

Terahertz Few-particle Magnetoabsorption in Asymmetric Ellipsoidal Ge/Si QD

© A.A. Nahapetyan¹, M.A. Mkrtchyan^{1,2,¶}, M.Ya. Vinnichenko³, D.A. Firsov³, H.A. Sarkisyan¹

¹ Institute of Applied Problems of Physics National Academy of Sciences of the Republic of Armenia,
0014 Yerevan, Armenia

² Russian-Armenian University,
0051 Yerevan, Armenia

³ Peter the Great St. Petersburg Polytechnic University,
195251 St. Petersburg, Russia

¶ E-mail: mher.mkrtchyan@rau.am

Received October 20, 2025

Revised November 21, 2025

Accepted for publication December 12, 2025

The behavior of a heavy-hole gas in a strongly oblate, asymmetric ellipsoidal Ge/Si quantum dot under an axial homogeneous magnetic field has been investigated. Due to the specific geometry of the quantum dot, the interaction between holes is considered two-dimensional. The realization of the generalized Kohn theorem in such a system under the influence of the incident long-wave radiation has been shown in the dipole approximation. The exact energy spectrum has been obtained for the case of a strongly oblate ellipsoidal quantum dots with a circular cross-section, using the Johnson and Payne model of a circular two-dimensional parabolic well. A detailed analysis of the energy spectrum is presented.

Keywords: ellipsoidal quantum dot, magnetic field, Moshinsky model, generalized Kohn theorem, terahertz optical transitions, Johnson and Payne model.

Full text of the paper will appear in journal SEMICONDUCTORS.