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Настоящий обзор посвящен механизмам оже-рекомбинации в полупроводниковых наногетероструктурах.

Отличительной особенностью наногетероструктур является сильная пространственная неоднородность, обус-

ловленная существованием гетерограниц. Гетерограницы оказывают принципиальное влияние на величину

энергии и на поведение волновых функций носителей заряда в квантово-размерных гетероструктурах и,

как показано в настоящем обзоре, существенно влияют на макроскопические свойства полупроводниковых

наноструктур. Наличие гетерограницы воздействует на электрон-электронное (дырочно-дырочное) взаи-

модействие в квантовых структурах, и это воздействие носит фундаментальный характер. Гетерограница

снимает ограничения, накладываемые на межэлектронные процессы столкновения законами сохранения

энергии-импульса, что приводит к появлению беспороговых, слабо зависящих от температуры каналов оже-

рекомбинации. В обзоре рассмотрены основные механизмы оже-рекомбинации неравновесных носителей

заряда в полупроводниковых гетероструктурах с квантовыми ямами (Часть 1), квантовыми нитями и

квантовыми точками (Часть 2). Показано, что существуют три принципиально разных механизма оже-

рекомбинации: беспороговый, квазипороговый и пороговый. Скорость беспорогового процесса слабо зависит

от температуры. Пороговая энергия квазипорогового процесса существенно зависит от ширины квантовой

ямы и близка к нулю для узких квантовых ям. Показано, что в узких квантовых ямах преобладают

беспороговые и квазипороговые оже-процессы, в то время как в широких квантовых ямах преобладают

пороговые и квазипороговые оже-процессы. Найдена критическая ширина квантовой ямы, при которой

квазипороговый канал оже-рекомбинации трансформируется в трехмерный пороговый оже-процесс. Также

выполнен анализ влияния фононов на процессы оже-рекомбинации в квантовых ямах. Показано, что для

узких квантовых ям оже-процесс с участием фононов становится резонансным, что приводит к увеличению

коэффициента оже-рекомбинации с участием фононов. Отдельно рассмотрен вопрос о влиянии процессов

релаксации на механизмы оже-рекомбинации в однородных полупроводниках. Показано, что учет процессов

релаксации приводит к снятию энергетического порога для процессов оже-рекомбинации.
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1. Введение

Процессы рекомбинации неравновесных носителей в

полупроводниках могут быть двух типов: 1) процессы

излучательной рекомбинации и 2) процессы безызлуча-

тельной рекомбинации. Если при межзонной рекомби-

нации электрон-дырочной пары происходит испускание

фотона, то в этом случае имеет место излучательная

рекомбинация, в противном же случае рекомбинация

электрона и дырки является безызлучательной. В по-

лупроводниках существует большое количество различ-

ных механизмов безызлучательной рекомбинации [1]:

рекомбинация через примеси и дефекты кристалличе-

ской решетки, многофононная эмиссия, поверхностная

рекомбинация, оже-рекомбинация и др. При высоких

уровнях возбуждения неравновесных носителей заряда

основным процессом безызлучательной рекомбинации

в полупроводниках является оже-процесс [1,2]. В слу-

чае оже-рекомбинации (ОР) энергия рекомбинирующей

электрон-дырочной пары передается третьему носителю

(электрону или дырке), который, поглощая передан-

ную ему энергию, переходит в высоковозбужденное

состояние. В полупроводниках такое явление было на-

звано оже-процессом по аналогии с известным оже-

эффектом в атомах, открытым Пьером Оже (P. Auger)

в 1925 году [3].

Процессы оже-рекомбинации в полупроводниках при-

нято классифицировать по тому, к каким энергетиче-

ским зонам относятся начальные и конечные состо-

яния участвующих в процессе рекомбинации частиц.

В однородных полупроводниках различают следующие

процессы оже-рекомбинации [1,4]: СНСС, CLCC, CHHS,
CHHL и др.. Буквами С, Н, L и S обозначены состояния

электронов в зоне проводимости, тяжелых и легких
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Рис. 1. Схема переходов электронов и дырок при оже-

рекомбинации: a — переходы с передачей энергии электрону

(СНСС-процессы), b — переходы с передачей энергии дырке

при ее переходе в спин-орбитально отщепленную зону (СННС-
процесс). Здесь 1SO энергия спин-орбитального взаимодей-

ствия;
”
1“ и

”
2“ — начальные состояния частиц;

”
3“ и

”
4“ —

конечные состояния.

дырок в валентной зоне и дырок в спин-отщепленной

зоне соответственно. Например, при СНСС-процессе

(рис. 1, a) в результате кулоновского взаимодействия

двух электронов один из них рекомбинирует с тяжелой

дыркой, а другой поглощает переданную ему энергию

и переходит в высоковозбужденное состояние в зоне

проводимости. При CHHS-процессе (рис. 1, b) тяжелая

дырка рекомбинирует с электроном, а вторая тяжелая

дырка в результате кулоновского взаимодействия пере-

ходит в спин-отщепленную зону.

В однородных полупроводниках процесс оже-реком-

бинации в большинстве случаев является пороговым, и

скорость оже-рекомбииации G изменяется с темпера-

турой по экспоненциальному закону [1]. Следует под-

черкнуть, что это утверждение справедливо для случая,

когда процесс ОР рассматривается в рамках первого

порядка теории возмущения по электрон-электронному

(дырочно-дырочному) взаимодействию. При высоких

уровнях возбуждения, благодаря электрон-электронным

(дырочно-дырочным) процессам рассеяния ОР стано-

вится беспороговым процессом, так как процессы ре-

лаксации снимают ограничения, налагаемые законами

сохранения энергии и импульса при ОР. В объем-

ном полупроводнике релаксационные процессы играют

такую же роль, как и гетерограницы в полупровод-

никовых гетероструктурах [5]1 (см. Приложение I).
Влияние релаксационных процессов на механизм оже-

рекомбинации впервые рассмотрено в работе [5]. В этой

работе показано, что эффекты релаксации носителей

1 Приложения I, II и III представлены во 2-й части статьи, см.
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заряда на носителях изменяют не только величину

коэффициента оже-рекомбинации, но и его зависимость

от температуры.

Кроме того, беспороговый случай составляют про-

цессы оже-рекомбинации с переходом дырки в спин-

отщепленную зону в полупроводниках, где величина

спин-орбитального расщепления 1so близка к ширине

запрещенной зоны Eg . Такая ситуация имеет место

в полупроводниках InAs и GaSb и гетероструктурах

на основе CdHgTe. В этом случае оже-процесс имеет

”
резонансный“ характер, а скорость рекомбинации не

имеет экспоненциальной зависимости от температуры.

Следует отметить, что в халькогенидах свинца (PbS,
PbSe и PbTe) с линейным законом дисперсии оже-

рекомбинация подавлена вследствие невыполнения в по-

добном процессе закона сохранения энергии и импульса.

Кратко рассмотрим природу образования порога оже-

рекомбинации в однородных полупроводниках на приме-

ре СНСС-процесса (рис. 1, a). В случае такого процесса

рекомбинации должны выполняться два фундаменталь-

ных закона сохранения квазиимпульса и энергии:

k1 + k2 = k3 + k4, (1)

E1 + E2 = E3 + E4. (2)

Здесь k1, k2 и E1, E2 — квазиимпульсы и энергии

частиц в начальных состояниях
”
1“ и

”
2“; k3, k4 и E3,

E4 — квазиимпульсы и энергии в конечных состояниях

”
3“ и

”
4“. Квазиимпульс во многом аналогичен обыч-

ному импульсу частицы. В то же время между ними

имеется существенное отличие, связанное с тем, что

квазиимпульс является величиной, определенной лишь

с точностью до постоянного вектора обратной решетки

~b. Значения импульса p = ~k, отличающиеся на такую

величину ~b, физически эквивалентны [6]. Требование
одновременного выполнения законов сохранения (1)
и (2) означает, что суммарная кинетическая энергия

электронов
”
1“ и

”
2“ и дырки

”
4“ в начальном состоянии

должна превышать некоторое пороговое значение Eth [1].
Следовательно, в однородном прямозонном полупро-

воднике в рамках 1-го порядка теории возмущений по

электрон-электронному взаимодействию процесс оже-

рекомбинации является пороговым, а его скорость со-

держит экспоненциальную зависимость от температуры

G ∝ exp(−Eth/T ), где Eth = 2me/mhEg , me — эффектив-

ная масса электрона, mh — эффективная масса тяжелой

дырки, T — температура в энергетических единицах.

В работе [1] приводится алгоритм вычисления порого-

вой энергии для процесса оже-рекомбинации с учетом

непараболического закона дисперсии для возбужденного

электрона. Интересно отметить, что множитель
”
2“ в

выражении для Eth появляется благодаря
”
дираковско-

му“ спектру энергии для возбужденного электрона,

т. е. непараболичности закона дисперсии. Подробно это

будет описано в следующем параграфе.
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В первых работах по оже-рекомбинации в однородных

полупроводниках интегралы перекрытия между состо-

яниями электронов и дырок рассматривались как кон-

станты, величины которых оценивались из различных

упрощенных моделей ([7] и др.). Правильное вычисление

интегралов перекрытия для оже-процессов на основе

модели Кейна было проведено впервые в работах [8–10].
В работе [10] впервые получено правильное выражение

для скорости оже-рекомбинации CHCC-процесса в рам-

ках модели Кейна:

G3D = 6
√
2π5

mee4~3

κ0
(E5/2

g T 1/2m1/2
e m

3/2
h )−1

× exp

(
−2me

mh

Eg

T

)
, (3)

где κ0 — статическая диэлектрическая проницаемость.

В этой работе показано, что в рамках простейшей

двухзонной модели, как было рассмотрено в работе [7],
интегралы перекрытия равны нулю. Таким образом, для

вычисления скорости оже-рекомбинации необходимо ис-

пользовать многозонную модель Кейна. Модель Кейна

для однородных полупроводников изложена во многих

учебниках [1].
Настоящий обзор посвящен механизмам оже-рекомби-

нации в полупроводниковых наногетероструктурах. От-

личительной особенностью наногетероструктур, как уже

было отмечено выше, является сильная пространствен-

ная неоднородность, обусловленная существованием ге-

терограниц. Гетерограницы оказывают принципиальное

влияние на величину энергии и на поведение волновых

функций носителей заряда в квантово-размерных гетеро-

структурах. Гетерограница снимает ограничения, накла-

дываемые на межэлектронные процессы столкновения

законами сохранения энергии-импульса, что приводит к

появлению беспороговых, слабо зависящих от темпера-

туры каналов оже-рекомбинации.

В монографии авторитетных специалистов в области

физики процессов ОР [1] отмечено, что расчет веро-

ятности ОР в однородных полупроводниках — трудная

задача. Это связано в первую очередь с необходимостью

вычисления интегралов перекрытия блоховских ампли-

туд, относящихся к различным зонам. Как оказалось,

расчет вероятности ОР в полупроводниковых нанострук-

турах — задача еще более сложная. Как отмечено вы-

ше, гетероструктуры пространственно неоднородны. Мы

имеем качественно другую полупроводниковую среду.

В наностуктурах качественно и количественно изме-

няются спектр и волновые функции носителей заряда,

возникает задача о граничных условиях для волновых

функций. В настоящем обзоре мы хотели обратить

внимание на фундаментальные аспекты, касающиеся

механизмов ОР в наногетероструктурах. Мы приводим

подробный микроскопический анализ механизмов ОР в

квантовых ямах, квантовых нитях и квантовых точках.

