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The classical Lennard-Jones interaction potential was compared with ab initio potentials computed using the

NWChem software. The ab initio calculations were performed using the MP2, CCSD and CCSD(T) methods

with the following extrapolation to complete basis set limit. The resulting potentials were used to simulate the

scattering of a boron atom beam in argon and helium gases using the KITe code. The elastic scattering angles,

total and effective cross sections, as well as the scattering behavior of the atoms beam were compared for the

different interatomic potentials. It was demonstrated that the Lennard-Jones potential, which is computationally

much simpler than the accurate ab initio potential, exhibits deviations in the potential well and the repulsive

regions. When scattering the model beam, atoms lose energy more rapidly with the Lennard-Jones potential than

with the ab initio potential, although the shapes of the particle fronts are quite similar. The results of this work

provide arguments for selecting an appropriate interatomic potential for elastic scattering modeling depending on

the specific problem.
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Introduction

The numerical Monte Carlo simulation of the motion of

atoms in a neutral gas is used in a number of tasks of

modern physics, for example, when designing diagnostics

of next-generation thermonuclear installations such as ITER,

or when creating thin films by magnetron sputtering. To

increase the accuracy of the simulation, it is important

to have plausible data on the cross-sections of elastic

scattering of particles. The classical approximation works

well for describing particle collisions in the energy range

of 0.01−100 eV. At the same time, data on the interaction

potential makes it possible to obtain all the necessary

information about elastic scattering, scattering cross sections

and angles, collision frequency and probability of collision

with a background particle with certain components of

the velocity vector. The accuracy of the collision data

and, consequently, the nature of the particle motion in

the background gas is determined by the accuracy of the

interaction potential used.

At the moment, a large number of different model binary

potentials of interatomic and intermolecular interaction have

been developed, both purely repulsive and having a region

of attraction. Of the latter, the Lennard-Jones potential [1–4]
is widely known and most often used, combining simplicity

and fairly high accuracy.

With the development of computer modeling, it has

become possible to calculate particle interaction potentials

using the it ab initio method, i.e. from the first fundamental

principles without involving additional empirical assump-

tions or special models. For calculating potentials ab initio

we used the NWChem [5] computational chemistry software

package, which includes functions for quantum chemistry

and molecular dynamics. NWChem is focused on scalability

both in terms of the ability to efficiently solve complex tasks

and in terms of using available parallel computing resources.

NWChem is open source and freely available.

The purpose of this paper is to compare the classical

Lennard-Jones interaction potential with the potential of

ab initio calculated in NWChem. The interatomic potentials

and all derived quantities in this work are calculated for

three pairs of elements: boron atom with helium, neon and

argon atoms. The decision on the choice of the type of

interatomic potential is necessary to simulate a capacitive

RF discharge in a noble gas, which is supposed to be used

to clean the diagnostic optics of ITER from contamination

by erosion products of the first boronized wall. Based on

the interaction potentials, the parameters of elastic scattering

were calculated and the results of modeling the scattering

of a beam of boron atoms on a background gas performed

in the code KITe [6,7] were compared.
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1. Classical models for interaction
potential

The principles of construction and an overview of the

main two-particle interatomic interaction potentials used

in molecular dynamic modeling of material properties are

given in Ref. [8]. The simplest of them — the hard-sphere

potential — is used for qualitative research of processes

in dense liquids, amorphous and solids. Particles are

considered as impenetrable, ideally hard spheres, and the

potential is assumed to be zero if the distance between the

atoms is less than the sum of the Van der Waals radii of the

atoms, and equal to infinity in the opposite case. A slightly

more realistic variation of this model is the potential of the

Sutherland. Other two-particle models include the Lennard-

Jones potentials [9], Morse potentials [10], and Buckingham

potentials [11]. All of them are a continuous function of the

distance between the atoms. The potential parameters are

determined individually for each pair of atoms so that the

analytical function best matches the experimental data.

