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Comparison of ab initio and Lennard-Jones interaction potentials and
their effect on particles beam scattering
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The classical Lennard-Jones interaction potential was compared with ab initio potentials computed using the
NWChem software. The ab initio calculations were performed using the MP2, CCSD and CCSD(T) methods
with the following extrapolation to complete basis set limit. The resulting potentials were used to simulate the
scattering of a boron atom beam in argon and helium gases using the KITe code. The elastic scattering angles,
total and effective cross sections, as well as the scattering behavior of the atoms beam were compared for the
different interatomic potentials. It was demonstrated that the Lennard-Jones potential, which is computationally
much simpler than the accurate ab initio potential, exhibits deviations in the potential well and the repulsive
regions. When scattering the model beam, atoms lose energy more rapidly with the Lennard-Jones potential than
with the ab initio potential, although the shapes of the particle fronts are quite similar. The results of this work
provide arguments for selecting an appropriate interatomic potential for elastic scattering modeling depending on
the specific problem.
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Introduction

The numerical Monte Carlo simulation of the motion of
atoms in a neutral gas is used in a number of tasks of
modern physics, for example, when designing diagnostics
of next-generation thermonuclear installations such as ITER,
or when creating thin films by magnetron sputtering. To
increase the accuracy of the simulation, it is important
to have plausible data on the cross-sections of elastic
scattering of particles. The classical approximation works
well for describing particle collisions in the energy range
of 0.01—100eV. At the same time, data on the interaction
potential makes it possible to obtain all the necessary
information about elastic scattering, scattering cross sections
and angles, collision frequency and probability of collision
with a background particle with certain components of
the velocity vector. The accuracy of the collision data
and, consequently, the nature of the particle motion in
the background gas is determined by the accuracy of the
interaction potential used.

At the moment, a large number of different model binary
potentials of interatomic and intermolecular interaction have
been developed, both purely repulsive and having a region
of attraction. Of the latter, the Lennard-Jones potential [1-4]
is widely known and most often used, combining simplicity
and fairly high accuracy.

With the development of computer modeling, it has
become possible to calculate particle interaction potentials
using the it ab initio method, ie. from the first fundamental
principles without involving additional empirical assump-
tions or special models. For calculating potentials ab initio
we used the NWChem [5] computational chemistry software
package, which includes functions for quantum chemistry
and molecular dynamics. NWChem is focused on scalability
both in terms of the ability to efficiently solve complex tasks
and in terms of using available parallel computing resources.
NWChem is open source and freely available.

The purpose of this paper is to compare the classical
Lennard-Jones interaction potential with the potential of
ab initio calculated in NWChem. The interatomic potentials
and all derived quantities in this work are calculated for
three pairs of elements: boron atom with helium, neon and
argon atoms. The decision on the choice of the type of
interatomic potential is necessary to simulate a capacitive
RF discharge in a noble gas, which is supposed to be used
to clean the diagnostic optics of ITER from contamination
by erosion products of the first boronized wall. Based on
the interaction potentials, the parameters of elastic scattering
were calculated and the results of modeling the scattering
of a beam of boron atoms on a background gas performed
in the code KITe [6,7] were compared.
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1. Classical models for interaction
potential

The principles of construction and an overview of the
main two-particle interatomic interaction potentials used
in molecular dynamic modeling of material properties are
given in Ref [8]. The simplest of them — the hard-sphere
potential — is used for qualitative research of processes
in dense liquids, amorphous and solids. Particles are
considered as impenetrable, ideally hard spheres, and the
potential is assumed to be zero if the distance between the
atoms is less than the sum of the Van der Waals radii of the
atoms, and equal to infinity in the opposite case. A slightly
more realistic variation of this model is the potential of the
Sutherland. Other two-particle models include the Lennard-
Jones potentials [9], Morse potentials [10], and Buckingham
potentials [11]. All of them are a continuous function of the
distance between the atoms. The potential parameters are
determined individually for each pair of atoms so that the
analytical function best matches the experimental data.