Изложены детали расчета спектров, волновых функций

и матричных элементов кулоновского взаимодействия

между частицами с учетом пространственной симметрии

задачи. Такой стиль изложения материала делает обзор

полезным для экспериментаторов, молодых, начинаю-

щих ученых и специалистов, работающих в области

физики полупроводниковых наноструктур. Мы не пре-

тендуем на полный обзор публикаций на эту тему.

В конце списка литературы мы приводим несколько

публикаций по ОР, в которых используется идеология

настоящего обзора для решения конкретных задач.

2. Влияние пространственной
неоднородности гетерограницы
на механизмы оже-рекомбинации.
Новый механизм оже-рекомбинации
в полупроводниковых
гетероструктурах

В настоящее время основными объектами исследо-

вания физики полупроводников являются гетерострук-

туры, такие как одиночные гетеробарьеры, квантовые

ямы, квантовые нити, квантовые точки, сверхрешетки

и т. д. Отличительной особенностью таких структур, как

уже было отмечено выше, является сильная простран-

ственная неоднородность, обусловленная существовани-

ем гетерограниц. Ранее считалось, что эффективность

безызлучательных оже-процессов в гетероструктурах со-

ответствует обычным объемным оже-процессам [11,12].
Как будет показано далее, наличие гетерограниц каче-

ственно и количественно влияет на процессы электрон-

электронного (дырочно-дырочного) взаимодействия в

полупроводниковых квантовых структурах.

В настоящем разделе рассмотрен новый механизм

оже-рекомбинации объемных состояний — так называ-

емый беспороговый оже-процесс. Скорость протекания

такого беспорогового процесса имеет степенную зависи-

мость от температуры, а сам процесс является домини-

рующим механизмом безызлучательной рекомбинации

неравновесных носителей заряда в гетероструктурах и

в структурах нанометровых размеров (см. разд. 3, 4, 5).
Дадим качественную трактовку нового механизма оже-

рекомбинации [13].

1. Ограничения на процессы оже-рекомбинации, свя-

занные с законом сохранения импульса, снимаются, если

хотя бы одна из квазичастиц (электрон, для определен-

ности) находится вблизи гетерограницы или в области

подбарьерного движения. Волновая функция квазича-

стиц в этой области представляет собой волновой пакет

с различными значениями квазиимпульса, среди кото-

рых имеются импульсы, соответствующие конечному

импульсу возбужденного оже-электрона.

2. Передача энергии от рекомбинирующей электрон-

дырочной пары быстрому оже-электрону имеет резо-

нансный характер. Импульс, необходимый для перехода

в конечное высоковозбужденное состояние, электрон

получает от взаимодействия с гетерограницей, но не
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Рис. 2. Схематическое изображение зонной диаграммы гете-

роперехода. Здесь точка x = 0 соответствует гетерогранице,

а
”
1“ и

”
2“ — начальные состояния для электронов;

”
3“ и

”
4“ — конечные состояния.

от взаимодействия с другим электроном. При этом

в матричном элементе отсутствует закон сохранения

импульса для компоненты, перпендикулярной гетерогра-

нице, и, как следствие, скорость оже-перехода не имеет

обычной для однородного полупроводника экспоненци-

альной температурной зависимости (см. формулу (3)).

3. Выброс быстрых оже-электронов происходит пре-

имущественно в направлении оси, перпендикулярной

гетерогранице, т. е. оси максимальной пространственной

неоднородности в системе. Электроны выбрасываются

над барьером в направлении, перпендикулярном гетеро-

границе, в узком интервале углов 1ϑ ∼ (T/Eg)
1/2 ≪ 1.

Здесь рассматривается случай, когда высота гете-

робарьера для электрона Vc (или дырки Vv) меньше

ширины запрещенной зоны узкозонного полупроводника

(см. рис. 2).

В работе [13] проведен подробный анализ порогово-

го и беспорогового механизмов оже-рекомбинации для

одиночного гетеробарьера (рис. 2). Проанализированы

условия, при которых беспороговый канал преобладает

над пороговым. Для квантовых ям такой подробный ана-

лиз механизмов оже-рекомбинации приводится в разд. 3.

В работе [14] проанализирована возможность снятия

порога для процесса оже-рекомбинации в квантовых

ямах при переходе возбужденных носителей в непре-

рывную часть спектра. Однако в этой работе отсутству-

ет микроскопическая теория беспорогового процесса и

нет теоретического анализа конкуренции между поро-

говым, квазипороговым и беспороговым механизмами

оже-рекомбинации при различных температурах и при

различной ширине квантовой ямы. В работах [15,16] рас-

смотрен только беспороговый канал оже-рекомбинации,

который соответствует малым переданным импульсам

при кулоновском взаимодействии частиц (для CHCC-

процесса) в пренебрежении спин-орбитального взаимо-

действия. Строгая теория для беспорогового канала

оже-рекомбинации для случая квантовых ям, квантовых

нитей и квантовых точек будет дана в разд. 3, 4 и 5. Пер-

вый прямой эксперимент по наблюдению беспорогового

канала оже-рекомбинации при T = 77K был выполнен в

работе [17].

3. Механизм оже-рекомбинации
в полупроводниковых квантовых
ямах. Беспороговый и
квазипороговый каналы
оже-рекомбинации

Цель настоящего раздела состоит в теоретическом

исследовании основных механизмов оже-рекомбинации

неравновесных носителей в полупроводниковых кван-

товых ямах. Будет показано, что в квантовых ямах

существует три принципиально различных механиз-

ма оже-рекомбинации: (i) пороговый механизм, анало-

гичный оже-процессу в однородном полупроводнике,

(ii) квазипороговый механизм, пороговая энергия кото-

рого существенно зависит от ширины квантовой ямы,

(iii) беспороговый механизм, отсутствующий в однород-

ном полупроводнике. Для порогового процесса оже-

рекомбинации в квантовой яме пороговая энергия близ-

ка к пороговой энергии однородного полупроводника.

И наоборот, вследствие малости пороговой энергии

скорость квазипорогового процесса в достаточно узких

квантовых ямах слабо зависит от температуры. По этой

причине в достаточно узких квантовых ямах нет чет-

кого разделения между беспороговым и квазипороговым

механизмами оже-рекомбинации и они сливаются в один

беспороговый оже-процесс. С ростом ширины квантовой

ямы пороговая энергия квазипорогового процесса воз-

растает и стремится к объемной величине. Совершенно

иначе ведет себя беспороговый канал ОР. С ростом

ширины квантовой ямы его скорость резко убывает,

стремится к нулю, и при переходе к однородному полу-

проводнику данный механизм исчезает. В разделе будут

получены условия, при которых беспороговый механизм

оже-рекомбинации преобладает над пороговым. Также

будет найдено критическое значение толщины квантовой

ямы, при которой квазипороговый и пороговый меха-

низмы оже-рекомбинации сливаются в один трехмерный

оже-процесс.
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3.1. Основные уравнения

Для анализа механизмов оже-рекомбинации и нахож-

дения скорости оже-процесса необходимо иметь волно-

вые функции носителей заряда. Как уже было установ-

лено для объемных оже-процессов, волновые функции

носителей необходимо вычислять в многозонном при-

ближении [10]. Нами будет использована четырехзонная

модель Кейна, наиболее точно описывающая волновые

функции и спектр носителей в узкозонных полупровод-

никах AIIIBV [18].

3.1.1. Волновые функции в однородном
полупроводнике

Для большинства полупроводников AIIIBV волновые

функции зоны проводимости в центре зоны Бриллюена

описываются представлением Ŵ+
6 , а валентной зоны —

представлениями Ŵ+
7 и Ŵ+

8 . Два первых из них дважды

вырождены, а последнее — вырождено четырежды.

Соответствующие им уравнения для волновых функций

могут быть записаны в дифференциальной форме. Обыч-

но базисные волновые функции зоны проводимости и

валентной зоны берутся в виде собственных функций

углового момента [18,19]. Однако для наших целей более

подходящим является другое представление базисных

функций:

|s ↑〉, |s ↓〉, |x ↑〉, |x ↓〉, |y ↑〉, |y ↓〉, |z ↑〉, |z ↓〉,
(4)

где |s〉 и |x〉, |y〉, |z 〉 — блоховские функции s - и p-типа

с угловым моментом 0 и 1 соответственно. Первые опи-

сывают состояние зоны првоводимости, а последние —

состояние валентной зоны в Ŵ-точке. Стрелками обозна-

чено направление спина. Волновая функция носителей

заряда ψ может быть представлена в виде

ψ = 9s |s〉 + 9|p〉,

где 9s и 9 — спиноры. Вблизи Ŵ-точки уравнения для

огибающих 9s и 9 в сферическом приближении имеют

следующий вид:





(Ec − E)9s − i~γ∇9 = 0,

(Ev − δ − E)9 − i~γ∇9s +
~
2

2m
(γ̃1 + 4γ̃2)∇(∇9)

− ~
2

2m
(γ̃1 − 2γ̃2)∇×[∇×9] + iδ[σ×9] = 0.

(5)

Здесь γ — кейновский матричный элемент [19], имею-
щий размерность скорости, γ̃1 и γ̃2 = γ̃3 — обобщенные

параметры Латтинжера [19], δ = 1SO/3, Ec и Ev —

энергии нижнего края зоны проводимости и верхнего

края валентной зоны, m — масса свободного электрона,

σ = (σx , σy , σz ) — матрицы Паули. Если вместо пара-

метров Латтинжера феноменологически ввести массу

тяжелых дырок, описывающую взаимодействие с выс-

шими зонами, то уравнения (5) переходят в уравнения,

полученные в работе [20]. Можно убедиться, что урав-

нения (5) не отличаются от обычно используемых в

литературе уравнений [19,21–23]. В первом уравнении

системы (5) для электронов мы пренебрегаем слагае-

мым с тяжелой массой.

Дырочные состояния

Выражение для 9s может быть найдено из первого

уравнения системы (5). Подстановка 9s во второе урав-

нение дает

−E9 +
~
2

2ml

∇(∇9) − ~
2

2mh

∇×[∇×9] + iδ[σ ×9] = 0,

(6)
где

m−1
l =

2γ2

Eg + δ − E
+ m−1(γ̃1 + 4γ̃2),

m−1
h = m−1(γ̃1 − 2γ̃2).

Здесь mh совпадает с массой тяжелых дырок, а

ml — с массой легких дырок в случае, когда кон-

станта спин-орбитального взаимодействия равна нулю;

Eg = Ec − Ev — запрещенная зона полупроводника. Для

удобства предполагается, что Ev = δ . Этот выбор свя-

зан с возрастанием энергий тяжелой дырки и легкой

дырки в точке Ŵ на δ и убыванием энергии дырки

в спин-орбитально отщепленной зоне (SO) на 2δ под

воздействием спин-орбитального взаимодействия (см.
уравнение (10)). Уравнение (6) можно упростить, введя

новые функции:

φ = div9 и η = σ rot9. (7)

После взятия дивергенции и ротора от уравнения (6),
умноженного на σ , оно превращается в систему двух

дифференциальных уравнений





− Eφ +
~
2

2ml

1φ + iδη = 0 ,

− (E + δ)η +
~
2

2mh

1η − 2iδφ = 0.

(8)

Фурье-преобразование этих уравнений дает спектр

легких и so-дырок для однородного полупроводника

[
E + ~

2

2ml
k2 iδ

−2iδ E + ~
2

2mh
k2 + δ

](
φ

η

)
= 0. (9)

Характеристическое уравнение имеет два корня

E1,2 = − δ

2
− ~

2k2

4

× (m−1
l + m−1

h ) ±

√

2δ2 +

(
δ

2
− ~2k2

4
(m−1

l − m−1
h )

)2

.