The Lennard-Jones potential was originally intended to

study the thermodynamic properties of noble gases. At

short distances, atoms repel each other due to overlapping

electron clouds, and at long distances there is a weak Van

der Waals attraction. The potential has the form

U(r) = 4 ∈

[(σ

r

)12

−

(σ

r

)6]

,

where ∈ is the depth of the potential well (characterizes
the force of interaction), and σ is the distance at which the

potential energy is zero (a parameter depending on the type

of particles). For a pair of atoms, σ is equal to the sum of

the Van der Waals radii of the atoms, and ∈ is calculated

as the geometric average of the values of the depth of the

potential well of each atom. For heavy atoms, ∈ can be

assumed to be equal to the boiling point of this substance.

The Morse potential has been proposed to describe

the vibrational energy levels of diatomic molecules and is

widely used in molecular spectroscopy and studies of the

crystalline properties of solids. Compared to the Lennard-

Jones potential, Morse replaced the power dependence with

the exponential one, as it better described experimentally

observed energy levels. The long-range part agrees well

with experimental data, but at zero the potential has a finite

value, which is impossible, since atoms cannot be located

at one point in space. Nevertheless, the Morse potential

quite realistically describes the energy levels of diatomic

molecules.

In this paper, we will use the Lennard-Jones potential

for comparison with the ab initio potentials calculated in

NWChem due to its mathematical simplicity and computa-

tional efficiency. This potential is described by only two

parameters, which greatly simplifies model configuration

and data processing. The versatility of the Lennard-

Jones potential makes it possible to model both short-

range repulsive and long-range attractive forces in various

systems, including gases, liquids, and solids. In addition,

the Lennard-Jones potential demonstrates good consistency

with experimental data for many simple systems, which

makes it a convenient tool for predicting thermodynamic

and structural properties.

2. Quantum chemical methods for
calculating potentials in NWChem

The methods of modern quantum chemistry of the

ab initio group — from first principles — are based [12]
on solving the Schrodinger equation by consistently ap-

plying simplifying approximations. Such methods in-

clude the Moeller-Plesset perturbation theory methods

(MP2 [13–15], MP4 [16]), the Brueckner doubles method

(BD) [17] and the Hartree-Fock method (HF), which

includes coupled cluster methods (CC, their variants

CCSD [18–20], CCSD(T) [21]) and configuration interaction

methods (CI [22], CIS [23], CISD [24,25], MCSCF [26],
CASSCF [27]). The Hartree-Fock method is fundamental

because it allows you to form a wave function that is an

initial approximation for other methods.

According to the Hartree-Fock method, the Schrodinger

equation is solved by reducing a multiparticle problem to a

single-particle one, assuming that each particle moves in an

averaged self-consistent field created by all other particles

of the system. The construction of a self-consistent field

can be carried out either by the method of successive

approximations (originally proposed by Hartree), or by

the direct variational method [5]. The disadvantage of

the method in its original form is the low accuracy of

determining the energy of the system, due to the lack of

consideration of the correlation interaction of electrons. In

this regard, the method is currently used, as a rule, in

combination with various additional methods that make it

possible to determine the correlation energy of electrons

(post-Hartree-Fock methods).

The coupled cluster method allows calculations to be

performed with full iterative processing of single and double

correlations and non-iterative inclusion of the effects of

triple correlations using perturbation theory. A variation

of the CCSD method solves nonlinear equations, taking

into account correlation effects at the level of one- and

two-electron excitations, which makes it significantly more

accurate than methods at the level of perturbation theory,

such as MP2. The CCSD(T) method is an extension of

CCSD and includes correlation effects from three-electron

excitations based on perturbation theory. This method

is often referred to as the
”
gold standard“ [28–30] of

quantum chemistry due to its high accuracy at an acceptable

computational cost.

Among the Moeller-Plesset methods, the MP2 method is

the most common - second-order perturbation theory for

correlation energy. It is less accurate at short distances

than CCSD(T) [29]. Using higher-order MP is impractical,

because they require high computational costs.
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Figure 1. Interatomic interaction potentials for a pair of boron-helium atoms calculated in the NWChem program using CCSD, CCSD(T),
and MP2 methods. The Lennard-Jones potential is also given. The graphs (a) and (b) are presented at different scales.
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Figure 2. The Lennard-Jones potentials (green curve) and

ab initio (red), calculated in NWChem using the CCSD(T) method

with the pV5Z basis set, as well as experimental curves (pink and

two dotted) for a pair of helium atoms.