The Lennard-Jones potential was originally intended to
study the thermodynamic properties of noble gases. At
short distances, atoms repel each other due to overlapping
electron clouds, and at long distances there is a weak Van
der Waals attraction. The potential has the form

o0 -4[(2)°- ()]

where € is the depth of the potential well (characterizes
the force of interaction), and o is the distance at which the
potential energy is zero (a parameter depending on the type
of particles). For a pair of atoms, o is equal to the sum of
the Van der Waals radii of the atoms, and € is calculated
as the geometric average of the values of the depth of the
potential well of each atom. For heavy atoms, € can be
assumed to be equal to the boiling point of this substance.

The Morse potential has been proposed to describe
the vibrational energy levels of diatomic molecules and is
widely used in molecular spectroscopy and studies of the
crystalline properties of solids. Compared to the Lennard-
Jones potential, Morse replaced the power dependence with
the exponential one, as it better described experimentally
observed energy levels. The long-range part agrees well
with experimental data, but at zero the potential has a finite
value, which is impossible, since atoms cannot be located
at one point in space. Nevertheless, the Morse potential
quite realistically describes the energy levels of diatomic
molecules.

In this paper, we will use the Lennard-Jones potential
for comparison with the ab initio potentials calculated in
NWChem due to its mathematical simplicity and computa-
tional efficiency. This potential is described by only two
parameters, which greatly simplifies model configuration
and data processing. The versatility of the Lennard-
Jones potential makes it possible to model both short-
range repulsive and long-range attractive forces in various
systems, including gases, liquids, and solids. In addition,

the Lennard-Jones potential demonstrates good consistency
with experimental data for many simple systems, which
makes it a convenient tool for predicting thermodynamic
and structural properties.

2. Quantum chemical methods for
calculating potentials in NWChem

The methods of modern quantum chemistry of the
ab initio group — from first principles — are based [12]
on solving the Schrodinger equation by consistently ap-
plying simplifying approximations. ~ Such methods in-
clude the Moeller-Plesset perturbation theory methods
(MP2 [13-15], MP4 [16]), the Brueckner doubles method
(BD) [17] and the Hartree-Fock method (HF), which
includes coupled cluster methods (CC, their variants
CCSD [18-20], CCSD(T) [21]) and configuration interaction
methods (CI [22], CIS [23], CISD [24,25], MCSCF [26],
CASSCF [27]). The Hartree-Fock method is fundamental
because it allows you to form a wave function that is an
initial approximation for other methods.

According to the Hartree-Fock method, the Schrodinger
equation is solved by reducing a multiparticle problem to a
single-particle one, assuming that each particle moves in an
averaged self-consistent field created by all other particles
of the system. The construction of a self-consistent field
can be carried out either by the method of successive
approximations (originally proposed by Hartree), or by
the direct variational method [5]. The disadvantage of
the method in its original form is the low accuracy of
determining the energy of the system, due to the lack of
consideration of the correlation interaction of electrons. In
this regard, the method is currently used, as a rule, in
combination with various additional methods that make it
possible to determine the correlation energy of electrons
(post-Hartree-Fock methods).

The coupled cluster method allows calculations to be
performed with full iterative processing of single and double
correlations and non-iterative inclusion of the effects of
triple correlations using perturbation theory. A variation
of the CCSD method solves nonlinear equations, taking
into account correlation effects at the level of one- and
two-electron excitations, which makes it significantly more
accurate than methods at the level of perturbation theory,
such as MP2. The CCSD(T) method is an extension of
CCSD and includes correlation effects from three-electron
excitations based on perturbation theory. This method
is often referred to as the ,gold standard“ [28-30] of
quantum chemistry due to its high accuracy at an acceptable
computational cost.

Among the Moeller-Plesset methods, the MP2 method is
the most common - second-order perturbation theory for
correlation energy. It is less accurate at short distances
than CCSD(T) [29]. Using higher-order MP is impractical,
because they require high computational costs.
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Figure 1. Interatomic interaction potentials for a pair of boron-helium atoms calculated in the NWChem program using CCSD, CCSD(T),
and MP2 methods. The Lennard-Jones potential is also given. The graphs (a) and (b) are presented at different scales.