(10)
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Следует отметить, что ml зависит от энергии (см.
уравнение (6)). В точке Ŵ (k = 0) у нас имеются корни

E1 = δ и E2 = −2δ . Положительное решение соответ-

ствует легким дыркам, а с отрицательным знаком — so-

дыркам.

В окрестности точки Ŵ энергии E1,2 можно разложить

в ряд по волновому вектору, чтобы связать эффективные

массы легких и so-дырок ml, mso с параметрами Латтин-

жера:

E1 ≈ δ − ~
2k2

2ml

, E2 ≈ −2δ − ~
2k2

2mso

, (11)

где

m−1
l =

4γ2

3Eg

+
(γ̃1 + 2γ̃2)

m
, m−1

so =
2γ2

3(Eg + 3δ)
+
γ̃1

m
.

Приближенный спектр легких дырок можно полу-

чить с помощью широко применяемого гамильтониана

4× 4 [19]. Однако диапазон применимости довольно

узок, так как обычно ml ∼ 0.1mh и разложение (11)
справедливо, только когда E ≪ ml

mh
1so. Кроме того, та-

кая модель вообще не может описывать оже-переходы,

поскольку базисные состояния носителей в различных

зонах ортогональны. То же самое относится к к спектру

в зоне SO.

Фурье-амплитуды волновых функций как легких, так и

so-дырок можно представить в виде (см. уравнение (6)):

9 = k f +
iδ

E + δ + ~2k2(E)
2mh

[k× σ f ] ,

9s = − ~γk2(E)

Eg + δ − E
f , (12)

где f — произвольный спинор, относящийся к ранее вве-

денной функции φ посредством выражения φ = k2(E) f .

Третье решение в (6), относящееся к тяжелым дыр-

кам, удовлетворяет условию div9 = 0 (как результат

9s = 0) и σ rot9 = 0. Это следует из (8), так как, если

φ = 0, то и η = 0 и наоборот. Легко видеть, что

[σ ×9h] = −i9h.

Таким образом, закон дисперсии, описывающий

спектр тяжелых дырок выглядит следующим образом:

Eh = δ − ~
2k2

h

2mh

. (13)

Компоненты волновой функции тяжелых дырок долж-

ны удовлетворять уравнениям:
{
9z↓ = (9x↑ + i9y↑)

9z↑ = (−9x↓ + i9y↓)
⇔ [σ ×9] = −i9, (14)

{
kz9z↑ + kx9x↑ + ky9y↑ = 0

kz9z↓ + kx9x↓ + ky9y↓ = 0
⇔ div9 = 0. (15)

Решая эти уравнения можно получить явные выражения

для волновых функций дырок. Для квантовых ям они

даны в Приложении II.

Электронные состояния

В принципе обычные уравнения для электронов име-

ют тот же вид, что и для дырок. Так как точка Ŵ в зоне

проводимости вырождена только дважды и кристалличе-

ское поле не приводит к дополнительному расщеплению,

нет необходимости сохранять члены с параметрами γ̃i .

Кроме того, наличие этих членов в уравнениях для элек-

тронов является превышением точности. Таким образом,

для электронов справедлива упрощенная модель:

{
(Ec − E)9s − i~γ∇9 = 0,

(Ev − δ − E)9− i~γ∇9s + iδ[σ ×9] = 0.
(16)

Энергию электронов удобно измерять от нижнего

края зоны проводимости (Ec = 0). Эту энергию обо-

значим как E, чтобы не путать ее с полной энергией

электрона E , отсчитываемой от того же уровня, что и

энергия дырок. Вводя в (16) функции φ и η в том же

виде, как и раньше (см уравнение (7)), получаем

− (Eg + δ + E)φ +
~
2γ2

E
1φ + iδη = 0,

− (Eg + E + 2δ)η − 2iδφ = 0. (17)

Переходя к преобразованиям Фурье, находим закон

дисперсии для электронов

k2 =
E

~2γ2
E
2 + E(2Eg + 3δ) + (Eg + 3δ)Eg

Eg + E + 2δ
. (18)

Если E ≪ Eg , δ, тогда энергия зависит от квадрата

волнового вектора:

E =
~
2k2

2mc

, (19)

где

m−1
c = 2γ2

Eg + 2δ

(Eg + 3δ)Eg

.

Фурье-амплитуда волновой функции для электронов

равна

9s = f , 9 =
E

~γk2(E)

[
k f +

iδ

E + Eg + 2δ
[k× (σ f )]

]
,

(20)
где f — произвольный спинор (см. (12)).

3.1.2. Поток вероятности и уравнения

вблизи гетерограницы

Выражение для потока вероятности можно вывести из

уравнения (5) подстановкой E → −i~ ∂
∂t
, а затем исполь-

зуя процедуру, аналогично используемой в квантовой

механике [24]. Его можно также получить kp-методом

во 2-ом порядке теории возмущений. В результате для
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потока вероятности в случае дырок получаем следующее

выражение:

jh =
Eg + δ − E

2mlγ
[9s9

∗ +9∗
s 9]

− i~

2mh

(9× rot9∗ −9∗ × rot9). (21)

Для электронов в зоне проводимости это выражение

имеет более простой вид

je = γ[9s9
∗ +9∗

s 9]. (22)

Вопрос о граничных условиях для волновых функций

до сих пор остается открытым. В последние годы были

разработаны приближенные методы решения данной

проблемы [19]. Мы будем использовать приближение

γ = const, что является хорошим приближением для по-

лупроводниковых гетероструктур на основе соединений

AIIIBV [19].
Расхождение параметра γ в квантовой яме и области

барьера приводит в результате к небольшому изменению

коэффициента Оже. Следуя методу, разработанному в

работе [21], и предполагая непрерывность кейновского

параметра, мы получаем из системы (5) кейновские

уравнения, которые можно проинтегрировать через ге-

теробарьер:




(Eg + δ − E)9s − i~γ∇9 = 0,

− E9− i~γ∇9s +
~
2

2m
∇[6γ̃2∇9]

+
~
2

2m

∂

∂x k

(γ̃1 − 2γ̃2)
∂

∂x k

9 + iδ[σ ×9] = 0.

(23)

Используя эти уравнения и закон сохранения плотности

потока вероятности, мы получаем граничные условия

для огибающих волновых функций (см. Приложение II).

3.1.3. Состояния носителей в квантовой яме

Волновые функции в квантовой яме можно найти,

используя свойства симметрии Гамильтониана. Без уче-

та спина Гамильтониан H0 инвариантен при замене

x → −x . Рассмотрим оператор R, такой что

R : (x , y, z ) → (−x , y, z ), R = ICπx , (24)

H0R = RH0,

где I — оператор инверсии, а Cπx — оператор поворота

на угол π относительно оси x , перпендикулярной к

плоскости квантовой ямы.

С учетом спин-орбитального взаимодействия Гамиль-

тониан может быть записан в виде

H = H0 +
~

4m2c2
[∇V × p]σ , (25)

где p — оператор импульса и V — потенциальная

энергия электрона в кристалле. Последнее слагаемое не

коммутирует с R. Следовательно, оператор симметрии

D может быть найден как произведение оператора R

и некоторой спиновой матрицы S, т. е. D = R⊗ S. Так

как инверсия оставляет неизменным знак векторного

произведения, матрица S должна удовлетворять соотно-

шениям 



Sσx = σx S

Sσy = −σy S

Sσz = −σz S

,

σx =

[
0 1

1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0

0 −1

]
. (26)

Очевидно, в качестве матрицы S можно взять спиновую

матрицу Паули σx : S = σx .

Функции 9(x , y, z ) и D9(−x , y, z ) удовлетворяют

одному и тому же уравнению. Поэтому собственные

функции Гамильтониана можно искать как собственные

функции оператора D:

9(x , y, z ) = νD9(−x , y, z ), (27)

где ν = ±1. Величины ν = ±1 соответствуют состоя-

ниям носителей с различной симметрией. При таком

выборе волновых функций граничные условия можно

удовлетворить только на одной гетерогранице, так как

на другой они будут удовлетворены автоматически. Ре-

шая уравнение (27), мы находим необходимые условия

для различных компонент симметризованной волновой

функции:

9s↑(x , y, z ) = ±9s↓(−x , y, z ),

9x↑(x , y, z ) = ∓9x↓(−x , y, z ),

9y↑(x , y, z ) = ±9y↓(−x , y, z ),

9z↑(x , y, z ) = ±9z↓(−x , y, z ),

где знак
”
+“ соответствует ν = 1, а

”
−“ соответствует

ν = −1 для компонентов s , y , z и наоборот для ком-

поненты x . Соответствующие выражения для компонент

волновых функций электронов и дырок даны в Прило-

жении II.

3.2. Матричный элемент оже-рекомбинации

Вероятность оже-рекомбинации в единицу времени

вычисляется в рамках 1-го порядка теории возмущений

по электрон-электронному взаимодействию:

Wi→ f =
2π

~
|M f i |2δ(ε f − εi), (28)

где

M f i = 〈9 f (r1, r2, ν1, ν2)

∣∣∣∣
e2

κ0|r1 − r2|
+ 8̃(r1, r2)

∣∣∣∣

×9i(r1, r2, ν1, ν2) 〉 (29)

— матричный элемент электрон-электронного взаимо-

действия, r1 и r2 — координаты носителей, ν1 и ν2 —
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спиновые переменные (см. (27)), 8̃(r1, r2) — дополни-

тельный потенциал, возникающий из-за различия диэлек-

трических постоянных квантовой ямы и барьера. Явное

выражение для 8̃(r1, r2) приведено в Приложении III.

С учетом антисимметризации волновых функций мат-

ричный элемент оже-перехода можно представить в виде

M f i = MI − MII, (30)

где

MI = 〈93(r1, ν1)94(r2, ν2)

∣∣∣∣
e2

κ0|r1 − r2|
+ 8̃(r1, r2)

∣∣∣∣

×91(r1, ν1)92(r2, ν2)〉. (31)

Выражение для MII можно получить из (31) заменой

индексов 1 и 2 в волновых функциях 91 и 92. Далее

индексы I и II в выражениях для матричных элементов

будут опущены. Здесь MI — прямой кулоновский мат-

ричный элемент, а MII — обменный.

Мы рассмотрим два процесса оже-рекомбинации,

CHCC и CHHS, так как фактически именно они опреде-

ляют скорость оже-рекомбинации. Строго говоря, такая

терминология неприменима к квантовой яме, так как

имеет место смешивание подзон тяжелых дырок, легких

дырок и so-дырок. Однако, как отмечено выше, в случае

mc ≪ mh степень смешивания между тяжелыми и легки-

ми дырками мала, а смешивание so-дырок с тяжелыми

и легкими дырками при 1so ≫ T ничтожно. Последнее

условие почти всегда выполняется для полупроводников

AIIIBV. Поэтому мы можем использовать терминологию,

приведенную выше.

Оценка матричных элементов для оже-процессов

CHCC и CHHS аналогична. Для простоты далее в этом

разделе будут в основном рассмотрены матричные эле-

менты оже-переходов CHCC. Однако в следующем раз-

деле приближенные выражения для оже-коэффициента

будут даны как для CHCC, так и для CHHS-процесса.