A detailed description of the potential calculations ab ini-

tio in the NWChem program is given, for example, in

Ref. [31]. A comparison of the types of the interatomic

potential function for a system of boron and helium atoms

calculated using the MP2, CCSD, CCSD(T), and Lennard-

Jones methods is shown in Fig. 1. The Lennard-Jones

potential function does not repeat the potentials ab initio

either in the area of the potential well or in the repulsion

zone (the positions of the potential well are close) and,

since it has only two parameters, it is impossible to achieve

a good shape match. Among the potentials ab initio, the

CCSD and MP2 methods give almost an exact match, but

the graphs differ from the more accurate CCSD(T) method

by the lower depth of the potential well.

Let us compare (Fig. 2) the graphs of the Lennard-Jones

and ab initio potentials with the experimental curves [32]. It
can be seen that the potential curve ab initio is much closer

to the experimental ones than the Lennard-Jones potential

curve.

In addition to the modeling method, the accuracy of

the calculated potential is influenced by the selected basis

set of functions. In the calculation process, the desired

wave function is represented as a linear combination of

basis functions. This makes it possible to convert partial

differential equations into algebraic equations suitable for

efficient computer simulation.

Some of the most widely used basis sets, developed in

Ref. [33], are designed to systematically converge post-

Hartree-Fock computations to the limit of the complete

basis set using empirical extrapolation methods [34]. Such

sets include sequentially increasing shells of polarization

(correlating) functions, and are denoted as cc-pVNZ, where

N = D, T, Q, 5, 6, etc., etc. (where D= double, T= triple,

etc.),
”
cc-p“ means

”
correlationally matched polarized“, and

”
V“ indicates that these are basis sets with valence only.

Currently, such
”
correlation-consistent polarized“ basis sets

are widely used and are the generally accepted standard

for correlated or post-Hartree-Fock computations [33,35].
In addition, when modeling the interaction of pairs of

atoms, including those located far from each other, for

accurate calculations, it is necessary to add diffuse functions

to describe long-range interactions, such as Van der Waals

forces (aug-cc-pVnZ bases). A comparison of the types

of the interatomic potential function for a pair of helium

atoms calculated by the CCSD(T) method on various basis

sets cc-pVDZ; cc-pVTZ; cc-pVQZ and cc-pV5Z is shown

in Fig. 3. As the accuracy of the basis sets increases, the

potential function decreases, the minimum position shifts to

smaller distances, while the functions become closer and

tend to a certain limit that will correspond to the full basis

24 Technical Physics, 2025, Vol. 70, No. 11
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Figure 3. The interatomic interaction potentials calculated in

the NWChem program for a pair of boron-helium atoms by the

CCSD(T) method using bases of varying accuracy, as well as the

extrapolated potential corresponding to the full basis set.

set. This limit can be obtained using the approximation

formula [31,36,37]:

A(x) = A(∞) + Be−(X−1) + Ce−(X−1)2,

where X = 2, 3, 4, 5 is the basis number, A(x) is the

value of the potential, and A(∞) is the desired approximate

value. The potential function obtained as a result of solving
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Figure 4. Scattering trajectories in the center of mass system; a — with the Lennard-Jones interaction potential, b — with interaction

potentials obtained by extrapolation from the results of calculations in NWChem.

this system of linear equations and corresponding to the

complete basis set is also shown in Fig. 3.