100 b
F AN
N
AN
10 |
O N
a —=— CCSD(T) pV5Z
VE s Lennard-Jones

- —— Ruzic & Cohen

- --- Jordan & Amdur

| == Savola, Eriksen & Pollack

02 04 06 08 1.0 1.2 1.4
Distance, A

Figure 2. The Lennard-Jones potentials (green curve) and
ab initio (red), calculated in NWChem using the CCSD(T) method
with the pV5Z basis set, as well as experimental curves (pink and
two dotted) for a pair of helium atoms.

A detailed description of the potential calculations ab ini-
fio in the NWChem program is given, for example, in
Ref. [31]. A comparison of the types of the interatomic
potential function for a system of boron and helium atoms
calculated using the MP2, CCSD, CCSD(T), and Lennard-
Jones methods is shown in Fig. 1. The Lennard-Jones
potential function does not repeat the potentials ab initio
either in the area of the potential well or in the repulsion
zone (the positions of the potential well are close) and,
since it has only two parameters, it is impossible to achieve
a good shape match. Among the potentials ab initio, the
CCSD and MP2 methods give almost an exact match, but
the graphs differ from the more accurate CCSD(T) method
by the lower depth of the potential well.
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Let us compare (Fig. 2) the graphs of the Lennard-Jones
and ab initio potentials with the experimental curves [32]. It
can be seen that the potential curve ab initio is much closer
to the experimental ones than the Lennard-Jones potential
curve.

In addition to the modeling method, the accuracy of
the calculated potential is influenced by the selected basis
set of functions. In the calculation process, the desired
wave function is represented as a linear combination of
basis functions. This makes it possible to convert partial
differential equations into algebraic equations suitable for
efficient computer simulation.

Some of the most widely used basis sets, developed in
Ref [33], are designed to systematically converge post-
Hartree-Fock computations to the limit of the complete
basis set using empirical extrapolation methods [34]. Such
sets include sequentially increasing shells of polarization
(correlating) functions, and are denoted as cc-pVNZ, where
N=D,T, Q 5,6, etc., etc. (where D=double, T=triple,
etc.), ,cc-p“ means ,,correlationally matched polarized®, and
,V* indicates that these are basis sets with valence only.
Currently, such ,,correlation-consistent polarized basis sets
are widely used and are the generally accepted standard
for correlated or post-Hartree-Fock computations [33,35].

In addition, when modeling the interaction of pairs of
atoms, including those located far from each other, for
accurate calculations, it is necessary to add diffuse functions
to describe long-range interactions, such as Van der Waals
forces (aug-cc-pVnZ bases). A comparison of the types
of the interatomic potential function for a pair of helium
atoms calculated by the CCSD(T) method on various basis
sets cc-pVDZ; cc-pVTZ; cc-pVQZ and cc-pV5Z is shown
in Fig. 3. As the accuracy of the basis sets increases, the
potential function decreases, the minimum position shifts to
smaller distances, while the functions become closer and
tend to a certain limit that will correspond to the full basis
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Figure 3. The interatomic interaction potentials calculated in
the NWChem program for a pair of boron-helium atoms by the

CCSD(T) method using bases of varying accuracy, as well as the
extrapolated potential corresponding to the full basis set.

set. This limit can be obtained using the approximation
formula [31,36,37]:

2
)

A(x) = A(o0) + Be~ =D 4 Ce= XD

where X =2, 3, 4, 5 is the basis number, A(x) is the
value of the potential, and A(oo) is the desired approximate
value. The potential function obtained as a result of solving

this system of linear equations and corresponding to the
complete basis set is also shown in Fig. 3.

3. Comparison of calculated elastic
scattering parameters

Based on various functions of the interatomic interaction
potentials (hard spheres, Lennard-Jones, and ab initio), the
parameters of elastic scattering reactions were calculated
for comparison: scattering angles depending on the target
parameter, total and transport scattering cross sections
depending on energy. The calculation algorithm is given
in Ref. [6]. The motion of an incoming particle is modeled
in the center of mass system. Fig. 4 shows the scattering
trajectories of a boron atom on noble gas atoms for two
types of Lennard-Jones potentials (Fig. 4,a) and ab initio
(Fig. 4,b), calculated in the NWChem program using the
CCSD(T) method using extrapolation to match the full
basis set (no trajectories are constructed for the potential of
hard spheres, since the scattering angle is calculated directly
using the classical formula). The aiming parameters are the
same for each pair of elements and are selected so as to
show the trajectories of attraction (in green), repulsion (in
blue) and capture of the particle into orbit (in red).