Матричный элемент электрон-электронного кулоновско-

го взаимодействия удобнее всего вычислять, используя

представление Фурье. Мы учтем, что волновые функции

носителей в квантовой яме представляют собой плоские

волны в продольном направлении (см. Приложение II):

9i(r) = ψi(x , qi)e
iqiρ,

где q и ρ — продольная компонента волнового вектора

и продольная координата соответственно. Явное выраже-

ние для волновых функций электронов и дырок ψi даны

в Приложении II. Тогда

M =
4πe2

κ0

1

2q

∞∫

−∞

a/2∫

−a/2

ψ∗
4 (x1)ψ

∗
3 (x2)

×
(

e−q|x1−x2| + φ̃(x1, x2, q)
)
ψ1(x1)ψ2(x2) dx1dx2,

(32)

q = |q1 − q4| = |q3 − q2| — импульс, переданный в плос-

кости квантовой ямы при кулоновском взаимодействии,

a — ширина квантовой ямы, φ̃, выражение для которой

дано в Приложении III, соответствует потенциалу 8̃.

Интегрирование по x2 ограничено областью квантовой

ямы благодаря тому факту, что тяжелые дырки из-

за их относительно большой массы обычно строго

локализованы внутри ямы. Здесь x и ρ обозначают

координаты, ортогональные и параллельные плоскости

квантовой ямы, q и k — продольные и x -компоненты

квазиимпульса частиц.

Как видно из уравнения (32), оже-рассеяние про-

исходит на одномерном экспоненциально убывающем

потенциале, который зависит от поперечного передан-

ного импульса. Состояние возбужденной частицы мо-

жет находиться как в непрерывном, так и дискретном

спектре, причем последний вариант возникает, когда

продольный импульс частицы значительно превышает

поперечный импульс. (Мы, как обычно, предполагаем,

что (Vc, Vv) < Eg). При определении скорости оже-

рекомбинации как локализованные, так и делокализован-

ные состояния должны рассматриваться как конечные

состояния возбужденной частицы. Вероятность перехода

электрона (дырки) в локализованное или свободное

состояние приводит к существованию различных меха-

низмов оже-рекомбинации в квантовых ямах.

3.2.1. Вычисление матричного элемента
оже-рекомбинации для переходов
возбужденной частицы
в непрерывный спектр

Для вычисления матричного элемента воспользуемся

приближением Vc,Vv ≪ Eg . Очевидно, это приближение

также предполагает, что k2
4 + q2 ≫ k2

1, т. е. полный им-

пульс возбужденного электрона значительно превышает

импульс локализованного электрона. Интеграл по коор-

динате x1 можно вычислить интегрированием по частям.

Здесь n-ая первообразная функции ψ4e−qx равна:

Fn
4 (q, x) = (−1)n (eqxψ4(x))(n)

(k2
4 + q2)n

e−2qx .

Тогда получаем приближенное выражение для матрич-

ного элемента MI:

M ≈ M(1) + M(2), (33)

где

M(1) = − 4πe2

κ0(q2 + k2
4)

(
F(a/2)

a/2∫

−a/2

eqx2ψ∗
3 (x2)ψ2(x2)dx2

−F(−a/2)

a/2∫

−a/2

e−qx2ψ∗
3 (x2)ψ2(x2)dx2

)
.

(34)
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Здесь

F(a/2) = e−qa/2ψ∗
4s(a/2)ψ1s(a/2)

×
(
3Vc + Vv

4Eg

− κ0 − κ̃0

κ0 + κ̃0

)
. (35)

Индекс s в ψ4s и ψ1s означает, что берется только s -ая

компонента волновой функции, κ̃0 — диэлектрическая

постоянная в области барьера.

M(2) =
4πe2

κ0(q2 + k2
4)

a/2∫

−a/2

ψ∗
4 (x)ψ∗

3 (x)ψ2(x)ψ1(x)dx . (36)

Отметим, что так как волновые функции представляют

собой спиноры, компоненты ψ∗
4 следует домножить на

компоненты ψ1, и наоборот, компоненты ψ∗
3 следует

домножить на компоненты ψ2.

Таким образом, оказывается, что матричный элемент

ОР распадается на две части. Первая из них M(1)

связана с присутствием гетерограниц, а вторая M(2)

соответствует короткодействующему кулоновскому рас-

сеянию. Последнее легко понять, так как в процессе оже-

перехода происходит передача большого импульса от

локализованного электрона возбужденному, а это воз-

можно, лишь если рассеивающиеся частицы находятся

очень близко друг от друга. Отметим, что как M(1),

так и M(2) и, соответственно, сам матричный элемент

M фактически являются беспороговыми матричными

элементами. Действительно, на них не распространя-

ются никакие ограничения, налагаемые на начальные

импульсы носителей k1, kc , kh законами сохранения ква-

зиимпульса. Однако механизмы, приводящие к несохра-

нению квазиимпульса k1 + k2 6= k3 + k4 в компонентах

M(1) и M(2) различны. В M(1) несохранение связано

с рассеянием носителей на гетерограницах, и этот же

механизм приводит к появлению беспорогового оже-

процесса при рассеянии на одиночном гетеробарье-

ре [13]. В M(2) причиной нарушения закона сохранения

является ограничение объема интегрирования по x обла-

стью квантовой ямы, что приводит к появлению функции

типа
sin(ka/2)

k
вместо δ-функции δ(k). Подставляя (35)

в (34), и интегрируя по x2, имеем

M(1) ≈ 8πe2

κ0(q2 + k2
4)(q

2 + k2
3)

(
3Vc + Vv

4Eg

− κ0 − κ̃0

κ0 + κ̃0

)

× (ψ∗
4 (a/2)ψ1(a/2)) (ψ∗

3 (a/2)ψ2(a/2))
′
(1± e−qa).

(37)
Знак ± в последних скобках выбран согласно четно-

сти произведения ψ∗
3 (x)ψ2(x), знак

”
+“ соответству-

ет четному произведению, а знак
”
−“ соответствует

нечетному. В случае qa ≫ 1 этой экспонентой можно

пренебречь, и матричный элемент M(1) соответствует

независимому рассеянию на двух гетерограницах. Член

(κ0 − κ̃0)/(κ0 + κ̃0) в уравнении (37) возникает из-за

учета дополнительного потенциала 8̃(r1, r2) (см. урав-
нение (31)). Отметим, что матричный элемент M(1)

равен нулю, если четности в произведениях ψ∗
3 (x)ψ2(x)

и ψ∗
4 (x)ψ1(x) различны.

Перейдем к анализу M(2). Интеграл, входящий в M(2),

пропорционален сумме

a∫

0

ψ∗
4 (x)ψ∗

3 (x)ψ1(x)ψ2(x) dx ∝
∑

± sin (k4 − k)a/2

k4 − k
,

(38)
где k пробегает восемь различных значений

k = ±k1 ± k2 ± k3. Из всех членов в сумме (38)
наибольший тот, для которого k = k1 + k2 + k3. Причина

в том, что этот член имеет наименьшую пороговую

энергию. Под пороговой энергией мы понимаем

среднюю энергию тяжелой дырки, участвующей в

оже-переходе. Вклад в сумму от остальных членов

менее существен, и для простоты им пренебрежем.

Тогда выражение для матричного элемента для

квазипорогового оже-процесса принимает следующий

вид:

M(2) ≈ πe2

κ0(q2 + k2
4)

eiδ ~γ

Eg

1 + 2/3α

1 + α
AcA f AcAh

× sin(k f − kc1 − kc2 − kh)a/2

k f − kc1 − kc2 − kh

×
{

qhkceiφ2,3 + qckh,

qcqh sinφ2,3,

νc = ±νh,

νc = ∓νh.
(39)

Здесь δ — несущественный фазовый множитель, Ai

обозначает постоянную нормировки, νc и νh — спи-

новые индексы, введенные согласно (27), φ2,3 — угол

между поперечным импульсом электрона и дырки. Как

следует из (39), в пределе a → ∞ матричный элемент

M(2) становится пропорционален δ(k f − k1 − k2 − kh), а
следовательно, стремится к матричному элементу для

объемного случая. Напротив, M(1) в пределе a → ∞
стремится к нулю. Поэтому M(1) и M(2) мы называем

беспороговым и квазипороговым процессами соответ-

ственно.

3.2.2. Вычисление матричного элемента
оже-рекомбинации для переходов
возбужденного носителя
в дискретный спектр

Обратимся теперь к анализу матричного элемента

оже-переходов, в которых высокоэнергетическая частица

остается в связанном состоянии ψ4. Этот случай соот-

ветствует приближению q4 ≫ k4. Матричный элемент

можно вычислить аналогично тому, как это сделано

выше для M(2):

M(3) ≈ 4πe2

κ0(q2 + k2
4)

a/2∫

−a/2

(ψ∗
4ψ1)(ψ

∗
3ψ2) dx . (40)
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Этот интеграл легко вычислить; однако общая формула

очень громоздка и здесь приведена не будет. Мы лишь

сделаем оценку M(3), справедливую в случае, когда

носители находятся в основном квантовом состоянии.

Тогда имеем

M(3) ≈ 1

q2 + k2
4

eiδ ~γ

Z

× AcA f AcAha/2αqcqh sinφ2,3 (νc = −νh). (41)

Здесь φ2,3 — угол между поперечными компонентами

квазиимпульса электрона и тяжелой дырки и α —

множитель порядка единицы, возникающий от интегри-

рования произведения огибающих волновых функций

носителей в области квантовой ямы:

a/2∫

0

f 1 f 2 f 3 f 4 dx ≈ a/2α, (42)

где f i = cos k ix , i нумерует начальные и конеч-

ные состояния частиц, участвующих в процессе оже-

рекомбинации.

Отметим, что α отлично от нуля только в том случае,

когда четности попарных произведений 9194 и 9c9h

совпадают. Для широких квантовых ям, когда частицы

могут находиться в различных связанных квантовых

состояниях, α переходит в выражение

α =
1

16

∑

ν1,ν2,ν3,ν4=0,1

(−1)νiσi
sin ((−1)νi k i a/2)

(−1)νi k ia/2
. (43)

Здесь подразумевается суммирование по индексу i от 1

до 4, σi — характеризует четность функции f i (σi = 1

для нечетной функции и σi = 0 — для четной).

3.3. Коэффициент оже-рекомбинации

Для вычисления скорости оже-рекомбинации необ-

ходимо просуммировать вероятность оже-перехода в

единицу времени (28) по всем начальным и конечным

состояниям носителей с соответствующими весами —

числами заполнения.

G =
2π

~

∑

k1,k2,k3,k4

〈M2〉 · f 1 f 2(1− f 3)(1 − f 4)

× δ(E3 + E4 − E1 − E2). (44)

Здесь f 1 и f 2 — фермиевские функции распределения

носителей в начальном, а f 3 и f 4 — в конечном

состоянии,

〈M2〉 =
∑

ν1,ν2,ν3,ν4

|M f i |2

— квадрат матричного элемента, просуммированный по

спинам частиц в начальном и конечном состояниях. Для

высоко возбужденных состояний функцию распределе-

ния f 4 можно положить равной нулю. Следует отметить,

что вместо 1− f 3 мы можем написать f̃ 3, где f̃ 3 —

функция распределения для носителей противоположно-

го знака: дырок для процесса CHCC и электронов для

процесса CHHS.

Вклады в скорость оже-рекомбинации от матричных

элементов M(1) M(2) и M(3) можно разделить, так

как возбужденная частица в таких процессах лежит в

различных квантовых состояниях. Матричные элементы

M(1) и M(2), с одной стороны, и M(3), с другой стороны,

описывают переходы, в которых возбужденная частица

занимает состояния в непрерывном и дискретном спек-

тре соответственно. Сложнее разделить вклады от M(1)

и M(2). Несмотря на то, что физическое различие между

ними и сохраняется, однако имеется член, описывающий

интерференцию между ними. При малых значениях

ширины квантовой ямы интерференция является суще-

ственной, поскольку оба процесса являются фактически

беспороговыми; однако даже если этой интерференцией

пренебречь, мы все еще получаем правильный по поряд-

ку величины результат, отражающий все основные осо-

бенности коэффициента оже-рекомбинации как функции

температуры и параметров структуры с квантовой ямой.