3. Comparison of calculated elastic
scattering parameters

Based on various functions of the interatomic interaction

potentials (hard spheres, Lennard-Jones, and ab initio), the
parameters of elastic scattering reactions were calculated

for comparison: scattering angles depending on the target

parameter, total and transport scattering cross sections

depending on energy. The calculation algorithm is given

in Ref. [6]. The motion of an incoming particle is modeled

in the center of mass system. Fig. 4 shows the scattering

trajectories of a boron atom on noble gas atoms for two

types of Lennard-Jones potentials (Fig. 4, a) and ab initio

(Fig. 4, b), calculated in the NWChem program using the

CCSD(T) method using extrapolation to match the full

basis set (no trajectories are constructed for the potential of

hard spheres, since the scattering angle is calculated directly

using the classical formula). The aiming parameters are the

same for each pair of elements and are selected so as to

show the trajectories of attraction (in green), repulsion (in
blue) and capture of the particle into orbit (in red).
The scattering angle in the center of mass system is

calculated as the angle of deviation of the velocity vector of

the incident particle after the scattering act from the initial

direction, i.e., the angle of trajectory change. Comparing the

scattering trajectories at different potentials for each pair

Technical Physics, 2025, Vol. 70, No. 11
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Figure 5. Dependence of scattering angles on the target parameter, calculated from the Lennard-Jones potentials of hard spheres and

obtained by extrapolation ab initio in the NWChem program for pairs of elements B-Ne (a) and B-He (b).

of elements in Fig. 4, one can see a significant difference

in the obtained scattering angles and the nature of their

dependence on the aiming parameters. This difference will

be further observed for all derived quantities, scattering

cross-sections, collision frequency, etc. The scattering angle

as a function of the target parameter for the potentials of

hard spheres, Lennard-Jones, and it ab initio is shown in

Fig. 5. For the scattering trajectory of a boron atom off

a neon atom in the Lennard-Jones potential (blue curve),
a distinct

”
kick-out“ point with a positive angle is clearly

visible at the distance corresponding to the potential well.

It is for this point that the
”
capture“ trajectory is plotted in

Fig. 4, a, square B-Ne (red curve).
The scattering cross section in the center of mass system

is calculated as the area of a circle S = πb2 with radius b —
with an aiming parameter at which the scattering angle is

1◦ (Fig. 6). Acts of scattering by less than 1◦ will not be

taken into account.

The scattering transport cross section in the laboratory

coordinate system (Fig. 7) is calculated using the formula

(using the expression dσ = 2πpd p):

σT =

π
∫

0

dσ

d�
(1− cos θ)d� =

π
∫

0

(1− cos θ(p))2πpd p.

Here p is the target parameter, θ is the scattering angle, σ is

the scattering cross section. The integration limit is selected

for each energy equal to the target parameter, which gives

a scattering angle of 1◦ .

It can be seen that the total and transport cross

sections, firstly, have a nonlinear dependence on energy,

and secondly, they differ both in shape (the nonlinear

dependence on energy manifests itself in different ways) and
in absolute values (Table 1) when calculated using Lennard-

Jones potentials and ab initio, obtained by extrapolating

calculations in the NWChem program. Next, it will be
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Figure 6. The total scattering cross sections as a function

of energy in the center of mass system, calculated from the

Lennard-Jones potentials and obtained by extrapolation ab initio

(NWChem).

shown what differences in the nature of the motion of a

beam of atoms in a neutral gas lead to the choice of the

potential of interatomic interaction.

4. Scattering of a model beam of atoms
at different potentials

Using the KITe code, we will simulate and compare the

scattering pattern of a beam of boron atoms in helium

using various interatomic potentials: hard spheres, Lennard-

Jones potentials, and ab initio potentials calculated from the

first principles in the NWChem program. The simulation

takes into account the thermal motion of gas atoms. The

24∗ Technical Physics, 2025, Vol. 70, No. 11
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of energy in a laboratory system, calculated from Lennard-Jones

potentials and obtained by extrapolation ab initio.

Table 1. The ratio of the total and transport cross-sections

calculated according to the Lennard-Jones potential to the cross-

sections calculated according to the potential ab initio

Section B-He B-Ar B-Ne

Complete sections σLJ/σabinitio 2.08 2.14 2.24

Transport sections σ T
LJ/σ

T
abinitio 2.87 3.04 3.34

temporal evolution of the beams is shown in Fig. 8. In all

three cases, the beam of boron atoms starts from a surface

0.01mm wide, which can be considered point-like relative

to the characteristic distances at which the beam is scattered.