The scattering angle in the center of mass system is
calculated as the angle of deviation of the velocity vector of
the incident particle after the scattering act from the initial
direction, ie., the angle of trajectory change. Comparing the
scattering trajectories at different potentials for each pair
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Figure 4. Scattering trajectories in the center of mass system; @ — with the Lennard-Jones interaction potential, » — with interaction
potentials obtained by extrapolation from the results of calculations in NWChem.
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Figure 5. Dependence of scattering angles on the target parameter, calculated from the Lennard-Jones potentials of hard spheres and
obtained by extrapolation ab initio in the NWChem program for pairs of elements B-Ne (a) and B-He (b).

of elements in Fig. 4, one can see a significant difference
in the obtained scattering angles and the nature of their
dependence on the aiming parameters. This difference will
be further observed for all derived quantities, scattering
cross-sections, collision frequency, etc. The scattering angle
as a function of the target parameter for the potentials of
hard spheres, Lennard-Jones, and it ab initio is shown in
Fig. 5. For the scattering trajectory of a boron atom off
a neon atom in the Lennard-Jones potential (blue curve),
a distinct ,kick-out“ point with a positive angle is clearly
visible at the distance corresponding to the potential well.
It is for this point that the ,,capture” trajectory is plotted in
Fig. 4,a, square B-Ne (red curve).

The scattering cross section in the center of mass system
is calculated as the area of a circle S = b? with radius b —
with an aiming parameter at which the scattering angle is
1° (Fig. 6). Acts of scattering by less than 1° will not be
taken into account.

The scattering transport cross section in the laboratory
coordinate system (Fig. 7) is calculated using the formula
(using the expression do = 2z pdp):

a

a
or = / ;i_g (1 —cos6)dQ = /(1 —cosO(p))2mapdp.
0 0

Here p is the target parameter, 0 is the scattering angle, o is
the scattering cross section. The integration limit is selected
for each energy equal to the target parameter, which gives
a scattering angle of 1°.

It can be seen that the total and transport cross
sections, firstly, have a nonlinear dependence on energy,
and secondly, they differ both in shape (the nonlinear
dependence on energy manifests itself in different ways) and
in absolute values (Table 1) when calculated using Lennard-
Jones potentials and ab initio, obtained by extrapolating
calculations in the NWChem program. Next, it will be
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Figure 6. The total scattering cross sections as a function

of energy in the center of mass system, calculated from the
Lennard-Jones potentials and obtained by extrapolation ab initio
(NWChem).

shown what differences in the nature of the motion of a
beam of atoms in a neutral gas lead to the choice of the
potential of interatomic interaction.

4. Scattering of a model beam of atoms
at different potentials

Using the KITe code, we will simulate and compare the
scattering pattern of a beam of boron atoms in helium
using various interatomic potentials: hard spheres, Lennard-
Jones potentials, and ab initio potentials calculated from the
first principles in the NWChem program. The simulation
takes into account the thermal motion of gas atoms. The
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Figure 7. Transport cross sections of scattering as a function
of energy in a laboratory system, calculated from Lennard-Jones
potentials and obtained by extrapolation ab initio.

Table 1. The ratio of the total and transport cross-sections
calculated according to the Lennard-Jones potential to the cross-
sections calculated according to the potential ab initio

Section B-He | B-Ar | B-Ne

Complete sections 617/ Gupinirio | 2.08 | 2.14 | 224

Transport sections 67,/6 Lo | 287 | 3.04 | 334

temporal evolution of the beams is shown in Fig. 8. In all
three cases, the beam of boron atoms starts from a surface
0.01 mm wide, which can be considered point-like relative
to the characteristic distances at which the beam is scattered.
The helium pressure is 1Pa, the temperature is 300 K, the
energy of the boron atoms at the beginning of the motion
is 10eV. The figures are given for time points 1.4, 3.6, 6.4,
and 12 us after the start of movement.