Для достаточно широкой квантовой ямы интерфе-

ренцией между M(1) и M(2) можно пренебречь. Дей-

ствительно, если M(1) как функция квазиимпульсов не

имеет никаких особенностей, то M(2) имеет максимум по

модулю в точке k4(q) + k3 = k1 + k2. При ширине кван-

товой ямы, стремящейся к бесконечности, максимум в

этой точке имеет характер δ-функции. При уменьшении

толщины квантовой ямы максимумы этих вероятностей

приближаются друг к другу и возрастает область пере-

крытия между этими матричными элементами.

Вероятности оже-рекомбинации для процесса CHCC,

соответствующие матричным элементам M(1) и M(2), по-

казаны на рис. 3 в зависимости от продольного импульса

тяжелой дырки при различной ширине квантовой ямы.

Из рисунка видно, что интерференция между беспоро-

говым процессом, отвечающим M(1), и квазипороговым

процессом, отвечающим M(2), в соответствии со сказан-

ным выше имеет место только в узких квантовых ямах.

Следует отметить, что вероятности ОР являются доста-

точно плавными функциями продольного импульса тя-

желой дырки, так как при их вычислении было проведе-

но суммирование по дискретным квантовым состояниям

носителей. При q, близком к максимальному значению,

которое определяется законом сохранения продольного

импульса и энергии, вероятность ОР имеет корневую

расходимость, устраняемую при интегрировании по q,

т. е. при вычислении скорости оже-рекомбинации. Веро-

ятность оже-переходов для процесса CHHS имеет вид,

аналогичный выражению для процесса CHCC.

В соответствии с вышесказанным представим ско-

рость оже-рекомбинации в виде

G = G1 + G2 + G3, (45)

где скорость G1 соответствует беспороговому каналу

ОР с матричным элементом M(1), скорость G2 — ква-
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Рис. 3. Вероятности оже-переходов w1 и w2, соответствующие беспороговому и квазипороговому матричным элементам M(1) и

M(2) , в зависимости от продольного импульса тяжелой дырки при T = 300K для различной ширины квантовой ямы a ,�A: a — 50,

b — 100, c — 200, d — 500.

зипороговому каналу ОР с матричным элементом M(2)

и скорость G3 — пороговому каналу ОР с матричным

элементом M(3).

Выражения для скоростей G1 и G2 можно получить с

помощью формулы (44), заменив в ней суммирование по

k4 интегрированием и перейдя от δ-функции по энергии

к δ-функции по импульсу. В дальнейшем мы будем

исследовать коэффициент оже-рекомбинации C, который

связан со скоростью G соотношением

G = Cn2p и G = C p2n

для оже-процессов CHCC и CHHS соответственно. Здесь

n и p обозначают двумерные концентрации электронов

и дырок соответственно. Для беспорогового процесса

CHCC имеем

C1 ≈
32π2e4

κ20

~γ2

E3
g

F(1so/Eg)

a(a + 2/κc)2
k2

cκ
2
c

(k2
c + κ2c )2

Vc

Eg

×
(
3Vc + Vv

4Eg

− κ0 − κ̃0

κ0 + κ̃0

)2〈
q2

hk2
h

(q2
h + k2

h)
3

1

k4(qh)

〉
, (46)

где

F(x) =

(
1 + 2x/3

1 + x

)2
1 + 7x/9 + x2/6

(1 + x/2)(1 + 4x/9)

— коэффициент порядка единицы, x = 1so/Eg .

Отметим, что если кейновский параметр γ терпит

разрыв, то к члену в (46)

(
3Vc + Vv

4Eg

− κ0 − κ̃0

κ0 + κ̃0

)2

следует добавить выражение

E0c

2Eg

(
δγ

γ

)2

,

где E0c — энергия размерного квантования для элек-

трона и δγ = γ − γ̃ — разность между кейновским

параметром в квантовой яме и областью барьера. Однако

эта добавка обычно пренебрежимо мала. Угловые скобки
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в (46) и далее обозначают усреднение по функции

распределения тяжелых дырок. В случае распределения

Больцмана, которое обычно имеет место для дырок, это

усреднение имеет вид

〈 f (qh, kh)〉 =
1

Z

∑

n

∞∫

0

qh f (qh, khn)e
−

k2
hn

+q2
h

q2
T dqh,

где

Z =
2

q2
T

∑

n

e
−

k2
hn

q2
T ,

qT =
√
2mhT/~ — тепловой импульс тяжелых дырок,

khn — волновой вектор, соответствующий n-му уровню

размерного квантования для тяжелых дырок.

Для беспорогового процесса CHHS можно получить

следующее выражение: для C1:

C1 ≈
2π2e4

κ20~

Vc

Eg

k2
cκ

2
c

(k2
c + κ2c )

2

F̃(1so/Eg)

a2(a + 2/κc)

~
3

m3
so(Eg − 1so)3

×
〈

k2
h1k2

h2q
2
h1(q

2
h1 + q2

h2)

(q2
h1 + k2

h1)
3(q2

h2 + k2
h2)

〉
, (47)

где

F̃(x) =
(2x + 3(1− x)(1 − mso/mh))

2

2x2 + (x + 3(1− x)(1 − mso/mh))
2

1 + 2x/3

1 + x
.

Угловые скобки в (47) обозначают усреднение по функ-

ции распределения двух тяжелых дырок. При выво-

де (47) мы предполагали, что Eg − 1so ≫ mh/msoT .

Аналогично для квазипорогового процесса CHCC мы

получаем следующее выражение для C2:

C2 ≈
π2e4

κ20

~
3γ4

Eg

F(1so/Eg)

a(a + 2/κc)2

×
〈

q2
ck2

h + q2
h(k

2
c + 1

2
q2

c)

(q2
h + k2

h)k4(qh)

1− cos(k f − kh − 2kc)a

2(k f − kh − 2kc)2

〉
.

(48)

Непосредственное вычисление оже-коэффициента C2

для квазипорогового процесса CHHS дает громоздкое

выражение. Далее приводится упрощенное выражение

для достаточно узких квантовых ям при kc ≫ qc :

C2 ≈
π2e4

4κ20

Ec

Eg

~
3

m2
so(Eg − 1)3

F̃(1so/Eg)

a2(a + 2/κc)

×
〈
1− cos(kso − kh1 − kh2 − kc)a

2(kso − kh1 − kh2 − kc)2

× q2
h2

(
(k2

so+k2
h1)q

2
h1+q2

h2k
2
h1+2k2

h1(qh1qh2)+[qh1×qh2]
2
)

(q2
h1 + k2

h1)(q
2
h2 + k2

h2)kso

〉
.

(49)

И наконец, для порогового процесса CHCC мы имеем

следующее выражение для C3 :

C3 ≈
32π2e4

κ20~Eg

a

(a + 1/κc)3
1 + 7

9
x + 1

6
x2

(1 + x/3)2
1 + 2

3
x

1 + x

×
〈

q2
th

q2
T

q2
c

(q2
th + k2

h)
3

e
−

q2
th

q2
T α2

〉

n

. (50)

Здесь α — множитель, входящий в выражение (41).
В (50) мы усредняем только по дискретным квантовым

состояниям тяжелых дырок. Пороговый импульс qth

находится из закона сохранения энергии и продольной

компоненты квазиимпульса:

E f (
√

k2
f + q2

th) = Eg +
~
2(q2

th + k2
h)

2mh

+
~
2(k2

c1 + k2
c2)

2mc

.

Для простоты здесь мы пренебрегли продольными

импульсами электронов при определении пороговой

энергии вследствие их малости. Однако мы учитываем

энергию размерного квантования электронов, так как

она меняет эффективную ширину запрещенной зоны в

квантовой яме. Если разложить энергию возбужденного

электрона E f в ряд по импульсам вблизи qth = Q, где

Q — значение импульса электрона, соответствующего

энергии, равной Eg

(
Q ≈

√
4mc Eg

~2

)
, то можно получить

следующую оценку для величины порогового импульса:

qth ≈
√

4mcEg

~2
+

3

2

(
k2

c +
mc

mh

k2
h

)
. (51)

Если ширина квантовой ямы стремится к бесконечно-

сти, то пороговый импульс стремится к своему объем-

ному значению [10]. Кроме того, необходимо учитывать,

что для широких квантовых ям с большим числом

уровней введенный множитель α (см. (43)) стремится к

δ-функции, выражающей закон сохранения поперечной

компоненты квазиимпульса:

α2 −→ π

128
a
∑

δ(kh ± kc1 ± kc2 ± kc4).

Для узких квантовых ям пороговая энергия для про-

цесса CHCC возрастает (см. (51)), и коэффициент оже-

рекомбинации C3 (50) уменьшается по сравнению с

объемным значением на множитель

exp

(
3k2

c

2q2
T

)
≈ exp

(
3mc

2mh

E0c

T

)
.

Легко оценить характерную ширину квантовой ямы,

для которой этот эффект становится существенным, из

условия равенства единицы показателя экспоненты:

E0c ≈ T
2mh

3mc

⇔ a ≈ π
1

qT

. (52)

Таким образом, при ширинах квантовой ямы a ,

меньших нескольких обратных тепловых импульсов
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Рис. 4. Зависимость пороговой энергии для CHCC-процесса

от ширины квантовой ямы для трех механизмов оже-

рекомбинации: беспорогового (E1
th), квазипорогового (E2

th) и

порогового (E3
th) при T = 300K. Сплошная кривая соответ-

ствует пороговой энергии E tot
th для суммарного коэффициента

оже-рекомбинации C = C1 + C2 . Горизонтальная пунктирная

линия соответствует пороговой энергии E3D
th для трехмерного

оже-процесса.

a . π/qT пороговая энергия E3
th(a) становится суще-

ственно больше объемного значения E3D
th (см. рис. 4).

Для полупроводниковых соединений AIIIBV при комнат-

ной температуре равенство (52) достигается при ширине

квантовой ямы ∼ 100�A.

Для порогового процесса CHHS импульсы тяжелых

дырок не определяются пороговыми условиями и по-

этому приходится произвести интегрирование по ним.

При этом оказывается невозможным получить точное

аналитическое выражение для оже-коэффициента C3

для процесса CHHS вследствие того, что матричный

элемент M3 очень громоздкий. Однако легко получить

приближенное выражение, вынося усредненный квадрат

матричного элемента за знак интегрирования:

C3 ≈
2π

~
〈M2

3〉
1

2π2q4
T

∫
qh1dqh1qh2dqh2dφh1dφh2e

−
q2

h1
+q2

h2

q2
T

× δ

(
Ẽg − 1− ~

2(qh1 + qh2)
2

2mso

+
~
2q2

h1

2mh

+
~
2q2

h2

2mh

)
.

(53)
Здесь Ẽg = Eg + E0e + 2E0h − E0 so, где E0e, E0h E0 so —

энергии размерного квантования для электронов, дырок

и so-дырок соответственно. Введем пороговый импульс,

положив его равным

Q2
th =

2(Ẽg − 1so)mso

~2(2− µso)
,

где µso = mso/mh. Тогда выражение для C3 принимает

вид

C3 ≈
2mso

~3Q2
th

e
−

Q2
th

q2
T 〈M2

3〉. (54)

Учитывая, что Qth ≫ kso, получаем

C3 ≈
256msoπ

2e4

~3κ20

Q2
th

(Q2
th + 2k2

h)
4

× Vc

Eg

k2
c

k2
c + κ2c

(1− λso)
2

1 + 2λ2so
α̃2e

−
Q2
th

q2
T , (55)

где α̃ — множитель, определенный как в случае процес-

са CHCC (см. (41)), λso получена из выражения для λl

(см. (5.II,3)) подстановкой kso вместо k l .

