higher the static pressure of the liquid, the more stable
the bubble is.

Conclusion

The paper shows that in water saturated with carbon
dioxide, a single charged bubble can be in dynamic and
thermal equilibrium if the charge of the bubble is less than
a critical value.
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Linear analysis of the instability of a single bubble in
carbon dioxide-saturated water has shown that the instability
is mainly limited by the effect of gas diffusion into the
bubble.

When the bubble charge is less than the critical value,
there are two values of the equilibrium radius. Moreover,
an unstable state corresponds to a higher value of the radius,
and a stable state corresponds to a lower value.
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