The beam propagation range (the position of the front) is
determined by particles that have not collided and have an
initial energy, and therefore is the same for all three cases.
The key differences are visible in the shape of the beam and
the tendency of energy loss by boron atoms. When using the
potential of hard spheres, a narrow, arrow-like beam with a
high directivity is formed. However, due to the mechanical
nature of collisions, particles lose energy much faster than
in other models (with the exception of a group of particles
at the front of the beam that did not have time to undergo
a collision, so the average beam energy is not so small).
The average energy of boron beam atoms during scattering
in helium at time 12 us for various interatomic potentials is
shown in Table 2. With the Lennard-Jones potential, the
interatomic forces of attraction and repulsion are taken into
account, so the beam becomes wider and has a spherical
front, and the energy of the particles after scattering is

preserved better than in the model of hard spheres. The
shape of the beam using the potential ab initio (NWChem)
turns out to be similar to the shape of the beam obtained
using the Lennard-Jones model, but the potential ab initio
provides the best energy conservation during scattering.

Let us give the time evolution of the scattering of
beams of boron atoms in argon (Fig. 9). The conditions
(temperature, gas pressure, and the energy of boron atoms
at the beginning of motion) are set to be the same as
during scattering in helium. The figures are given for time
points 1.4, 6.4, and 12us after the start of motion (ie.,
compared with scattering in helium, there is no second
time point equal to 3.6us). Unlike helium (atomic mass
4003 Da), argon (39.948 Da) is significantly heavier than
boron (10.811Da), which is why boron atoms appear
during scattering, reflecting off argon and changing the
direction of motion to the opposite.

The patterns in the scattering of a boron beam in argon
with different interatomic potentials remain the same as in
the case of boron scattering in helium: in the potential of
hard spheres, the beam has an arrow-like shape, whereas
in the Lennard-Jones and ab-initio potentials, the beam has
a spherical front. In the Lennard-Jones potential, particles
lose energy (Table 2) and directional motion faster than in
the potential ab initio.

Conclusion

Using the NWChem computational chemistry software
package using the MP2, CCSD, and CCSD(T) methods,
the interatomic interaction potentials for boron atoms with
helium, neon, and argon atoms were calculated. For
the potentials obtained by the CCSD(T) method using
bases of varying accuracy, the potential corresponding
to the complete basis set was constructed using extrap-
olation. =~ The scattering trajectories of a boron atom
on helium/neon/argon at various impact parameters were
simulated in the KITe code for this potential, as well as for
comparison of the hard-sphere potential and the Lennard-
Jones potential. The scattering angles, total scattering
cross sections, and transport cross sections were calculated.
The scattering of a monoenergetic beam of boron atoms
by atoms of the background gas helium and argon was
simulated, taking into account the thermal motion of the
gas. It is shown that in both gases (helium and argon), when
using the potential of hard spheres, the beam of boron atoms
has a directional arrow-like shape during scattering, while
at the Lennard-Jones and ab initio potentials, the particles
scatter in a cloud with a radial front. When using the
potential ab initio, the directional motion of particles (the
shape of the front) persists longer, and the loss of energy by
particles occurs much more slowly than with the Lennard-
Jones potential. Of course, using the potential ab initio
in modeling particle transport will allow for more accurate
results, however, in the absence of such an opportunity,
using the classical Lennard-Jones potential will show a fairly
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Figure 8. Scattering of a beam of boron atoms with energies of 10eV in helium with a pressure of 1 Pa and a temperature of 300K
at time points 1.4, 3.6, 6.4 and 12 us after the start of motion. Interatomic potentials were used: a — hard spheres, » —Lennard-Jones,
¢ —ab initio (calculated in NWChem).
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Figure 9. Scattering of a beam of boron atoms with energies of 10eV in argon with a pressure of 1Pa and a temperature of 300K at
time points 1.4, 6.4 and 12 us after the start of motion. Interatomic potentials were used: a — hard spheres, b —Lennard-Jones, ¢ —ab
initio (calculated in NWChem).

Table 2. Average energy (eV) of boron atoms during scattering in helium and argon at time 12 us

Atoms Potential of hard spheres Potential of Lennard-Jones Potential ab initio (NWChem)
He 3.89 143 4.52
Ar 242 1.01 4.72

Technical Physics, 2025, Vol. 70, No. 11
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reliable scattering pattern, taking into account corrections
for excessive loss of particle energy when analyzing the
results.
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