Рассмотрим подробнее коэффициент оже-рекомби-

нации C2 для квазипорогового процесса CHCC. При

a −→ ∞ в усредняемой функции в (48) можно произ-

вести замену:

1− cos (k f − kh − 2kc)a

2(k f − kh − 2kc)2
−→ πa

2
δ(k f − kh − 2kc).

(56)

Из этой формулы отчетливо видно наличие порога в

этом пределе из-за закона сохранения квазиимпульса,

и коэффициент C2 после домножения на a2 переходит

в трехмерное выражение. Для сравнения мы приведем

результат работы [10] для C3D и наше предельное

выражение:

C3D = 6
√
2π5

e4mc~
3

κ20

1

E
5/2
g T 1/2m

1/2
c m

3/2
h

e
− 2mc

mh

Eg

T , (57)

C2 · a2 = 6
16

√
2π5

27

e4mc~
3

κ20

1

E
5/2
g T 1/2m

1/2
c m

3/2
h

e
− 2mc

mh

Eg

T .

(58)

Множитель 4 в (58) возникает из-за того, что при

вычислении M2 согласно (39) необходимо учитывать

не только слагаемое с k = kc1 + kc2
+ kh, но также и

слагаемые с k = kc1 − kc2
+ kh, k = −kc1 + kc2

+ kh, и

k = −kc1 − kc2
+ kh. При стремлении ширины квантовой

ямы к бесконечности, все четыре слагаемых дают одина-

ковый вклад в C2 . Как видно, различие между выражени-

ями (57) и (58) имеется только в численном множителе.

Небольшое расхождение в ≈ 2/3 раза связано с тем,

что при наличии большого числа электронных уровней

необходимо различать импульсы размерного квантова-

ния электронов между собой, kc1 6= kc2. Кроме того,

выражение (57) было получено для упрощенной модели,

когда величина спин-орбитального расщепления пред-

полагается бесконечно большой. При выводе же (58)
использовалось условие 1so ≤ Eg , которое выполняется

для большинства узкозонных полупроводников AIIIBV.

При вычислении (58) мы пренебрегли величиной Vc по

сравнению с Eg .
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В общем случае вместо C2a2 необходимо использо-

вать (C2 + C3)a
2, и выражение (58) останется справед-

ливым. Однако предельный переход от квазипорогового

к пороговому процессу (см. (56)) можно осуществить

только для очень широких квантовых ям. Качественный

критерий этого перехода можно получить из анализа

вероятности оже-перехода как функции импульса тя-

желой дырки. Как уже отмечалось выше, в широких

квантовых ямах доминирует квазипороговый процесс с

коэффициентом C2. Вероятность этого процесса имеет

два характерных экстремума (см. 48)). Первый из них

соответствует максимуму квадрата матричного элемента

перехода вблизи порогового значения импульса тяжелой

дырки. Ширина этого максимума порядка обратной

ширины квантовой ямы. Второй лежит вблизи значения

теплового импульса дырки qT . Тогда

C2 ≈ C th
2 (Qh ≈ qth) + CT

2 (Qh ≈ qT ), (59)

где Qh — значение импульса тяжелой дырки:

Q2
h = k2

h + q2
h;

CT
2

C th
2

≈ λEg

a

(
T

Eth

)3/2

e
Eth
T . (60)

Здесь λEg
≈ 2π/qth — характеристическая длина волны

электрона с энергией, близкой к Eg . Из сравнения

членов C th
2 и CT

2 можно получить критерий перехода

квазипорогового процесса ОР в трехмерный пороговый

процесс:

a ≫ ac ,

где

ac = λEg

(
T

Eth

)3/2

exp

(
Eth

T

)
. (61)

Для полупроводников с шириной запрещенной зоны

∼ 1 эВ при комнатной температуре критическая толщи-

на (ac) может достигать нескольких тысяч ангстрем.

Однако величина ac значительно больше, чем длина

свободного пробега носителей в полупроводниках. Это

с очевидностью показывает, что правильный расчет

оже-коэффициента в однородных полупроводниках дол-

жен включать процессы межчастичного рассеяния, если

критическая ширина ac превышает длину свободного

пробега носителей (см. Приложение I).
При уменьшении ширины квантовой ямы максимум

вероятности w2 как функции импульса тяжелых дырок

сдвигается в длинноволновую сторону (см. рис. 3).
Это приводит к уменьшению пороговой энергии этого

процесса и, как следствие, к ослаблению температурной

зависимости коэффициента оже-рекомбинации.

На рис. 4 представлены зависимости пороговой энер-

гии для процесса CHCC от ширины квантовой ямы

для всех трех механизмов оже-рекомбинации C1, C2

и C3 в отдельности и для суммарного процесса оже-

рекомбинации C = C1 + C2 + C3, определенных по фор-

муле

E i
th(T ) = T 2 d lnC i

dT
, i = 1, 2, 3. (62)

Пороговая энергия для квазипорогового процесса

меньше ее трехмерного значения, поскольку значение

критической толщины ac ≈ 1000 �A больше максималь-

ной ширины квантовой ямы (см. рис. 4). Для беспо-

рогового оже-процесса пороговая энергия убывает с

ростом ширины квантовой ямы и при определенной

толщине становится отрицательной. Такое поведение

пороговой энергии связано с тем, что для достаточно

широких квантовых ям коэффициент оже-рекомбинации

C1 становится убывающей функцией температуры (см.
рис. 5). С ростом ширины квантовой ямы пороговая

энергия для суммарного оже-процесса стремится к сво-

ему предельному значению E3D
th , отмеченному на рис. 4.

Перейдем к рассмотрению беспорогового оже-про-

цесса. Как уже отмечалось выше, вероятность беспо-

рогового оже-перехода не имеет никаких особенностей

как функция импульса тяжелой дырки. Поэтому коэф-

фициент C1 имеет слабую неэкспоненциальную тем-

пературную зависимость. Впервые это было подробно

исследованно в работе [13]. Кроме того, функция C1(T )
немонотонна и имеет максимум. Наличие такого макси-

мума легко объяснить. При малых температурах и, со-

ответственно, малых продольных импульсах носителей

их волновые функции почти ортогональны и значение

C1 мало. С ростом температуры возрастает характерный

импульс, переданный при кулоновском взаимодействии

(он приблизительно равен тепловому импульсу тяже-

лой дырки). Поэтому при низких температурах оже-

коэффициент является возрастающей функцией темпера-

туры. При дальнейшем росте температуры коэффициент

оже-рекомбинации C1(T ) достигает максимума и начи-

нает убывать, так как кулоновское дальнодействующее

взаимодействие, ответственное за оже-процесс, мало для

больших переданных импульсов.

Температуру, при которой коэффициент ОР имеет

максимум, легко оценить из соображений равенства

энергии размерного квантования дырок температуре

T ≈ ~
2π2/2mha2. Отметим, что этого максимума не

было бы, если бы мы считали интеграл перекрытия

I th пропорциональным переданному импульсу. Такое

приближение, применяемое для большинства исследу-

емых структур, на наш взгляд, является ничем не

оправданным допущением, хотя часто используемым в

литературе (см., например, [25], и приводит к непра-

вильным выражениям для скорости оже-рекомбинации

и к неправильным ее зависимостям от температуры и

параметров квантовой ямы.

Оже-коэффициентC1 имеет очень резкую зависимость

от ширины квантовой ямы a . Для широких квантовых

ям, даже после умножения на a2, C1a2 остается убыва-

ющей функцией ширины квантовой ямы. Поэтому такой

процесс может быть преобладающим только для доста-

точно узких квантовых ям. При a ≈ 1/kc коэффициент

C1 имеет максимум, связанный со слабым перекрытием

волновых функций носителей заряда. При дальнейшем

уменьшении ширины квантовой ямы скорость беспоро-

гового оже-процесса плавно убывает из-за уменьшения
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Рис. 5. Температурные зависимости полного оже-коэффициента и парциальных вкладов беспорогового и квазипорогового

механизмов при различных ширинах квантовой ямы.

перекрытия волновых функций электронов и дырок.

Аналогичное выражение для C1 для процесса CHCC

получено в работах [15,16].
На рис. 6 приведены зависимости коэффициентов оже-

рекомбинации C1 и C2 от ширины квантовой ямы при

различных температурах для модельной структуры на

основе соединения InGaAsP. Видно, что все кривые де-

монстрируют резко выраженный максимум. Положения

этих максимумов для C1 и C2 практически не зависят от

температуры. Максимум для порогового процесса (C3)
достигается при бо́льших значениях ширины квантовой

ям, чем для квазипорогового и беспорогового процессов,

и его положение смещается с ростом температуры.

Это в первую очередь связано с уменьшением порого-

вой энергии для порогового процесса с увеличением

ширины квантовой ямы (см. рис. 4), а не фактором

перекрытия волновых функций.

На рис. 5 представлена температурная зависимость

суммарного коэффициента оже-рекомбинации и парци-

альные вклады беспорогового и квазипорогового меха-

низмов при различной ширине квантовой ямы. Из этого

рисунка видно, что для достаточно широких квантовых

ям при низких температурах преобладает беспороговый

оже-процесс (C1 > C2), а при высоких температурах,

наоборот, величина квазипорогового процесса становит-

ся больше (C2 > C1). Поэтому зависимость суммар-

ного коэффициента оже-рекомбинации от температуры

имеет характерный вид с максимумом и минимумом.

С ростом ширины квантовой ямы и максимум и ми-

нимум коэффициента оже-рекомбинации смещаются в

сторону низких температур и в пределе квантовой

ямы бесконечной ширины исчезают. Таким образом, в

случае однородного полупроводника коэффициент оже-

рекомбинации есть монотонная функция температуры.

Заметим, что при вычислении зависимости коэффициен-

тов оже-рекомбинации от температуры использовалось

больцмановское распределение носителей. При низких

температурах электроны и дырки, как правило, подчиня-

ются статистике Ферми–Дирака. Следовательно, средние
импульсы электронов и дырок, участвующих в оже-

процессе, слабо зависят от температуры. В результате

коэффициент оже-рекомбинации имеет более плавную

зависимость от температуры и не обращается в нуль при

T → 0.
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Рис. 6. Оже-коэффициенты C1 , C2 и C3 для беспорогового,

квазипорогового и порогового процессов в зависимости от

ширины квантовой ямы при различных температурах T , K:

a — 150, b — 300.

На рис. 7 представлена зависимость беспорогового

коэффициента оже-рекомбинации C1 от температуры

при различных значениях энергии Ферми дырок для

квантовых ям различной ширины. Существенные раз-

личия между коэффициентами оже-рекомбинации для

распредлений Ферми–Дирака и Больцмана имеются в

случае T ≪ EF, где EF — энергия Ферми дырок. Это

условие обычно реализуется только в случае очень

низких температур, при которых процесс оже-рекомби-

нации не актуален.

3.4. Процесс оже-рекомбинации в квантовых

ямах с участием фононов

При высоких температурах в однородных полупро-

водниках пороговый процесс оже-рекомбинации преоб-

ладает (C3D ∝ e−
Eth
T ). Однако при достаточно низкой

температуре такой процесс становится экспоненциально

слабым. В этом случае скорость оже-рекомбинации

больше не определяется рассеянием двух электронов
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Рис. 7. Сравнение зависимостей беспорогового коэффициента

оже-рекомбинации C1 от температуры при различных зна-

чениях энергии Ферми дырок для двух различных значений

ширины квантовой ямы a ,�A: a — 50, b — 150. На рисун-

ке TF обозначает энергию Ферми, выраженную в градусах.