The helium pressure is 1 Pa, the temperature is 300K, the

energy of the boron atoms at the beginning of the motion

is 10 eV. The figures are given for time points 1.4, 3.6, 6.4,

and 12 µs after the start of movement.

The beam propagation range (the position of the front) is

determined by particles that have not collided and have an

initial energy, and therefore is the same for all three cases.

The key differences are visible in the shape of the beam and

the tendency of energy loss by boron atoms. When using the

potential of hard spheres, a narrow, arrow-like beam with a

high directivity is formed. However, due to the mechanical

nature of collisions, particles lose energy much faster than

in other models (with the exception of a group of particles

at the front of the beam that did not have time to undergo

a collision, so the average beam energy is not so small).
The average energy of boron beam atoms during scattering

in helium at time 12 µs for various interatomic potentials is

shown in Table 2. With the Lennard-Jones potential, the

interatomic forces of attraction and repulsion are taken into

account, so the beam becomes wider and has a spherical

front, and the energy of the particles after scattering is

preserved better than in the model of hard spheres. The

shape of the beam using the potential ab initio (NWChem)
turns out to be similar to the shape of the beam obtained

using the Lennard-Jones model, but the potential ab initio

provides the best energy conservation during scattering.

Let us give the time evolution of the scattering of

beams of boron atoms in argon (Fig. 9). The conditions

(temperature, gas pressure, and the energy of boron atoms

at the beginning of motion) are set to be the same as

during scattering in helium. The figures are given for time

points 1.4, 6.4, and 12 µs after the start of motion (i.e.,
compared with scattering in helium, there is no second

time point equal to 3.6µs). Unlike helium (atomic mass

4.003Da), argon (39.948 Da) is significantly heavier than

boron (10.811Da), which is why boron atoms appear

during scattering, reflecting off argon and changing the

direction of motion to the opposite.

The patterns in the scattering of a boron beam in argon

with different interatomic potentials remain the same as in

the case of boron scattering in helium: in the potential of

hard spheres, the beam has an arrow-like shape, whereas

in the Lennard-Jones and ab-initio potentials, the beam has

a spherical front. In the Lennard-Jones potential, particles

lose energy (Table 2) and directional motion faster than in

the potential ab initio.

Conclusion

Using the NWChem computational chemistry software

package using the MP2, CCSD, and CCSD(T) methods,

the interatomic interaction potentials for boron atoms with

helium, neon, and argon atoms were calculated. For

the potentials obtained by the CCSD(T) method using

bases of varying accuracy, the potential corresponding

to the complete basis set was constructed using extrap-

olation. The scattering trajectories of a boron atom

on helium/neon/argon at various impact parameters were

simulated in the KITe code for this potential, as well as for

comparison of the hard-sphere potential and the Lennard-

Jones potential. The scattering angles, total scattering

cross sections, and transport cross sections were calculated.

The scattering of a monoenergetic beam of boron atoms

by atoms of the background gas helium and argon was

simulated, taking into account the thermal motion of the

gas. It is shown that in both gases (helium and argon), when

using the potential of hard spheres, the beam of boron atoms

has a directional arrow-like shape during scattering, while

at the Lennard-Jones and ab initio potentials, the particles

scatter in a cloud with a radial front. When using the

potential ab initio, the directional motion of particles (the
shape of the front) persists longer, and the loss of energy by

particles occurs much more slowly than with the Lennard-

Jones potential. Of course, using the potential ab initio

in modeling particle transport will allow for more accurate

results, however, in the absence of such an opportunity,

using the classical Lennard-Jones potential will show a fairly

Technical Physics, 2025, Vol. 70, No. 11
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Figure 8. Scattering of a beam of boron atoms with energies of 10 eV in helium with a pressure of 1 Pa and a temperature of 300K

at time points 1.4, 3.6, 6.4 and 12 µs after the start of motion. Interatomic potentials were used: a — hard spheres, b —Lennard-Jones,

c —ab initio (calculated in NWChem).
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Figure 9. Scattering of a beam of boron atoms with energies of 10 eV in argon with a pressure of 1 Pa and a temperature of 300K at
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initio (calculated in NWChem).