Кривая с TF = −100K приближенно соответствует статистике

Больцмана.

(двух дырок). Следует учитывать механизмы, приводя-

щие к снятию порога. Считается, что главным меха-

низмом такого рода является испускание и поглощение

виртуального оптического фонона. За счет передачи

большого импульса фонону порог ОР для тяжелых

дырок снимается и скорость такого оже-процесса пред-

ставляет собой степенну́ю функцию температуры [26–
28]. Вероятность оже-рекомбинации с участием фоно-

нов рассчитывается во 2-м порядке теории возмуще-

ний для электрон-электронного (дырочно-дырочного)
и электрон-фононного (дырочно-фононного) взаимодей-

ствия [29].
Для квантовых ям ситуация сильно отличается от объ-

емного случая даже в 1-м орядке теории возмущений

благодаря наличию беспорогового процесса. Поэтому

a priori очевидно, что условия, при которых фононный

оже-процесс в квантовой яме доминирует над бесфонон-

ным, сильно зависят от ширины квантовой ямы.
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Как уже отмечалось, в квантовой яме существуют

три процесса оже-рекомбинации: пороговый, квазипоро-

говый и беспороговый. Коэффициент оже-рекомбинации

для порогового процесса с участием фононов довольно

легко вычисляется при выполнении условий [28]:

Eg ≫ 2µEg ≫ ~ωlo, (63)

где ωlo — частота оптического фонона, µ = me/mh.

Можно показать, что коэффициент фононного оже-

процесса выражается через ранее рассчитанный для

прямого процесса (50) следующим образом:

C3
ph ≈ C3

e2~ωlo

2κa

T

E2D
th

g(a, k th)
1

e
~ωlo

T − 1

×
[

e
~ωlo

T

(
E2D
th − ~ωlo

)2 +
1

(
E2D
th + ~ωlo

)2

]
eE2D

th /T ,

(64)
где κ = κ0κ∞

κ0−κ∞
; κ∞ — высокочастотная диэлектрическая

проницаемость среды; g(a, k th) — множитель, отражаю-

щий двумерный характер дырок в квантовой яме [30]:

g(a, k th) = k2
tha

2

[
1

2k2
tha2

+
1

4(π2 + k2
tha2)

]

×
[
1− 1− e−2k tha

2k tha

2π4

(π2 + k2
tha2)(2π2 + 3k2

tha2)

]
.

(65)
Для сравнения удобно привести соответствую-

щее трехмерное выражение для коэффициента оже-

рекомбинации с участием фононов:

C3D
ph ≈ C3D e2~ωlo

2
√
πκ

(
T

E3D
th

)3/2
k th

e~ωlo/T − 1

×
[

e
~ωlo

T

(
E3D
th − ~ωlo

)2 +
1

(
E3D
th + ~ωlo

)2

]
eE3D

th /T . (66)

Результаты расчетов для двумерного и трехмер-

ного процессов оже-рекомбинации с участием фоно-

нов с пороговыми матричными элементами электрон-

электронного взаимодействия весьма близки. Суще-

ственное отличие для узких квантовых ям состоит в уве-

личении пороговой энергии E2D
th из-за наличия уровней

размерного квантования носителей заряда (51). Соот-

ветственно критерий преобладания фононного процесса

оже-рекомбинации (C3
ph) над бесфононным пороговым

оже-процессом (C3) в квантовых ямах выполняется при

несколько больших температурах, чем в трехмерном

случае. Однако, как уже отмечалось выше, пороговый

оже-процесс в узких квантовых ямах сам по себе на

несколько порядков слабее, чем беспороговый и квази-

пороговый процессы [C3 ≪ (C1, C2)]. Поэтому процесс

ОР с участием фононов с пороговым матричным эле-

ментом электрон-электронного взаимодействия (Mee)
также не может составить конкуренцию беспороговому

и квазипороговому процессам [C3
ph ≪ (C1C2)].

Рассмотрим теперь фононный оже-процесс с беспо-

роговым матричным элементом (Mee = M(1) + M(2)) для

СНСС-процесса. Для простоты мы будем использовать

приближение сохранения импульса при рассеянии дырки

на оптическом фононе [31]. В этом случае состояние

виртуальной дырки фиксировано и можно получить сле-

дующее выражение для вероятности оже-рекомбинации

с участием фононов:

w i→ f = ± 2π

~

∑

s

|Mee |2 |Mph|2
(Es ∓ ~ωLO − Eh)2

e±
~ωLO

T

e±
~ωLO

T − 1

× δ(Ei − E f )dν f , (67)

где Es — энергия виртуальной тяжелой дырки, Mph —

матричный элемент рассеяния виртуальной дырки на

оптическом фононе; знаки
”
+“ и

”
−“ соответствуют

процессам испускания и поглощения фононов соответ-

ственно. Легко видеть, что в выражении (67) имеется

сингулярность, когда знаменатель обращается в нуль.

Для устранения этой расходимости необходимо учиты-

вать переходы не в стационарные, а в квазистационарные

состояния тяжелой дырки, т. е. в состояния с комплекс-

ной энергией. В этом случае полюс в (67) перейдет в

область комплексных энергий, тогда вероятность про-

порциональна знаменателю:

w i→ f ∝ 1

(Es ∓ ~ωLO − Eh)2 + Ŵ2
,

где Ŵ = ~/τ . Характерные времена жизни τ , соответ-

ствующие этим состояниям, могут изменяться в широ-

ких пределах в зависимости от температуры, концентра-

ции свободных носителей и т. д. Рассматривать резонанс-

ный процесс с участием фононов во 2-ом порядке теории

возмущений имеет смысл только тогда, когда полушири-

на квазистационарных дырочных и фононных состояний

меньше энергии оптического фонона (~ωlo). В против-

ном случае необходимо вычислять оже-коэффициент в

1-ом порядке теории возмущений, используя функцию

Лоренца

f (1E) =
1

π

Ŵ

1E2 + Ŵ2

вместо δ-функции, выражающей закон сохранения энер-

гии. Для процесса оже-рекомбинации с участием фоно-

нов с квазипороговым матричным элементом электрон-

электронного взаимодействия возможны как резонанс-

ный, так и виртуальный оже-процессы, при этом в

случае узких квантовых ям преобладает первый из них,

а в случае достаточно широких — второй.

В общем случае оже-коэффициент для процесса с

участием фононов может быть представлен в виде

Cph = C1
ph + C2

ph, (68)
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где

C1,2
ph = ±πωe2

κZ

exp(±~ωlo/kBT )

exp(±~ωlo/kBT ) − 1

×
∑

m,n,νn

∫
d2Q

(2π)2
d2qh

(2π)2

(
∂E4

∂k4

)−1

× |Mee(n, νn, qh) + Q|2
(

~2(m2−n2)π2

2a2m2
h

− ~2(qh+Q)2

2mh
+

~2q2
h

2mh
± ~ωlo

)2
+ Ŵ2

× Jn,m(Q) f h(m, qh). (69)

Здесь:

Z =
∑

m

∫
dqh

(2π)2
f h(m, qh),

Jn,m(Q) ≈ a

2

× (1 + δm,n)[(m + n)2π2 + Q2a2] + (m − n)2π2 + Q2a2

[(m + n)2π2 + Q2a2][(m − n)2π2 + Q2a2]
,

f (m, qh) — функция распределения дырок на m-м кван-

товом уровне.

Функция Jn,m(Q) вычислена в работе [31] для невы-

рожденной зоны. В случае рассеяния фононов на тя-

желых дырках ее величина будет несколько меньше.

Однако для наших целей это обстоятельство не яв-

ляется существенным. В (69) в качестве импульсов

связанных электронов в матричный элемент электрон-

электронного взаимодействия необходимо подставить

их средние тепловые импульсы. Оже-коэффициенты

C1
ph (знак

”
+“) и C2

ph (знак
”
−“) отвечают процессам

испускания и поглощения фонона соответственно. Неза-

висимо от того, какой вид имеет матричный элемент

кулоновского взаимодействия, фононный оже-процесс

является беспороговым. Это соответствует тому, что

основной вклад в оже-коэффициент Cph вносят им-

пульсы дырок, по порядку величины равные тепловым

импульсам. Поэтому при вычислении Cph в качестве

продольного импульса дырки qh можно подставить его

среднее тепловое значение.

Выражение (69) легко проанализировать, если тем-

пература намного меньше энергии оптических фоно-

нов. В этом случае тепловым импульсом дырок qh

можно пренебречь по сравнению с импульсом фонона

Q, который приближенно равен импульсу виртуальной

дырки. Легко видеть, что вероятность оже-перехода как

функции Q имеет две особенности. Первая из них

соответствует минимуму знаменателя в (69) и резонанс-

ному переходу. Заметим, что для процесса, связанного

с поглощением фонона, такая особенность фактически

отсутствует и резонансный процесс не идет. Вторая

особенность соответствует максимуму квадрата матрич-

ного элемента и, как правило, отвечает виртуальному

оже-переходу. При достаточно широких квантовых ямах

матричный элемент электрон-электронного взаимодей-

ствия как функция импульса тяжелой дырки имеет вид,

близкий к δ-функции. В этом случае второй экстремум

преобладает, и процесс рассеяния на фононах является

виртуальным. При уменьшении ширины квантовой ямы

δ-функция уширяется для квазипорогового матричного

элемента и, кроме того, возрастает роль беспорого-

вого матричного элемента, слабо зависящего от Q.

Это приводит к усилению резонансного оже-перехода и

ослаблению виртуального. Для узких квантовых ям мат-

ричный элемент кулоновского электрон-электронного

взаимодействия слабо зависит от Q, поэтому для них ре-

зонансный процесс является доминирующим. Как можно

показать, в этом случае справедлива следующая оценка

величины коэффициента оже-рекомбинации для фонон-

ного оже-процесса:

Cph ≈
ωloe2mha

8κ̃~Ŵ
J1,1(Q0)

2π

~

3k(Eg)

4Eg

|Mee(Q0)|2 , (70)

где Q0 =
√

2mhωlo

~
. Отсюда сразу же следует, что от-

ношение фононного коэффициента оже-рекомбинации к

бесфононному имеет вид:

Cph

C
≈ Ŵph

Ŵ

(Mee(QO))
2

(Mee(qT ))2
, (71)

где C = C1 + C2 — оже-коэффициент для прямого оже-

процесса, Ŵph = ~/τph, τph — время рассеяния дырки на

оптическом фононе, qT — тепловой импульс дырок.

Видно, что фононный оже-процесс может доминиро-

вать над бесфононным процессом только в том случае,

когда близки значения величин Ŵph и Ŵ, или в случае

предельно низких температур, когда велико отношение

матричных элементов, взятых при импульсах Q0 и qT .

Заметим, что при высоких концентрациях неравновес-

ных носителей, когда процесс оже-рекомбинации вообще

становится существенным, дырочно-дырочное рассея-

ние, как правило, оказывается значительно более эффек-

тивным механизмом релаксации, чем дырочно-фононное.

Это приводит к тому, что отношение Ŵph/Ŵ оказыва-

ется малым и бесфононный процесс оже-рекомбинации

преобладает над фононным вплоть до очень низких

температур. На рис. 8 продемонстрирована зависимость

коэффициента оже-перехода с участием фонона как

функции температуры при различной ширине кванто-

вой ямы. В качестве полуширины Ŵ взята величи-

на 20 мэВ — характерное значение, соответствующее

дырочно-дырочному рассеянию.

3.5. Обсуждение результатов

Проведенный нами анализ показал, что для процессов

оже-рекомбинации CHCC и CHHS в полупроводниковых

структурах с квантовыми ямами имеются три различных

механизма оже-рекомбинации: беспороговый, квазипо-

роговый и пороговый. Первый из них слабо зависит

от температуры. Эффективная пороговая энергия для
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Рис. 8. Зависимость коэффициентов оже-рекомбинации для

прямого беспорогового C и фононного Cph процессов от

температуры при различной ширине квантовой ямы.

второго процесса существенно зависит от ширины кван-

товой ямы (см. рис. 4). А именно она стремится к нулю

для существенно узких квантовых ям и приближается

к объемному значению в пределе a → ∞. Поэтому не

имеется четких различий между беспороговым и квази-

пороговым механизмами ОР в узких квантовых ямах, и

их можно рассматривать как один беспороговый процесс

ОР. Третий, пороговый, процесс ОР аналогичен тому,

который имеет место в объемных полупроводниках.

Единственное различие состоит в том, что его пороговая

энергия несколько выше, чем в объемном полупровод-

нике, из-за роста эффективной ширины запрещенной

зоны (51). В узких квантовых ямах скорость порогового

процесса мала по сравнению со скоростями первых двух

процессов G1 и G2. В пределе a → ac квазипороговый и

пороговый оже-процессы сливаются и образуют процесс

объемной оже-рекомбинации C2a2 + C3a2 → C3D . Кри-

тическая ширина КЯ сильно (экспоненциально) зависит

от температуры и может достигать нескольких сотен

ангстрем при комнатной температуре для полупровод-

ника с Eg ≈ 1 эВ. Скорость безпорогового процесса

при переходе к объемному полупроводнику стремится

к нулю. Для узких КЯ двумерный оже-коэффициент,

умноженный на a2, превышает значение для объемного

оже-процесса вследствие доминирования беспорогового

и квазипорогового процессов (рис. 9). Таким образом,

процесс оже-рекомбинации в квантовых ямах оказыва-

ется усиленным по сравнению с однородным полупро-

водником. При низких температурах это усиление ока-

зывается тем более существенным. Отметим, что весь

анализ зависимостей коэффициентов оже-рекомбинации

(C1, C2, C3) от температуры и параметров квантовой

ямы качественно применим в равной мере и к СНСС-, и

CHHS-оже-процессам. Однако, поскольку мы не конкре-

тизировали модельные структуры с квантовыми ямами,

мы проиллюстрировали эти зависимости на примере

СНСС-процесса.

Заметим, что существенное подавление процессов

оже-рекомбинации в квантовых ямах возможно при

выполнении условий (Vc,Vv) > Eg и E2 − E1 > Eg (E1

и E2 — энергии первого и второго уровня размерного

квантования носителей) [32]; т. е. в том случае, когда

энергии возбужденной частицы недостаточно для пере-

хода в непрерывный спектр или на следующий уровень

размерного квантования. Для выполнения этих условий

необходимо создание структур с глубокими и узкими

квантовыми ямами как для электронов, так и для дырок.

Существующие в настоящее время технологии позволя-

ют создавать подобные структуры на основе материалов

InAs/AlSb [33] и InAs/GaSb/AlSb [34]. В таких глубоких
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Рис. 9. Зависимость трехмерных значений (3D) оже-

коэффициентов C1a2 и C2a2 от ширины квантовой ямы при

T = 300 K. Горизонтальная линия соответствует объемному

оже-коэффициенту C3D .
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квантовых ямах существует только пороговый процесс

оже-рекомбинации, соответствующий коэффициенту C3.

Этот коэффициент может быть на несколько порядков

меньше, чем оже-коэффициенты для беспорогового и

квазипорогового процессов (C1,C2) в мелких квантовых

ямах
(
(Vc ,Vv) < Eg

)
.

Следует также отметить, что в случае квантовых ям

существенные изменения претерпевает также процесс

оже-рекомбинации с участием фононов. Аналогично

бесфононному процессу оже-рекомбинации имеются три

различных механизма фононного процесса (C3
ph, C2

ph

и C1
ph), соответствующие пороговому, квазипорогово-

му и беспороговому матричным элементам электрон-

электронного взаимодействия. Первый процесс вполне

аналогичен трехмерному. Однако в случае узких кван-

товых ям этот процесс заметно слабее беспорогового и

порогового процессов оже-рекомбинации. В литературе

именно этот процесс с участием фононов считается

основным процессом оже-рекомбинации в квантовых

ямах [35,36]. Процессы оже-рекомбинации при участии

фононов с квазипороговым и беспороговым матричны-

ми элементами электрон-электронного взаимодействия

могут являться резонансными процессами. При низких

температурах они могут конкурировать с бесфононными

процессами оже-рекомбинации. Однако из-за отсутствия

сильной зависимости последних от температуры та-

кая конкуренция возможна при гораздо более низких

температурах, чем в трехмерном случае (см. рис. 8).
С ростом ширины квантовой ямы резонансное рассеяние

на фононах ослабевает и мы переходим к обычным

трехмерным условиям.

3.6. Заключение

В заключение остановимся на некоторых интересных

работах, вышедших в последнее время и посвященных

анализу оже-рекомбинации в узкощелевых материалах.

В статье [37] разработана модель для расчета ско-

рости оже-рекомбинации в узкозонных квантовых ямах

на основе гетероструктур HgTe/CdHgTe. Показано, что

для корректного расчета скорости оже-рекомбинации в

таких структурах необходимо учитывать процессы удар-

ной ионизации и влияние свободных носителей заряда

на электрон-электронное взаимодействие. Показано, что

процессы релаксации могут как увеличивать, так и

уменьшать скорость оже-рекомбинации в зависимости

от концентрации носителей. Приведены зависимости

скорости оже-рекомбинации для квантовых ям с запре-

щенной зоной 35 и 50мэВ при четырех температурах 8,

100, 200 и 300K.

Авторы работы [38] исследовали влияние шерохо-

ватости поверхности раздела на оже-рекомбинацию в

квантовых ямах. Они показали, что при увеличении

отношения шероховатости поверхности к толщине кван-

товой ямы оже-рекомбинация значительно усиливается.

В частности, при рассмотрении реалистичной шерохо-

ватости поверхности раздела для квантовой ямы InGaN

увеличение скорости оже-рекомбинации по сравнению

с квантовой ямой с идеальным интерфейсом может

составлять приблизительно 4 порядка величины.

В работе [39] исследуется время жизни неравновес-

ных носителей заряда в квантовых ямах на основе

GaInN/GaN. Показано, что при высоких плотностях но-

сителей заряда время жизни безызлучательной рекомби-

нации слабо зависит от температуры и пропорционально

обратной величине плотности, что подразумевает экси-

тонный, беспороговый оже-процесс.

Авторы работы [40] исследовали внутреннюю

квантовую эффективность квантовых ям на основе

(In,Ga)N/GaN. Было предложено несколько механизмов,

объясняющих снижение квантовой эффективности,

включая оже-рекомбинацию, как внутреннюю,

так и вызванную дефектами. Была использована

атомистическая модель электронной структуры в

рамках приближения сильной связи для расчета

скорости излучательной и оже-рекомбинаций.

В работе [41], на основе систематического изучения

зависимости пороговой плотности тока от температуры

и гидростатического давления в сочетании с теорети-

ческим анализом коэффициента усиления и пороговой

плотности носителей авторы определили зависимость

коэффициентов оже-рекомбинации от длины волны в

лазерах на квантовых ямах InGaAsSb/GaSb, излучающих

в диапазоне длин волн 1.7−3.2 мкм. Был проведен ана-

лиз соотношения скоростей оже-рекомбинации для двух

процессов CHCC и CHSH.

В работе [42] предложен подробный теоретический

анализ безызлучательной оже-рекомбинации в узкозон-

ных квантовых ямах из ртути, кадмия и теллурида

(квантовые ямы CdHgTe). Рассмотрена микроскопиче-

ская модель для расчета скоростей оже-рекомбинации в

квантовых ямах с различной долей Cd в зависимости от

неравновесной плотности носителей с учетом сложной

зонной структуры. Однако авторы не учитывали влияние

пространственной неоднородности квантовой структуры

на механизм ОР.

В работе [43] изучается влияние процессов оже-

рекомбинации на температурное гашение фотолюминес-

ценции в квантовых ямах HgTe/CdHgTe. Предполагается,

что резонансный беспороговый оже-процесс определяет

пороговые значения вынужденного излучения в широ-

ком температурном интервале.

Из анализа перечисленных публикаций следует, что

авторы при исследовании процессов оже-рекомбинации

не учитывают влияние пространственной неоднород-

ности квантовых гетероструктур на механизмы оже-

рекомбинации. Однако, как известно, оже-рекомбинация

представляет собой процесс кулоновского взаимодей-

ствия между частицами. Как отмечено выше, воздей-

ствие гетерограницы на кулоновское взаимодействие

между частицами носит фундаментальный характер: ге-

терограница видоизменяет законы сохранения энергии

и импульса, что в результате приводит к формирова-

нию новых каналов оже-рекомбинации. Как показано в
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настоящем обзоре, для всех типов квантовых гетеро-

структур (квантовые ямы, квантовые нити и квантовые

точки) пространственная неоднородность влияет как на

механизмы оже-рекомбинации, так и на зависимость

скорости оже-рекомбинации от температуры и от пара-

метров квантовой гетероструктуры, а также на величину

скорости.
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Auger-recombination mechanisms
in semiconductor nanoheterostructures.
Part 1. Quantum wells

G.G. Zegrya, N.L. Bazhenov

Institute Ioffe,
194021 St. Petersburg, Russia

Abstract This review is devoted to the mechanisms of Auger

recombination in semiconductor nanoheterostructures. A distinc-

tive feature of nanoheterostructures is strong spatial heterogeneity

caused by existence of heterogeneous boundaries. Heterogeneities

have a fundamental effect on the energy value and behavior

of charge carrier wave functions in quantum-dimensional het-

erostructures, and, as shown in this review, the heterogeneity

significantly affects the macroscopic properties of semiconductor

nanostructures. The presence of a heterogeneous boundary affects

the electron-electron (hole-hole) interaction in quantum structures,

and this effect is fundamental. The heterogeneity removes the

restrictions imposed on interelectronic collision processes by the

laws energy and momentum of conservation, which leads to the

appearance of thresholdless Auger recombination channels, which

depend weakly on temperature. The main mechanisms of Auger

recombination of nonequilibrium charge carriers in semiconductor

heterostructures with quantum wells (Part 1), quantum filaments,

and quantum dots (Part 2) are considered. It is shown that

there are three fundamentally different Auger recombination mech-

anisms: thresholdless, quasi-threshold, and threshold processes.

The speed of the thresholdless process has weak temperature

dependece. The threshold energy of the quasi-threshold process

significantly depends on the width of the quantum well and is close

to zero for narrow quantum wells. It is shown that thresholdless

and quasi-threshold Auger processes prevail in narrow quantum

wells, while threshold and quasi-threshold Auger processes prevail

in wide quantum wells. The critical width of the quantum well is

found at which the quasi-threshold Auger recombination channel

transforms into a three-dimensional threshold Auger process.

The influence of phonons on Auger recombination processes in

quantum wells is also analyzed. It is shown that for narrow

quantum wells, the Auger process involving phonons becomes

resonant, which leads to an increase in the Auger recombination

coefficient taking into account phonons. The effect of relaxation

processes on Auger recombination mechanisms in homogeneous

semiconductors is considered separately. It is shown that taking

into account relaxation processes leads to disappearance of the

energy threshold for Auger recombination processes.
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