Table 2. Average energy (eV) of boron atoms during scattering in helium and argon at time 12 µs

Atoms Potential of hard spheres Potential of Lennard-Jones Potential ab initio (NWChem)

He 3.89 1.43 4.52

Ar 2.42 1.01 4.72

Technical Physics, 2025, Vol. 70, No. 11
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reliable scattering pattern, taking into account corrections

for excessive loss of particle energy when analyzing the

results.
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L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann,
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[14] S. Saebø, J. Almlöf. Chem. Phys. Lett., 154, 83 (1989).
[15] M.J. Frisch, M. Head-Gordon, J.A. Pople. Chem. Phys. Lett.,

166, 275 (1990).
[16] K. Raghavachari, J.A. Pople. Int. J. Quantum Chem., 14, 91

(1978).
[17] N.C. Handy, R.D. Amos. Chem. Phys. Lett., 98, 428 (1983).
[18] G.D. Purvis, R.J. Bartlett. J. Chem. Phys., 76, 1910 (1982).
[19] G.E. Scuseria, C.L. Janssen, H.F. Schaefer III. J. Chem. Phys.,

89, 7382 (1988).
[20] G.E. Scuseria, H.F. Schaefer. J. Chem. Phys., 90, 3700 (1989).
[21] J.A. Pople, M. Head-Gordon, K. Raghavachari. J. Chem. Phys.,

87, 5968 (1987).
[22] C.D. Sherrill, H.F. Schaefer III. Advances in Quantum Chem-

istry, 34, 143 (1999).
[23] J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch.

J. Phys. Chem., 96, 135 (1992).
[24] M. Head-Gordon, R.J. Rico, M. Oumi, T.J. Lee. Chem. Phys.

Lett., 219, 21 (1994).
[25] M. Head-Gordon, D. Maurice, M. Oumi. Chem. Phys. Lett.,

246, 114 (1995).
[26] A.C. West, J.D. Lynch, B. Sellner, H. Lischka, W.L. Hase,

T.L. Windus. Theor. Chem. Acc., 131, 1123 (2012).
[27] J.B. Foresman, A.E. Frisch. Exploring chemistry with elec-

tronic structure methods: A guide to using Gaussian, 2nd

edition (PA: Gaussian Inc., Pittsburgh, 1996)
[28] Electronic source. Available at:

https://habr.com/ru/articles/580770/

[29] Electronic source. Available at:

https://www.youtube.com/watch?v=oU1zO2bPPB4&list=
PLm8ZSArAXicL3jKr 0nHHs5TwfhdkMFhh&index=100

[30] R. Hellmann, E. Bich, E. Vogel. Molecular Phys.,

105 (23−24), 3013 (2007).
DOI: 10.1080/00268970701730096

[31] D.S. Bezrukov, N.N. Kleshchina, I.S. Kalinina,

A.A. Buchachenko. J. Chem. Phys., 150, 064314 (2019).
DOI: 10.1063/1.5071457

[32] D.N. Ruzic, S.A. Cohen. J. Chem. Phys., 83, 5527 (1985).
DOI: 10.1063/1.449674

[33] T.H. Dunning Jr. J. Chem. Phys., 90 (2), 1007 (1989).
[34] A.P. Rendell, T.J. Lee, A. Komornicki, S. Wilson. Theoreti-

cachimica Acta, 84 (4), 271 (1993).
[35] S. Lehtola. Intern. J. Quant. Chem., 119 (19), e25968 (2019).
[36] K.A. Peterson, D.E. Woon, T.H. Dunning Jr. J. Chem. Phys.,

100, 7410 (1994). DOI: 10.1063/1.46688433
[37] D. Feller, J.A. Sordo. J. Chem. Phys., 112, 5604 (2000).

DOI: 10.1063/1.481135

Translated by A.Akhtyamov

Technical Physics, 2025, Vol. 70, No. 11


